Register Pressure Sensitive Redundancy
Elimination*

Rajiv Gupta and Rastislav Bodik

Dept. of Computer Science, Univ. of Pittsburgh
Pittsburgh, PA 15260, USA

Abstract. Redundancy elimination optimizations avoid repeated com-
putation of the same value by computing the value once, saving it in a
temporary, and reusing the value from the temporary when it is needed
again. Examples of redundancy elimination optimizations include com-
mon subexpression elimination, loop invariant code motion and partial
redundancy elimination. We demonstrate that the introduction of tem-
poraries to save computed values can result in a significant increase in
register pressure. An increase in register pressure may in turn trigger gen-
eration of spill code which can more than offset the gains derived from
redundancy elimination. While current techniques minimize increases in
register pressure, to avoid spill code generation it is instead necessary
to ensure that register pressure does not exceed the number of available
registers.

In this paper we develop a redundancy elimination algorithm that is
sensitive to register pressure: our novel technique first sets upper lim-
its on allowed register pressure and then performs redundancy elimi-
nation within these limits. By setting strict register pressure limits for
frequently executed (hot) blocks and higher limits for infrequently exe-
cuted (cold) blocks, our algorithm permits trade-off between redundancy
removal from hot blocks at the expense of introducing spill code in cold
blocks. In addition, the program profile is also used to prioritize opti-
mizable expressions; when not enough registers are available, the most
profitable redundancies are removed first. To increase redundancy elim-
ination within the allowed register pressure, our algorithm lowers the
pressure with two new program transformation techniques: (a) whenever
possible, we avoid inserting a temporary and instead access the reused
value from existing variables, which reduces the life time of the tem-
porary beyond existing live-range optimal algorithms; and (b) the live
ranges of variables referenced by the expressions are shortened by com-
bining expression hoisting with assignment sinking.

Keywords: data flow analysis, code optimization, partial redundancy
elimination, partial dead code elimination, code motion, register pres-
sure, spill code

* Supported in part by NSF grants CCR-9808590, EIA-9806525 and a grant from Intel
Corporation to the University of Pittsburgh.

S. Jahnichen (Ed.): CC’99, LNCS 1575, pp. 107-122, 1999.
© Springer-Verlag Berlin Heidelberg 1999

108 Rajiv Gupta and Rastislav Bodik

1 Introduction

Redundancy elimination is an important commonly implemented optimization.
Loop invariant code motion (LICM) eliminates from loops statements that com-
pute the same value in each loop iteration. Global common subexpression elim-
ination (CSE) eliminates an expression that is preceded by an identical compu-
tation along all incoming paths. Finally, partial redundancy elimination (PRE)
subsumes LICM and CSE by eliminating redundancy from instructions that are
redundant along only a subset of incoming paths [1,6,7,9,13,14,16,17,19]. Since
PRE is the most general redundancy elimination, the focus of this paper is on
developing an improved PRE algorithm.

PRE algorithms avoid repeated computation of the same value by computing
the value once, saving it in a temporary, and reusing the value from the tempo-
rary when it is needed again. In the code below, the recomputation of X+Y is
optimized away by remembering its value in the temporary temp.

1]

ZXY temp

—«-- live range scope

However, an additional register must be allocated for temp, increasing the regis-
ter pressure in block A. This increase in register pressure may result in generation
of memory intensive spill code, which can more than offset the gains derived from
redundancy elimination. While it is widely believed that PRE impacts register
pressure, and some existing algorithms even attempt to minimize register pres-
sure increase [15,17], the effects of PRE algorithms on register pressure have not
been evaluated.

Let us consider the impact of lazy code motion [17] PRE on register pres-
sure (although [15] is the best known algorithm, our implementation currently
supports [17]). The algorithm attempts to reduce the increase in register pres-
sure by minimizing the lengths of live ranges for the temporaries introduced to
hold values of redundant expressions. Figure la illustrates the effect of lazy code
motion on register pressure. Plotted in this graph is the average register pres-
sure (y-axis) for all basic blocks that have a given execution frequency (z-axis).
The top curve shows the running average of register pressure (i.e., the number
of live ranges crossing the basic block entry) prior to the application of PRE.
The middle and the bottom curves give the average number of live ranges added
and removed due to PRE. For example, block B above has one added and one
removed live range (temp vs. x). The overall change in register pressure is the
difference of the middle and the bottom curves.

This graph documents that PRE causes a significant (approx. 25%) average
increase in register pressure. Most importantly, the increase is not limited to

Register Pressure Sensitive Redundancy Elimination 109

low frequency basic blocks; the resulting spill loads and stores might slow down
important, hot basic blocks. The graph reflects only redundancy of expressions
that are lexically identical; if our experiments used value numbering techniques
to discover additional redundancies [4,6,20], significantly higher increases in reg-
ister pressure would be observed [2,6].

15.0 1
—— before PRE

increase due to PRE

TGS
1N

=
—
=

o
S

register pressure (running average)

W"\Mm ST

ian T S W Y L UV S S S) IO

1.0e+05
basic block execution count (126.gcc)

0.8 =

76 registers, before PRE
m 16 registers, after PRE
12 registers, before PRE
12 registers, after PRE
- 8 registers, before PRE
8 registers, after PRE

4
=)

o
~
]

<
N
_—

fraction of all basic blocks (dynamic)

0.0 ’7

go gce compress

Fig. 1. Effect of lazy code motion PRE on register pressure: (a) Each point
corresponds to the average number of live ranges (y) of all basic blocks with a
given execution frequency (z). There were about 82,000 executed basic blocks
in program 126.gcc from SPEC95. (b) Bars plot the number of executed basic
blocks whose register pressure exceeded given limit before and after PRE.

Register pressure changes are harmful only if spill code is generated as a
result. Our second experiment aimed to determine whether PRE may indeed
increase the pressure above the number of commonly available physical registers,
triggering spill code generation. We measured the dynamic number of executed

110 Rajiv Gupta and Rastislav Bodik

basic blocks whose pressure was above 16, 12, and 8 registers, both before and
after PRE. As shown in Figure 1b, the increase in the fraction of basic blocks
that exceeded these limits is significant (5-10%). This increase translates to a
corresponding increase of basic blocks that will execute some spill code after
PRE.

The second experiment exposes the practical inadequacy of the current tech-
niques [15,17], in which minimizing register pressure comes only second to the
primary goal of maximizing redundancy removal. Figure 1b convinces us that
removing all redundancy at any cost may be harmful as it may still cause a
significant spill code. We argue that an effective PRE must instead consider re-
dundancy removal and register pressure in balance: when no more registers are
available, remaining PRE opportunities must be sacrificed.

Another important observation behind our algorithm is that some PRE op-
portunities may decrease register pressure (for example, see the live range of x
in block B in our example). Therefore, when selecting the subset of PRE op-
portunities to optimize, these expressions can be used to enable optimization
of more important expressions. Furthermore, since numerous basic blocks ex-
ceed available register resources already prior to PRE, in addition to minimizing
register pressure increases, these pressure releaving expressions might eliminate
spill code that was present prior to PRE.

In order to address the above issues we have developed a new register pressure
sensitive redundancy elimination algorithm with the following characteristics:

— Our algorithm sets upper limits on allowed register pressure and attempts
to maximize elimination of dynamically observed redundancy within these
limits. While strict register pressure limits are set for frequently executed
(hot) blocks, higher register pressures are permitted in infrequently executed
(cold) blocks. Therefore, insufficient registers in cold blocks do not prevent
optimization in hot blocks.

— Since under limited register resources our algorithm may exploit only a sub-
set of PRE opportunities, estimates of dynamic PRE benefits are used to
give higher priority to the removal of redundancies that yield the most ben-
efit. Moreover, by applying PRE in situations where a reduction in register
pressure results, we further enable exploitation of additional PRE opportu-

nities.
— To minimize increase in register pressure, the life time of a temporary is
reduced beyond existing live-range optimal algorithms [17] by accessing the

value from existing program variables that already contain the value. Only
when the reused value is not by available in any existing variable, a tem-
porary is introduced to carry the value. In comparison with [17], we reduce
temporary live ranges on all paths, rather than only on paths where the
value was previously not available. In our example, we would initialize temp
from Z after block A, rather than before it, avoiding pressure increase in
block A.

— Further reductions in register pressure can be achieved by minimizing the live
ranges of program variables referenced by optimized expressions through a

Register Pressure Sensitive Redundancy Elimination 111

combination of expression hoisting with assignment sinking. In our example,
sinking Z=X+Y to below block A would reduce the live range of Z, without
extending live ranges of x and Y. We describe how sinking and hoisting can
be used for register pressure sensitive PRE.

2 Register Pressure Guided PRE

We begin by providing an overview of our algorithm, then we discuss the critical
steps of the algorithm in greater detail. As shown in Figure 2, our algorithm
begins by computing the register pressure and setting an upper limit on the
register pressure for each basic block based upon profile information. The register
pressure is computed as the maximum number of live variables at any point in
the basic block. If the register pressure of a block is already equal to or higher
than this limit, no further increases would be allowed. On the other hand if the
pressure is lower than the limit, increases up to the limit are allowed.

To uncover opportunities for PRE, anticipability and availability analysis is
performed as described in [1]. The dynamic benefit of optimization opportunities
associated with each lexical expression is computed using profile data [1]. PRE
within the limits of allowed increases in register pressure is performed using a
greedy algorithm which prioritizes the expressions according to their benefits
and applies PRE to the expression with highest benefit first.

Once an expression has been selected for optimization, we compute the
changes in register pressure that would result if all of the uncovered PRE op-
portunities involving that expression are exploited. If changes reflect that for
some blocks the increase in register pressure would result in increased spill code,
then we attempt to reduce register pressure in those blocks. The reductions are
achieved by hoisting expressions out of the blocks with at least one operand that
is no longer live after its use by the expression, since the live range of such an
operand would be shortened upon hoisting. In other words expression hoisting
would continue to shorten the live range of the operand variable until another
use of the same operand is encountered. Of course it may not always be pos-
sible to achieve the desired reduction in register pressure for a basic block, in
which case we inhibit the hoisting of the expression being optimized through
that block. For the purpose of analysis, a point at which hoisting is inhibited
is essentially viewed as a kill point for the expression. By doing so we inhibit
the increase in the register pressure for the block. The affect of inhibiting code
hoisting through the block is to disable those opportunities for PRE, involving
the current expression, that are enabled by the inhibited code motion. We up-
date the availability and anticipability information to reflect the killing affects of
inhibited code motion by treating them as kill points for the current expression.
Based upon updated anticipability information and availability information we
perform the PRE transformation. In this way we perform PRE to the extent that
is allowed by register pressure limits. The above process is similarly repeated for
other expressions.

112 Rajiv Gupta and Rastislav Bodik

for each basic block B
Determine register pressure RP(B)
Set register pressure limit, LRP(B), based on freq(B)
end for
for each lexical expression exp
Perform availability and anticipability analysis on exp
Compute dynamic benefit of applying PRE to exp
end for
while all expressions have not been considered
Select the unoptimized expression, uexp,
with the highest dynamic benefit
for each basic block B involved in PRE of uexp
Compute uexp’s PRE caused register pressure changes, 6RP(B)
if JRP(B) + RP(B) > LRP(B) then
Attempt to reduce register pressure of B by
LRP(B)-6RP(B) + RP(B) by hoisting
of expressions out of B
if register pressure is not adequately reduced then
Inhibit expression hoisting of uexp through B
end if
end if
end for
Update availability and anticipability information to
reflect inhibited expression hoisting
Perform maximal PRE of uexp within register pressure limits
end while
Perform further PRE through assignment sinking

Fig. 2. Algorithm for register pressure guided PRE.

2.1 Using Profile Data

Profile information serves two important functions in our algorithm. First we use
profile information to compute the dynamic benefit of redundancy removal for
various expressions. The benefits are used to selectively apply PRE during which
higher priority is given to redundancy elimination opportunities that result in the
most benefit. The second use of profiling is in setting register pressure limits. In
particular, strict register pressure limits are set on hot basic blocks while higher
register pressure limits are set for cold blocks. In this way we are able to achieve
redundancy removal in hot blocks at the expense of allowing spill code in cold
blocks.

Setting priorities. Consider the example in Figure 3a in which redundancy ex-
ists both in the evaluations of X+Y and A+B. Profile information indicates
that X4Y, which is repeatedly computed in the loop, should have priority over
A+B. Let us assume that variables x, y, A and B are live throughout the program
and a single register is free. This register can be used to hold the value of T and

Register Pressure Sensitive Redundancy Elimination 113

thus removal of redundancy of X+Y is achieved, as shown in Figure 3b, without
generation of additional spill code. Redundancy of A+B is not removed as there
are no more free registers.

A

' '

=A+B =A+B
=X+Y =T
(a) Original Code. (b) After PRE.

Fig. 3. Selective PRE: optimize high-benefit redundancies in a greedy fashion.

Setting register pressure limits. Next consider the example in Figure 4a. Assum-
ing that the execution frequency of the highlighted path from block 1 to block 2
is very high, we would like to eliminate the redundancy involving X+Y from this
path. Furthermore, let us assume that block 3 has a low execution frequency but
high register pressure (A is live in block 3 but dead in blocks 1 and 2). If PRE
is applied as shown in Figure 4b, the register pressure in block 3 would further
increase. On the other hand, if we prevent register-pressure increase in block 3,
and thus disable hoisting of X4+Y above node 4, PRE along the highlighted path
would not be achieved (Figure 4c). Given that the execution frequency of block 3
is low and hence spill code does no harm, it would be preferable to set a higher
limit for block 3 and thus enable PRE along the frequently executed path. The
register allocator would then either spill the value of T in block 3 as shown in
Figure 4d or rematerialize [5] X+Y as shown in Figure 4e. Thus, by setting a
higher register pressure limit for cold blocks we can trade-off PRE that benefits
hot blocks at the cost of poorer performance for cold blocks.

2.2 Computing Register Pressure Changes

PRE affects register pressure in two ways. First, because a temporary is intro-
duced to carry the value of the redundant expression, the portions of the pro-
gram over which the temporary is live experience an increase in register pressure.
Second, because the redundant expression itself is hoisted, the live range of a
variable referenced in the expression is shortened if the expression represents
the last use of the variable, causing a decrease in register pressure. By determin-
ing the actual changes in live ranges for the temporary and for the expression
operands, we compute the changes in register pressure that would result from
PRE of the expression.

114 Rajiv Gupta and Rastislav Bodik

(a) Before PRE. (b) After PRE (hoisting enabled). (c) Hoisting blocked. (d) Spill Code Generation. (e) Rematerialization.

Fig. 4. Allowing register-pressure increases in cold blocks enables PRE in hot
blocks.

Live range of the temporary. Existing live-range optimal algorithms initialize
the temporary at the point where the expression is computed for the first time,
i.e., X:i=A+B is replaced with T:=X:=A+B. The temporary T is then used to
provide the value at points where redundant instances of A+B were removed.
The temporary is however unnecessary at points where the value of A+B is
still held by the left-hand-side variable x. Our approach is to further reduce the
live range of the temporary by obtaining the value of the expression from other
variables that may also contain its value.

>
o

(a) Before PRE. (b) After lazy code motion PRE. (c) After register sensitive PRE.

Fig. 5. Introducing temporary to hold an expression’s value.

Consider the example in Figure 5a which after traditional PRE results in
the code shown in Figure 5b. As we can see the live range of the temporary T
introduced in this case extends over the entire code segment (shown by shaded
blocks). We can reduce the increase in register pressure by narrowing this live
range as shown in Figure 5c. The reduction is achieved by exploiting the obser-
vation that in parts of the code the value of the expression is already available in
existing variables. Note that in this approach copy assignments are introduced
to initialize the temporary T at points where the live range of T begins. These
copy assignments are typically eliminated during register allocation.

Next we present describe the computation of a new optimal live range for
PRE which essentially works like the computation of live range in lazy code
motion but delays the temporaries. This algorithm performs forward propa-

Register Pressure Sensitive Redundancy Elimination 115

gation of assignments which compute the expression under consideration. At
each program point where at least one such assignment is available along all
paths, the value of the expression can be accessed from the variable on the left
hand side of that assignment and thus there is no need for a new temporary to
hold the expression’s value. The copy assignments are introduced at the latest
points where the expression’s value is available through an existing variable. In
the analysis below, NAVAILOp(le) (n)(XAVAILOp(X,y) (n)) represents the must-

availability of all program assignments which compute the lexical expression
op(x,y) at the entry(exit) of node n (i.e., must-availability for all assignments of
the form v:=op(x,y) is computed).

NAVAIL g, () () = 1 XAVAIL g, o3 (n) — DEADG (3 ()

pEPred(n)

XAVAIL g) (1) = (NAVAIL oy () = KILL g) () U GENG s 3 ()

DEADOp()(n) = {stat. vi=op(x,y): v is dead at n's entry}

X,y

KILLop((n) = {stat. vi=op(x,y): n defines x,y or v}

xy)
GENop(x,y)(n) = {stat. vi=op(x,y): n computes vi=op(x,y) }

The above analysis will identify for the example in Figure 5¢ that the value
of the expression A+B is available in variables W, Y and/or X is certain program
regions while in others a new temporary T is required. The initialization of T
through copying is performed at node exits that are the latest points at which
the value of the expression is available in an existing variable (i.e., the value is
not available at one of the sucessors of the node).

Live ranges of referenced variables. To track the changes in the live range of a
referenced variable x when PRE for expression X+Y is carried out, we must take
into account the effect of hoisting X+Y on x’s liveness. We develop the notion
of PRE-liveness in which the liveness of a variable x is computed in relation to
an expression X+Y which is being subjected to hoisting. Under this notion of
liveness, x is live for X4+Y at a program point n if and only if even after PRE
has been able to hoist X+Y above n, x is still live at n. On the other hand if x
is not live at n after PRE has hoisted x+y above n, then x is considered to be
dead for x+y.

The notion of PRE-liveness is illustrated in Figure 6. Consider the situations
in which multiple (say two) evaluations of X+Y are present on a path and the
latest evaluation of x+y represents the last use of x. If both of the evaluations
of X4Y are hoisted by PRE as shown in Figure 6a, then the live range of x will
be shortened. Thus, x is considered to be dead for x+y at the exit of node 2 in
Figure 6a. If the last evaluation of X+4Y cannot be hoisted due to a definition
of y, then there is no change in the length of the live range of x. Thus, in
Figure 6b x is considered to be live for x+y at the exit of node 2. If after the use
of x in X+Y, there is another use of x by an expression which is lexically different
from X+Y, then the length of x’s live range will remain the same. Conservatively

116 Rajiv Gupta and Rastislav Bodik

we consider a variable to be PRE-live if there is at least one path along which it
is PRE-live. In Figure 6¢ x is considered to be live for X4Y at the exit of node 2.

(a) Hoisting of all uses of x in x+y and PRE. (b) Blocked use of x in x+y. (c) Hoisting of uses of x in x+y and PRE.

Fig. 6. PRE-liveness of x: The live ranges after PRE are the PRE live ranges.

Definition: Variable x is PRE-live wrt expression op(x,y) at point n if and only
if: (i) there exists a path from n to an evaluation of op(x,y) which does not
contain any redefinition of x but contains a redefinition of y (see Figure 6b);
or (ii) there exists a path from n to an evaluation of an expression op(x,-) (an
expression which uses x and is lexically different from op(x,y)) which does
not contain any redefinition of x (see Figure 6c).

Next we present the data flow equations for computing the PRE-liveness
information. Since both conditions in the above definition require backward flow
analysis, we can evaluate them simultaneously as a single data flow problem.
For this purpose the data flow solution at a point is represented by one of three
values T, USE and 1, where T = USE C L. The join operator, M, used during
data flow is also defined below. Initially the data flow value at a node is T
indicating that no use of the current value of x exists along any path. The value
is lowered to L if a use by op(x,-) is found indicating the value is to be considered
live according to condition (ii) of the definition. The value is lowered from T to
USE if a use of x’s value by op(x,y) is found. For points to which op(x,y) cannot be
hoisted because of a definition of y, the data flow value is lowered from USE to L
indicating that the current value of x is live for op(x,y) according to condition

(i) of the definition. The PRE-liveness value NPRELIVEgp(X’y) (n) at the entry
of each node n is true if the data flow solution NEXng(X'y) (n) is L; otherwise
it is false. The liveness at exit, XPRELIVESP(X'V) (n), is similarly computed from
XEXPPY) (1)

Liveness analysis for x wrt expression op(z,y) at node n for any path from n to end.

T . x is not used I

USE x is used only by occurrences of op(x,y)

whose hoisting is not blocked by y’s definition T || T JUSE]L

i - USE||USE|USE| L

L || x is used by op(x,-) or by occurrences of op(x,y) T
whose hoisting is blocked by y’s definition

Register Pressure Sensitive Redundancy Elimination 117

1 if (XEXPPPXY) (1) — USE A n defines y)
op(x,y) _ \ (Op(X,—) € ’I'L)
NEXP: (n) = USE if op(x,y) € n

XEXP P(x,)) otherwise

if n = exit
XEXPZP NEXng(X’Y) (w) otherwise
weSucc
xPRELIVESPCYY) (1, (XEXPOp(X Nin) = 1)
NPRELIVESP(X: Y) (n) = (NEXPPUY) (1) — 1

Overall register pressure changes. The overall change in register pressure
at the entry(exit) of node n due to PRE of op(x,y), denoted by dN RPop(x y) (n)

(6XRPOP(X y) (n)), is computed from the changes in register pressure due to

operands (x,y) and the temporary introduced to save the value of op(x,y). The
change in register pressure at node n’s entry(exit) due to operands of op(x,y),
given by 6NOPRPOP(X y) (n) (6XOPRPOP(X y) (n)), is computed from the PRE-

liveness information. The change in register pressure due to a temporary at node
n’s entry(exit), given by 6NTRPop(x,y) (n) (5XTRPop(x,y) (n)), is computed from

must-availability of assignments that compute op(x,y). Note that in the algorithm
of Figure 2, the major step was the computation of register pressure changes.

SXRP) (n) = SXOPRP

p X,y) (’I’L) + 6XTRPOP(X,y) (’I’L)

op(xy

ONRP xy) n) = dNOPRP + 6NTRP

op(xy) (") op(xy) ()

if XPRELIVESP*Y) (1) A XPRELIVESPXY) (1)
X

SXKOPRP 5 (x,y) (7 -1 eIse|fXPRELIVE°p(X Y) (n) v XPRELIVESPCY) (1)
—2 otherwise
if NPRELIVEOP(XvY)() ANPRELIVESPXY) (1)
SNOPRP () (1 1 elseif NPRELIVESPUY) (1) v NPRELIVESPCY) (1)

—2 otherwise

1if 3 s € Succ(n) st NAVAILop(x,y)(s) = false
5XTRPop(le) (n) = for all Y::op(x,y)
0 otherwise

1 if NAVAIL (n)= false for all vi=op(x,y)
SNTRP = p(xy)
op(x,y)(n) = { 0 otherwise

The results of applying the above analysis techniques to an example are
shown in Figure 7. As we can see, the application of PRE to expression X+Y by

118 Rajiv Gupta and Rastislav Bodik

hoisting results in reduction of register pressure initially. Once the expression is
hoisted above uses of x and y the register pressure starts to increase. Assuming
the register pressure limits are set such that no increase in register pressure is
allowed, the code resulting after PRE is shown in Figure 7b. While PRE due
to computation of X+Y within the loop and following the loop is removed, still
PRE remains due to computation of X+Y in the assignment a=x+y. The latter
redundancy is not removed because hoisting is disabled to prevent an increase
in register pressure.

“< remaining
\
\ redundancy
\

(a) Register Pressure Changes
Upon Hoisting of x+y.

(b) After PRE.

Fig. 7. Example of register pressure changes of operands due to PRE.

3 Register Pressure and Assignment Motion

In this section we show how the PRE algorithm based upon expression hoisting
can be further enhanced through assignment motion.

PRE through assignment sinking. As the example in Figure 7 illustrates, after
the algorithm of the preceding section has been applied, redundancy may still
remain. It may be possible to remove all or part of the remaining redundancy
through assignment sinking. In particular if we can sink an assignment that
computes some expression op(x,y) to another computation of op(x,y), then the
latter computation can be eliminated. We propose that after applying the pre-
sented algorithm, a separate phase may be used to remove as much redundancy
as possible through assignment sinking. In order to ensure that sinking does not
increase register pressure, we may apply sinking only to the extent that it does
not cause any increase in register pressure. Furthermore, since assignment sink-
ing may enable partial dead code elimination [3,11,18], it can also be performed
at the same time.

Given an assignment, the sinking algorithm consists of three major steps:
computing register pressure changes, delayability analysis for determining legal-
ity of sinking, and insertion point determination. To compute register pressure

Register Pressure Sensitive Redundancy Elimination 119

changes we observe that if an assignment is subjected to sinking, the length of
the live range associated with the variable defined by the statement decreases.
The changes in the length of the live range associated with a variable used by
the rhs-expression in the assignment can be predicted using traditional global
liveness information for that variable. If the operand variable is not live prior to
sinking, then the live range for the operand increases with sinking. On the other
hand if the operand variable is live prior to sinking, the length of the live range
remains unaffected as long as at the points through which sinking proceeds vari-
able continues to be live. If a partially dead assignment sinks to a point at which
it is fully dead, then no change in register pressure occurs at that point since the
assignment would neither be inserted at that point nor sunk any further. The
delayability analysis is forward analysis that determines points to which an as-
signment can be sunk. In this analysis sinking is blocked at appropriate program
points to prevent register pressure increase. Finally the assignment being sunk
is inserted at a node’s entry if it can be delayed to its entry but not its exit. It
is inserted at a node’s exit if it can be delayed to its exit but not to the entries
of one of its successors. In both of the above cases insertion is only needed if the
variable that the statement defines is live.

Let us illustrate the use of sinking for performing PRE to the example from
the preceding section where some PRE had already been applied through hoist-
ing of X+Y while some remains. Figure 8a shows the changes in register pressure
for sinking a=x+y. The sinking of a=x+y yields the code in Figure 8b in which
the remainder of the redundancy is removed. Thus, PRE is achieved without
any increase in register pressure through a combination of hoisting and sinking,
while neither by itself could have enabled PRE without an increase in register
pressure.

(a) Register Pressure Changes due to Sinking of a=x-+y. (b) After PRE & PDE through Sinking.
Fig. 8. Example.
Live range reduction through assignment hoisting. In some situations assignment

hoisting can be used to further reduce the live range of the temporary. In the
example of Figure 5a, by performing hoisting of loop invariant assignment instead

120 Rajiv Gupta and Rastislav Bodik

of simply hoisting loop invariant expressions out of loops. As shown in Figure 9b
the live range of temporary T is further shortened if the loop invariant assignment
Z=A+B is hoisted out of the loop, instead of simply hoisting expression A+B
out of the loop as was done in Figure 9a.

=L Z=T

>

(a) After register sensitive PRE. (b) Allowing Assignment Hoisting.

Fig. 9. Assignment hoisting.

4 Concluding Remarks

In this paper we demonstrated the inadequacy of the current PRE
techniques [15,17] which simply try to minimize the increase in register pressure.
Minimization of the increase in register pressure can still lead to a significant
increase in spill code. Therefore we proposed an approach to PRE which sets
upper limits on allowed register pressures based upon profile information and
within the constraints of these limits performs redundancy elimination. In an
attempt to maximize redundancy elimination we try to minimize the increase in
the register pressure by reducing the range over which a new temporary is intro-
duced and using assignment sinking to perform PRE that was not achieved by
hoisting alone. Finally we would like to point out that code reordering performed
during instruction scheduling also effects register pressure. Our algorithm can
be extended to perform such code reordering. However, for such code reordering
to be consistent with good instruction scheduling decisions, it is important to
consider pressure on functional unit resources as shown in [12,10].

References

1. R. Bodik, R. Gupta and M.L. Soffa, “Complete Removal of Redundant Expres-
sions,” ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 1-14, Montreal, Canada, June 1998. 108, 111

2. R. Bodik, R. Gupta and M.L. Soffa, “Load-Reuse Analysis: Design and Evalua-
tion,” ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, Atlanta, Georgia, May 1999. 109

3. R. Bodik and R. Gupta, “Partial Dead Code Elimination using Slicing Trans-
formations,” ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 159-170, Las Vegas, Nevada, June 1997. 118

10.

11.

12.

13.

14.

15.

16.

17.

18.

Register Pressure Sensitive Redundancy Elimination 121

R. Bodik and S. Anik, “Path-Sensitive Value-Flow Analysis,” 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, California, January 1998. 109

P. Briggs, K.D. Cooper, and L. Torczon, “Rematerialization,” ACM SIGPLAN

Conf. on Prog. Language Design and Implementation, pages 311-321, June 1992.
113

P. Briggs and K.D. Cooper, “Effective Partial Redundancy Elimination,” ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 159-170, June 1994. 108, 109

F. Chow, S. Chan, R. Kennedy, S-M. Liu, R. Lo, and P. Tu, “A New Algorithm for
Partial Redundancy Elimination based upon SSA Form,” ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 273-286, Las
Vegas, Nevada, June 1997. 108

C. Click, “Global Code Motion Global Value Numbering,” ACM SIGPLAN Con-
ference on Programming Language Design and Implementalion, pages 246-257, La
Jolla, CA, June 1995.

D.M. Dhamdhere, “Practical Adaptation of Global Optimization Algorithm of
Morel and Renvoise,” ACM Trans. on Programming Languages, 13(2):291-294,
1991. 108

R. Gupta, “A Code Motion Framework for Global Instruction Scheduling,” In-
ternational Conference on Compiler Construction, LNCS 1383, Springer Verlag,
pages 219-233, Lisbon, Portugal, March 1998. 120

R. Gupta, D. Berson, and J.Z. Fang, “Path Profile Guided Partial Dead Code
Elimination using Predication,” International Conference on Parallel Architectures

and Compilation Techniques, pages 102-115, San Francisco, Ca, November 1997.
118

R. Gupta, D. Berson, and J.Z. Fang, “Resource-Sensitive Profile-Directed Data
Flow Analysis for Code Optimization,” The 30th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 558-568, Research Triangle Park, NC, Dec.
1997. 120

R. Gupta, D. Berson, and J.Z. Fang, “Path Profile Guided Partial Redundancy
Elimination using Speculation,” IEEE International Conference on Computer Lan-
guages, pages 230-239, Chicago, Illinois, May 1998. 108

R.N. Horspool and H.C. Ho, “Partial Redundancy Elimination Driven by a Cost-
Benefit Analysis,” 8th Israeli Conference on Computer Systems and Software En-
gineering, pages 111-118, Herzliya, Israel, June 1997. 108

O. Ruthing, “Optimal Code Motion in Presence of Large Expressions,” IEEE In-

ternational Conference on Computer Languages, Chicago, Illinois, 1998. 108, 110,
120

E. Morel and C. Renvoise, “Global Optimization by Suppression of Partial Redun-
dancies,” Communications of the ACM, 22(2):96-103, 1979. 108

J. Knoop, O. Ruthing, and B. Steffen, “Lazy Code Motion,” Proceedings of Confer-
ence on Programming Language Design and Implementation, pages 224-234, 1992.
108, 110, 120

J. Knoop, O. Ruthing, and B. Steffen, “Partial Dead Code Elimination,” Proceed-

ings of Conference on Programming Language Design and Implementation, pages
147-158, 1994. 118

122 Rajiv Gupta and Rastislav Bodik

19. B. Steffen, “Data Flow Analysis as Model Checking,” Proceedings TACS’91,
Sendai, Japan, Springer-Verlag, LNCS 526, pages 346-364, 1991. 108

20. B. Steffen, J. Knoop, and O. Riithing, “The value flow graph: A program repre-
sentation for optimal program transformations,” Proceedings of the 3rd European
Symposium on Programming (ESOP’90), LNCS 432, pages 389-405, 1990. 109

	Register Pressure Sensitive Redundancy Elimination
	Introduction
	Register Pressure Guided PRE
	Using Profile Data
	Computing Register Pressure Changes

	Register Pressure and Assignment Motion
	Concluding Remarks
	References

