
On the Suitability of Genetic-Based Algorithms
for Data Mining*

Sunil Choenni

Nat. Aerospace Lab., NLR, P.O. Box 90502, 1006 BM Amsterdam, The Netherlands,
and

Univ. of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
email: choenni@nlr.nl

Abstract. Data mining has as goal to extract knowledge from large
databases. A database may be considered as a search space consisting
of an enormous number of elements, and a mining algorithm as a search
strategy. In general, an exhaustive search of the space is infeasible. There­
fore, efficient search strategies are of vital importance. Search strategies
on genetic-based algorithms have been applied successfully in a wide
range of applications. We focus on the suitability of genetic-based algo­
rithms for data mining. We discuss the design and implementation of a
genetic-based algorithm for data mining and illustrate its potentials.

1 Introduction

Research and development in data mining evolves in several directions, such as
association rules, time series, and classification. The latter field has our attention.
We have developed an algorithm to classify tuples in groups and to derive rules
from these groups. In our view, a user formulates a mining question and the
algorithm selects the group(s) that satisfy this question. For example, in an
insurance environment, a question may be to identify persons with (more than
average) chances of causing an accident. Then, the algorithm searches for the
(group) profiles of these persons.

In general, the search spaces that should be inspected in order to find an­
swers on mining questions are very large, making exhaustive search infeasible.
So, heuristic search strategies are of vital importance to data mining. Genetic
algorithms, which are heuristic search strategies, have been successfully used in
a wide range of applications. A genetic algorithm is capable of exploring different
parts of a search space [10].

In this paper, we discuss the applicability of a genetic-based algorithm to
the search process in data mining. We show how a genetic algorithm can be
suited for data mining problems. In our approach, a search space consists of
expressions. An expression is a conjunction of predicates and each predicate
is defined on a database attribute. Initially, a random number of expressions,
called initial population, is selected. Then, the initial population is manipulated

* This research has been sponsored by the Dutch Ministry of Defense.

Y. Kambayashi et al. (eds.), Advances in Database Technologies
© Springer-Verlag Berlin Heidelberg 1999

56

by applying a number of operations. The best individuals are selected to form
the next generation and the manipulation process is repeated until no significant
improvement of the population can be observed.

In general, data mining algorithms require a technique that partitions the
domain values of an attribute in a limited set of ranges, simply because consid­
ering all possible ranges of domain values is infeasible. Suppose that we have
an attribute age which has a domain between 18 to 65, and an expression of
the form age in [vi, vk], in which Vi and Vk are values from the domain of age,

defining a range of values. The problem is how to choose the values for vi and
vk. As illustrated in (11], this is in general an NP-complete problem. Our solu­
tion to this problem is based on a suitable choice of the mutation operator (see
Section 3.3). Furthermore, we have chosen a representation for individuals that
seamlessly fits in the field of databases. The same holds for the manipulation
operators and the function to rank individuals (fitness function). The fitness
function discussed in this paper is close to our intuition and gives rise to a speed
up of the optimization process. Based on our approach, we have implemented a
(prototype) tool for data mining, and have performed a preliminary evaluation.
The results will be presented in this paper.

A genetic approach has been proposed in (2] to learn first order logic rules and
in [7] a framework is proposed for data mining based on genetic programming.
However, the authors neither come up with a implementation nor with experi­
ments. The effort in [2] is focussed towards machine learning, and the important
data mining issue of integration with databases is superficially discussed. The
effort in (7] describes a framework for data mining based on genetic program­
ming, and stresses on the integration of genetic programming and databases.
However, an elaborated approach to implement and evaluate the framework is
not presented. Other related research has been reported in [1, 8, 9]. While in
(8, 9] variants of a hill climber are used to identify the group(s) of tuples satis­
fying a mining question, the approach in [1] is based on decision trees. However,
the problem of partitioning attribute values has not been discussed in these ef­
forts. We note that a genetic-based algorithm has, by nature, a better chance to
escape from a local optimum than a hill climber.

The remainder of this paper is organized as follows. In Section 2, we outline
some preliminaries and problem limitations. In Section 3, we identify the issues
that play a role in genetic-based algorithms and adapt them in a data mining
context. In Section 4, we point out a number of rules that may speed up the
search process of a genetic-based algorithm. Section 5 is devoted to an overall
algorithm for data mining. In Section 6, we discuss the implementation of the
algorithm and some preliminary results. Finally, Section 7 contains conclusions
and further work.

2 Preliminaries & problem limitations

In the following, a database consists of a universal relation (6]. The relation is
defined over some independent single valued attributes, such as att1,att2, ... , attn,

57

and is a subset of the Cartesian product dom(att1) x dom(att2) x ... x dom(attn),
in which dom(attj) is the set of values that can be assumed by attribute attj. A
tuple is an ordered list of attribute values to which a unique identifier (tid) is
associated. So, we do not allow missing attribute values. Furthermore, we assume
that the content of the database remains the same during the mining process.

An expression is used to derive a relation, and is defined as a conjunction of
predicates over some attributes. The length of an expression is the number of
attributes involved in the expression. An example of an expression of length 2
is (age in (19, 24] /\ genderis 'male'), representing the males who are older than
18 and younger than 25. An expression with length 1 is called an elementary
expression. In this paper, we deal with search spaces that contain expressions.

3 Data Mining with Genetic algorithms

Initially, a genetic algorithm (10] randomly generates an initial population. Tradi­
tionally, individuals in the population are represented as bit strings. The quality
of each individual, i.e., its fitness, is computed. On the basis of these qualities, a
selection of individuals is made (an individual may be chosen more than once).
Some of the selected individuals undergo a minor modification, called mutation.
For some pairs of selected individuals a random point is selected, and the sub­
strings behind this random point are exchanged; this process is called cross-over.
The selected individuals, modified or not, form a new population and the same
procedure is applied to this generation until some predefined criteria are met.

In the following, we discuss the issues that play a role in tailoring a genetic
algorithm for data mining. Section 3.1 is devoted to the representation of indi­
viduals and Section 3.2 to the fitness function. Finally, in Section 3.3, we discuss
the two operators to manipulate an individual.

3.1 Representation

An individual is regarded as an expression to which some restrictions are imposed
with regard to the the notation of elementary expressions and the number of
times that an attribute may be involved in the expression. The notation of an
elementary expression depends on the domain type of the involved attribute. If
there exists no ordering relationship between the attribute values of an attribute
att, we represent an elementary expression as follows: expression := att is (v1 ,

v2, ... ,vn), in which v; E dom(att), 1 ::::; i ::::; n. In this way, we express that an
attribute att assumes one of the values in the set {v1 , v2, ... ,vn}· If an ordering
relationship exists between the domain values of an attribute, an elementary
expression is denoted as expression:= att in [v;,vk], i ::::; k, in which [v;,vk]
represents the values within the range of v; and vk. An attribute is allowed to
participate at most once in an individual. This restriction is imposed to prevent
the exploration of expressions to which no tuples satisfy. In the following, an
expression to which no tuples qualify will be called an empty expression. Consider
a database in which, among others, the age of persons is recorded. Then, the
expression age in (19,34] /\ age in [39,44] represents the class of persons whose

58

p1 = gender is ('male') I\ age in (19,34]
p2 = age in (29,44] I\ town is ('Almere', 'Amsterdam', 'Weesp') I\ category is ('lease')
p3 = gender is ('male') I\ age in (29,34] I\ category is ('lease')
p4 = gender is ('female') I\ age in (29,40] I\ category is ('lease') I\ price in [50K, lOOK]
p5 = gender is ('male') I\ price in (20K,45K]

Fig.1. Example of a population

age is between 19 and 34 as well as between 39 and 44. It should be clear that
no persons will satisfy this expression, since age is a single-valued attribute.

In the following, a population is defined as a set of individuals. As a running
example, we use a database that keeps record of cars and their owners. This
artificial database consists of the following universal relation2 : Ex(gender, age,
town, category, price, damage), in which the attributes gender, age, and town
refer to the owner and the remainder of the attributes refer to the car. Attribute
category records whether a car is leased or not, and damage records whether a car
has been involved in an accident or not. An example of a population consisting
of 5 individuals is given in Figure l.

3.2 Fitness function

A central instrument in a genetic algorithm is the fitness function. Since a genetic
algorithm is aimed to the optimization of such a function, this function is one of
the keys to success. Consequently, a fitness function should represent all issues
that play a role in the optimization of a specific problem. Before enumerating
these issues in the context of data mining, we introduce the notion of cover.

Definition 1: Let D be a database and pan individual defined on D. Then, the
number of tuples that satisfies the expression corresponding to p is called
the cover of p, and is denoted as llap(D)ll· The set of tuples satisfying pis
denoted as ap(D).

Note that p can be regarded as a description of a class in D and ap(D) summa­
rizes the tuples satisfying p. Within a class we can define subclasses. In the fol­
lowing, we regard classification problem as follows: Given a target class t, search
interesting subclasses, i.e., individuals, within class t. We note that the target
class is the class of tuples in which interesting knowledge should be searched for.
Suppose we want to expose the profiles of risky drivers, i.e., the class of persons
with (more than average) chances of causing an accident, from the database
Ex(gender, age, town, category, price, damage}. Then, these profiles should be
searched for in a class that records the characteristics of drivers that caused
accidents. Such a class may be described as damage = 'yes'.

We feel that the following issues play a role in classification problems.

- The cover of the target class. Since results from data mining are used for
informed decision making, knowledge extracted from databases should be

2 We note that a universal relation can be obtained by performing a number of joins
between the relations involved in a database.

59

,..,,.,
1,0

Fig. 2. Shape of the fitness function

supported by a significant part of the database. This increases the reliability
of the results. So, a fitness function should take into account that small
covers are undesired.

- The ratio of the cover of an individual p to the cover of the target class
t, i.e., If the ratio is close to 0, this means that only a few
tuples of the target class satisfy individual p. This is undesired for the same
reason as a small cover for a target class. If the ratio is close to 1, almost all
tuples of the target class satisfy p. This is also undesired because this will
result in knowledge that is often known. A fitness function should take these
properties into account.

Taking into account above-mentioned issues, we have defined the following fitness
function:

F(p) = {
lll C(t) if jjCTp(D) n eit(D)ll /311eit(D)ll

llcrp(D)na, (D)IHlo-, (D)ll C(t) otherwise
Ila, (D)) 11(/1-1)

in which 0 < (3 1, and

C(t) = 1 lldD!ll - a
1 otherwise

and 0 <a< l.
We note that the values for a and (3 should be defined by the user and will

vary for different applications. The value of a defines the fraction of tuples that
a target class should contain in order to be a candidate for further exploration.
The value (3 defines the fraction of tuples that an individual should represent
within a target class in order to obtain the maximal fitness. In Figure 2, the
shape of the fitness function is presented.

The fitness grows linearly with the number of tuples satisfying the description
of an individual pas well as satisfying a target class t, i.e., lleip(D) n CTt(D)ll,
above a user-defined value a, and decreases linearly with lleip(D) neit(D)ll after
reaching the value fJllCTt(D)ll·

It should be clear that our goal is to search for those individuals that approxi­
mate a fitness of fJllCTt(D)ll· Consider the target class damage= yes that consists
of 100.000 tuples. Assume that a profile is considered risky if about 30.000 out

60

of 100.000 persons satisfy this profile. This means that (3 0.3. Assuming that
33.000 of the persons caused an accident are young males, the algorithm should
find individuals like (gender is ('male') /\ age in (19,28]).

3.3 Manipulation operators

Mutation As stated in the introduction of this section, a mutation modifies
an individual. In defining the mutation operator, we take into account the do­
main type of an attribute. If there exists no ordering relationship between the
domain values, then we select randomly an attribute value and replace it by an­
other value, which can be a NULL value as well, in an expression that contains
this attribute. For example, a mutation on attribute town of individual p 2 (see
Figure 1) may result into = age in (29,44] /\ town is ('Almere', 'Den Haag',
'Weesp') /\ category is ('lease').

If there exists a relationship between the domain values of an attribute, the
mutation operator acts as follows in the case that a single value is associated
with this attribute in an expression, i.e., the expression looks as att is (ve)· Let
[vb, ve] be the domain of attribute att. In order to mutate Ve, we choose randomly
a value 8v E [O, (ve - vb)µ], in which 0 µ 1. The mutated value is defined
as =Ve+ 8v or = Ve - 8v as long as E [vb, Ve]· The parameter µ is used
to control the maximal increase or decrease of an attribute value.

To handle overflow, i.e., if (j. [vb, veJ, we assume that the successor of Ve is
vb, and, consequently the predecessor of Vb is Ve· To compute a mutated value
appropriately, we distinguish between whether Ve will be increased or decreased,
which is randomly determined.

In the case that Ve is increased

v' = {Ve+ 8v if Ve+ 8v E (vb, Ve]
e Vb+ 8v - (ve - Ve) otherwise

and in the case Ve is decreased

1 {Ve - 8v if Ve - 8v E [vb, Ve] v -
e - Ve - 8v + (ve - Vb) otherwise

Let us consider the situation in which more than one value is associated with
an attribute att in an expression. If a list of non successive (enumerable) values
is associated with att, we select one of the values and compute the new value
according to one of the above-mentioned formulas. If a range of successive values,
i.e., an interval, is associated with att, we select either the lower or upper bound
value and mutate it. A potential disadvantage of this strategy for intervals is
that an interval may be significantly enlarged, if the mutated value crosses a
domain boundary. Suppose that the domain of age is (18,60], and we mutate the
upper bound value of the expression age in (55, 59], i.e., the value 59. Assume
that the value 59 is increased by 6, then 59 is mutated in the value 23. The new
expression becomes age in [23, 55].

We note that the partitioning of attribute values, i.e., the selection of proper
intervals in an expression, is simply adjusted by the mutation operator.

61

Cross-over The idea behind a crossover operation is as follows; it takes as
input 2 expressions, selects a random point, and exchanges the subexpressions
behind this point. In general, not all attributes will be involved in an expres­
sion. This may have some undesired effects for a cross-over. First, a cross-over
may produce individuals in which an attribute is involved more than once. For
example, a cross-over between the individuals p1 = gender is ('male') /\ age in
[19,34] and p2 = age in [29,44] /\ town is ('Almere', 'Amsterdam', 'Weesp') /\
category is ('lease') after the first attribute results into the following individuals:

= gender is ('male') /\ town is ('Almere', 'Amsterdam', 'Weesp') /\ category
is ('lease') and = age in [19,34] /\ age in [29,44]. As we can see, the attribute
age appears twice in

Second, a cross-over may result in an offspring that is exactly the same as
the parents with probability 1.0. For example, a cross-over between p1 and P2

that occurs on a point that is beyond the last elementary expression of p2, i.e.,
category is ('lease'), will result into the equal new individuals.

To prevent the above-mentioned effects, we apply the following technique to
perform cross-overs. Consider two individuals Pi and Pi that have been selected
for crossover. Let Ai be the set of attributes that is not involved in Pi but is
involved in Pi and Ai the set of attributes that is not involved in Pi but is in­
volved in Pi· Then, for each attribute in Ai, we generate an empty elementary
expression using this attribute and add it to Pi· The same procedure is applied
to the attributes of Ai. This procedure has as effect that the lengths of Pi and
Pi become equal. Finally, we regard an individual as a sequence of elementary
expressions, and order these in Pi and Pi according to the rule that elementary
expressions having the same attribute will appear at the same position in Pi and
Pi. Then, the cross-over between Pi and Pi can be performed. We note that the
cross-over point should be chosen between the first and final position of Pi or Pi.
The following example illustrates this technique.

Example 1 Consider the individuals p1 = gender is ('male') /\ age in [19,34]
and p2 = age in [29,44] /\ town is ('Almere', 'Amsterdam', 'Weesp') /\ category is
('lease') again. Then, A1 ={town, category} and A2 ={gender}. So, we extend
P1 with the following expression town is (") /\ category is (") and p2 is extended
with gender is (").

After ordering the elementary expressions p1 and p2 look as follows:
p1 = gender is ('male') /\ age in [19,34] /\ town is (") /\ category is (")
P2 =gender is(") /\ age in [29,44] /\ town is ('Almere', 'Amsterdam', 'Weesp')

/\ category is ('lease')
Now, a cross-over at position 2 results into

=gender is ('male') /\ age in [19,34] /\ town is ('Almere', 'Amsterdam',
'Weesp') /\ category is ('lease')

= gender is (") /\ age in [29,44] /\ town is (") /\ category is (")
Note that is equal to age in [29,44]. D

In the next section, we introduce a number of rules that may prevent the
exploration of unpromising individuals.

62

4 Optimization rules

In this section, we discuss two propositions that may be used to prevent the
exploration of unprofitable individuals. These propositions are derived from the
shape of the fitness function. The complexity of a genetic-based algorithm for
data mining is determined by the evaluation of the fitness function [5), since
this is computationally the most expensive operation. Before presenting these
propositions, we introduce the notion of a similar of an individual.

Definition 2: Let length(p) be the number of elementary expressions involved
in p. An individual Psim is a similar of p if each elementary expression of
Psim is contained in p or Psim contains each elementary expression of p and
length(Psim) -::j:. length(p).

As stated in the foregoing, we search for individuals with high values for the
fitness function F, see section 3.2. for F.

We note that the computation of F(p) requires the number of tuples that
satisfy individual p. So, these tuples should be searched for and retrieved from
the database, which is a costly operation [6). Although several techniques may be
used to minimize the number of retrievals from a database, still large amounts
of tuples have to be retrieved from the database in mining applications. The
techniques to minimize retrievals are mainly based on storing frequently used
tuples in an efficient way in main memory [4). In this way, disk accesses are
reduced.

In the following, two propositions will be presented that may be used to avoid
the computation of fitness values of unprofitable individuals. These propositions
decide if the fitness value of a similar of an individual p is worse than the fitness
of p. If this is the case, this similar can be excluded from the search process.

Proposition 1: Let Psim be a similar of p. If llap(D) nat(D)ll:::; ,Bllat{D)ll and
length(psim) > length(p) then F(psim) :::; F(p).

Proof. From length(psim) > length(p) follows that ap,;m(D) ap(D). As a
consequence, llap,;m(D) n at(D)ll :::; llap(D) n at(D)ll· Since llap(D) n at(D)ll :::;
/311at(D)ll, it follows F(p,;m) :::; F(p). D

Proposition 2: Let Psim be a similar of p. If llap(D) n O"t (D) II 2:: /3llat(D)ll and
length(psim) < length(p) then F(psim) :::; F(p).

Proof. Similar to the proof of Proposition 1. D

Note that the propositions do not require additional retrievals from a database
to decide if F(psim) :::; F(p).

We discuss an alternative how these propositions at cross-over level may
contribute in optimizing the search process. As stated in the foregoing, a cross­
over is applied on a mating pair and results into two offsprings. Suppose that a
mutation is performed after a cross-over, and the parent and the offspring with
the highest fitness values are eligible to be mutated (see Section 5). Consider an

63

offspring Po resulted from a cross-over, and let p 0 be a similar of p, one of its
parents. If we can decide that F(p0) ::; F(p), then it is efficient to mutate p0 •

The reason is that computation on an unmutated p0 will be a wasting of effort.
In the next section, we propose an overall algorithm, in which we apply the

two propositions.

5 Algorithm

The previous section was devoted to the major issues that play a role in designing
a genetic-based algorithm for data mining. In this section, we describe the overall
algorithm. Before starting this description, we discuss a mechanism to select an
individual for a next generation.

The mechanism to select individuals for a new generation is based on the
technique of elitist recombination [12]. According to this technique, the indi­
viduals in a population are randomly shuffied. Then, the cross-over operation
is applied on each mating pair, resulting into two offsprings. The parent and
the offspring with the highest fitness value are selected for the next generation.
In this way, there is a direct competition between the offsprings and their own
parents. Note, the offspring provides the possibility to explore different parts of
a search space.

The elitist recombination technique has been chosen for two reasons. First,
there is no need to specify a particular cross-over probability, since each individ­
ual is involved in exactly one cross-over. Second, there is no need for intermediate
populations in order to generate a new population as is the case in a traditional
genetic algorithm. These properties simplify the implementation of a genetic
algorithm. Let us outline the overall algorithm.

The algorithm starts with the initialization of a population consisting of an
even number of individuals, called P(t). The individuals in this population are
shuffied. Then, the cross-over operation is applied on two successive individuals.
After completion of a cross-over, the fitness values of the parents are compared3 ;

the parent with the highest value is selected and it may be mutated with a
probability c. This parent, is added to the next generation, and in case it
is mutated its fitness value is computed. Then, for each offspring, p0 , we test if
this offspring is a similar of and if its fitness value is worse or equal than

If this is true, p 0 is an unpromising individual, and, therefore, we always
mutate p 0 • Otherwise, we mutate p 0 with probability c. Note, to compare the
fitness value between and p0 , the propositions of the previous section are
used. So, no additional fitness values are computed for this comparison. After
possible mutation of the offsprings, their fitness values are computed, and the
most fittest offspring is added to the new generation. This process is repeated
for all individuals in a generation.

Once the new population has been built up, the total fitness of the existing
as well as of the new population is computed, and compared. The algorithm

3 These values are already computed and stored by the algorithm.

mining question

Data Mining Tool

Genetic-Based Mining
Algorithm

individuals

Query generator

queries answers

MS ACCESS

databases

64

results

require­
ments

Fig. 3. Architecture of a data mining tool

terminates if the total fitness of the new population does not significantly im­
prove compared with the total fitness of the existing population, i.e., that the

improvement of the total fitness of the new population is less than a threshold

value f. For a detailed discussion with regard to the algorithm, we refer to [5].

6 Implementation and preliminary results

Based on the algorithm described in Section 5, we have built a re-targetable
prototype of a data mining tool, which means that the tool can be coupled to
different databases. The main goal of the current effort is to determine if the
genetic-based algorithm is able to find hidden knowledge.

Let us continue with the description of the tool. The tool takes as input a

mining question and produces a set of answers for the question. The prototype

is running in a Microsoft Access 97 environment that uses the Microsoft Jet

Engine4 . The genetic-based algorithm is implemented in Visual Basic. We have

chosen this environment for two reasons. First, this environment is available

at our laboratory. Second, the database that we want to mine is a Microsoft

database.
In Figure 3, the architecture of our tool is represented. Once the tool receives

a mining question, it runs the genetic-based mining algorithm, which generates,
among others, a population. The individuals of the population are passed to the

Query Generator. For each individual a corresponding SQL query is generated.

4 Within the scope of a feasibility study, a previous version of the algorithm was

implemented in C and connected to the Monet Database Server [3].

65

These queries are passed to the MS ACCESS DBMS, which on its turn pro­
cesses the queries and passes the results to the data mining tool. These results
are used to compute the fitness of each individual. Upon request of the user
individuals and their associated fitness values can be shown. The user has the
possibility to modify the initial mining question or to specify additional require­
ments with regard to the question. We note that this is a very useful feature of
a mining tool, since, in practice, a user starts a mining session with a rough idea
of what information might be interesting, and during the mining session (with
help of the results provided by the system) the user specifies more precisely what
information should be searched for.

The generation of a query corresponding to an individual pis straightforward.
Recall that an individual is a conjunction of predicates. So, this forms the major
part of the WHERE clause of a query corresponding to p. Since we require the
number of tuples satisfying p and a target class t, the query corresponding top
is: select count(*) from database where p /\ t .

We have applied the tool on an artificial database, and are currently applying
it on a real-life database. In the following, we describe the databases and the
results obtained so far.

Artificial database This database consists of the relation Ex(gender, age, town,
category, price, damage). For this database 100.000 tuples have been generated,
of which 503 have a value "yes" for damage, i.e., 503 of the tuples relate to
an accident. Furthermore, the fact that young men in lease cars have more than
average chances to cause an accident was hidden in the database. The goal of
mining this database was to determine whether the tool is capable to find the
hidden fact. Therefore, we have set the target class as damage = 'yes', and we
searched for the profile of risky drivers. We note that the expression for the
hidden profile is: age in [19,24] /\ category is ('lease') /\ gender is ('male').

We have mined the database with varying initial populations, consisting of 36
individuals. The following three classes of initial population were distinguished:
(1) random: the populations contained a few individuals that could set the al­
gorithm quickly on a promising route, (2) modified random: individuals that
could apparently set the algorithm on a promising route were replaced by other
(not promising) individuals, and (3) bad converged: the populations contained
individuals with low fitness values.

We have observed that the algorithm usually finds near optimal solutions,
i.e., profiles that look like the hidden one, in less than 1000 fitness evaluations.
The differences between the hidden profile and profiles found by the algorithm
(for different initial populations) were mainly caused by variations in the range
of attribute age.

With regard to the settings of the parameters a and (3, we note that ap­
propriate values could be easily selected, since the content of the database is
precisely known. D

Real-life database Currently, we are mining a real-life database, the so-called

66

FAA incident database, which is available at our aerospace laboratory. This
database contains aircraft incident data that are recorded from 1978 to 1995.
Incidents are potentially hazardous events that do not meet the aircraft damage
or personal injury thresholds as defined by American National Tuansportation
Safety Board (NTSB). For example, the database contains reports of collisions
between aircraft and birds while on approach to or departure from an airport.
The FAA database consists of more than 70 attributes and about 80.000 tuples.

The initial mining task on the FAA database was: search for the class of
flights with (more than average) chances of causing an incident, i.e., profiles of
risky flights. This search resulted in (valid) profiles but which could be easily
declared. An example of such a profile is that aircraft with 1 or 2 engines are
more often involved in incidents. The explanation for this profile is that these
types of aircraft perform more flights.

During the mining process the mining question was refined in the following
three more specific questions: (1) given the fact that an incident was due to
operational defects not inflicted by the pilot, what is the profile of this type of
incident?, (2) given the fact that an incident was due to mistakes of the pilot,
what is the profile of this type of incident?, and (3) given the fact that an incident
was due to improper maintenance, what is the profile of this type of incident?

We have proposed these questions to our tool with the following values for the
parameters, a= 0, {3 = 0.25, mutation probability (c) = 0.3, and E = 0.1. Fur­
thermore, the population size was set on 50. On the first glance, the results of the
tool appear to be promising. Safety experts at our laboratory are analysing the
results. On the basis of their analysis, we will set up a plan to mine the database
more systematically, and to study the impact of different parameter values on
the results provided by the tool. The goal of the latter study is to formulate some
guidelines for selecting parameter values for similar type of databases, such as
an aircraft accident database. D

Although our evaluation is not completed yet and a significant amount of re­
search has to be done, e.g., on performance issues, in order to build an adequate
genetic-based data mining tool, the preliminary results are promising. A second
observation is that the range interval of an attribute in an expression may sig­
nificantly enlarged, if a mutation occurs on a domain boundary. An interval that
consists of (almost) the whole the domain slows down the search process. In a
next version of the tool, we will enhance the mutation operator. An alternative
is to clip on boundary values in cases of overflow.

7 Conclusions & further research

In order to answer mining questions, very large search spaces should be inspected,
making an exhaustive search infeasible. So, heuristic search strategies are of
vital importance in searching such spaces. We have discussed a genetic-based
algorithm that may be used for data mining. Contrary to the conventional bit
string representation in genetic algorithms, we have chosen a representation that

67

fits better in the field of databases. The fitness function discussed in this paper
is close to our intuition and gives rise to an optimization of the search process.

A genetic-based algorithm for data mining has two major advantages. First,
the problem of partitioning attribute values in proper ranges could be solved by
choosing a suitable mutation operator. Second, a genetic-based algorithm is able
to escape a local optimum and does not pose any restrictions on the structure
of a search space.

By means of a (prototype) implementation and a preliminary evaluation,
we have shown the potentials of a genetic-based data mining tool. Since the
preliminary results of the tool appear to be promising, we are setting up a
research plan to evaluate this tool thoroughly. The outcome of the evaluation
will determine our future research activities in this field.

Acknowledgements The author is grateful to Wim Pelt from the Dutch Min­
istry of Defense, who made this research possible. Hein Veenhof and Egbert
Boers from NLR are thanked for their valuable comments on earlier drafts of
this paper. Finally, Leo de Penning and Martijn Suurd from the Univ. of Twente
are thanked for their implementation efforts.

References

(1] Agrawal, R., Ghosh, S., lmielinski, T., Iyer, B., Swami, A., An Interval Classifier
for Database Mining Applications, Proc. 18th Int. Conf. Very Large Data Base,
pp. 560-573.

[2] Augier, S., Venturini, G., Kodratoff, Y., Learning First Order Logic Rules with a
Genetic Algorithm, Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining,
pp. 21-26.

[3] Boncz, P., Wilschut, A., Kersten, M., Flattening an Object Algebra to Provide
Performance, Proc. 14th Int. Conf. on Data Engineering, pp. 568-577.

(4] Choenni, R., Siebes, A., Query Optimization to Support Data Mining, Proc. DEXA
'97 8th Int. Workshop on Database and Expert Systems Applications, pp. 658-663.

(5] Choenni, R., On the Suitability of Genetic-Based Algorithms for Data Mining,
extended version, to appear as NLR technical publication.

(6] Elmasri, R., Navathe, S., Fundamentals of Database Systems, The Ben­
jamin/Cummings Publishing Company, 1989.

[7] Freitas, A., A Genetic Programming Framework for two Data Mining Tasks: Classi­
fication and Generalized Rule Induction, Proc. Int. Conf on Genetic Programming
1997, pp. 96-101.

(8] Han, J., Cai, Y., Cerone, N., Knowledge Discovery in Databases: An Attribute­
Oriented Approach, in Proc. 18th Int. Conf. Very Large Data Base, pp. 547-559.

(9] Holsheimer, M., Kersten, M.L., Architectural Support for Data Mining, Proc.
AAAI-94 Workshop on Knowledge Discovery, pp. 217-228.

[10] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York, USA.

(11] Srikant, R., Agrawal, R., Mining Quantitative Association Rules in Large Rela­
tional Tables, Proc. ACM SIGMOD'96 Int. Conf. Management of Data, pp. 1-12.

[12] Thierens, D., Goldberg, D., Elitist Recombination: an integrated selection recom­
bination GA, 1st IEEE Conf. on Evolutionary Computing, pp. 508-512.

