Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1530))

Abstract

Descriptive Complexity [I98] is an approach to complexity that measures the richness of a language or sentence needed to describe a given property. There is a profound relationship between the traditional computational complexity of a problem and the descriptive complexity of the problem. In this setting, the finite object being worked on is treated as a logical structure. Thus descriptive complexity is part of finite model theory [EF95].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alechina, N., Immerman, N.: Efficient Fragments of Transitive Closure Logic. Manuscript

    Google Scholar 

  2. Alur, R., Henzinger, T.: Computer-Aided Verification (to appear)

    Google Scholar 

  3. Bharadwaj, R., Heitmeyer, C.: Verifying SCR Requirements Specifications using State Exploration. In: Proceedings of First ACM SIGPLAN Workshop on Automatic Analysis of Software, Paris, France, January 14 (1997)

    Google Scholar 

  4. Clarke, E., Grumberg, O., Peled, D.: Model Checking (to appear)

    Google Scholar 

  5. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  6. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. M.I.T. Press, Cambridge (1991)

    Google Scholar 

  7. Immerman, N.: Descriptive Complexity. Springer-Verlag Graduate Texts in Computer Science, New York (1998)

    Google Scholar 

  8. Immerman, N.: Languages that capture complexity classes. SIAM Journal of Computing 16(4), 760–778 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Immerman, N., Vardi, M.: Model Checking and Transitive Closure Logic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 291–302. Springer, Heidelberg (1997)

    Google Scholar 

  10. Immerman, N.: DSPACE[n k]=VAR[k+1]. In: Sixth IEEE Structure in Complexity Theory Symposium, pp. 334–340 (1991)

    Google Scholar 

  11. Kurshan, R.: Formal Verification in a Commercial Setting. In: Design Automation Conference (1997)

    Google Scholar 

  12. Kurshan, R.: Computer-Aided Verification of Coordinating Processes. Princeton University Press, Princeton (1994)

    Google Scholar 

  13. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)

    MATH  Google Scholar 

  14. Patnaik, S., Immerman, N.: Dyn-FO: A Parallel, Dynamic Complexity Class. J. Comput. Sys. Sci. 55(2), 199–209 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Immerman, N. (1998). Descriptive Complexity and Model Checking. In: Arvind, V., Ramanujam, S. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1998. Lecture Notes in Computer Science, vol 1530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49382-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49382-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65384-4

  • Online ISBN: 978-3-540-49382-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics