Skip to main content

Alternative Computational Models: A Comparison of Biomolecular and Quantum Computation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1530))

Abstract

Molecular Computation (MC) is massively parallel computation where data is stored and processed within objects of molecular size. Biomolecular Computation (BMC) is MC using biotechnology techniques, e.g. recombinant DNA operations. In contrast, Quantum Computation (QC) is a type of computation where unitary and measurement operations are executed on linear superpositions of classical states. Both BMC and QC may be executed at the micromolecular scale by a variety of methodologies and technologies. This paper surveys various methods for doing BMC and QC and discusses the considerable theoretical and practical advances in BMC and QC made in the last few years. We compare bounds on key resource such as time, volume (number of molecules times molecular density), energy and error rates achievable, taking particular note of the scalability of these methods with the size of the problem solved. In addition to NP search problems and database search problems, we enumerate a wide variety of further potential practical applications of BMC and QC. We observe that certain problems if solved with polynomial time bounds appear to require exponentially large volume for BMC (e.g., NP search problems) and QC (e.g., the observation operation). We discuss techniques for decreasing errors in BMC (e.g., annealing errors) and QC (e.g., decoherence errors), and volume where possible, to insure the scalability of BMC and QC to problems of large input size. In addition, we consider how BMC might be used to assist QC (e.g., to do observation operations for Bulk QC) and also how quantum techniques might be used to assist BMC (e.g., to do exquisite detection of very small quantities of a molecule in solution within a large volume).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reif, J.H.: Alternative Computational Models: A Comparison of Biomolecular and Quantum Computation (September 1998), Full version of the extended abstract appearing in these proceedings

    Google Scholar 

  2. A postscript preprint is online at, http://www.cs.duke.edu/~reif/paper/paper.html/altcomp.ps

  3. Note: Due to page length constraints, the references in have been removed from the extended abstract appearing in these proceedings. The full paper [Rei98] has 646 references (including 265 references to BMC and 381 references to QC), and many additional discussions of experimental techniques, applications and error correction

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reif, J.H. (1998). Alternative Computational Models: A Comparison of Biomolecular and Quantum Computation. In: Arvind, V., Ramanujam, S. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1998. Lecture Notes in Computer Science, vol 1530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49382-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49382-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65384-4

  • Online ISBN: 978-3-540-49382-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics