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this paper, we concentrate on the study of the node weighted version, where the nodes, rather thanthe edges have weights. This is a more general problem, since one can reduce the edge weightedproblem to the node weighted problem by subdividing edges and giving the new vertices the weightcorresponding to the subdivided edge.The �rst non-trivial polynomial time approximation factor for this problem was achieved byKlein and Ravi [9]. Their algorithm achieves a worst case approximation factor of 2 lnk where k isthe number of terminals. They showed that the problem is at least as hard to approximate as theset-cover problem, for which a polynomial time approximation algorithm with a factor of (1��) ln kwould imply that NP � DTIME[nO(log logn)] [4].The Klein-Ravi algorithm [9] is based on an earlier heuristic by Rayward-Smith [12] and maybe viewed as a generalization of the set-cover greedy approach [3]. In this scheme, at each step a\spider" is chosen so as to minimize the ratio of the weight of spider to the number of terminalsthat it connects. They prove that the process of greedily picking spiders yields a good solution.Our �rst algorithm is based on a new decomposition theorem, using which we can establish abound of 1:5 lnk for the approximation factor. We show that we can decompose the solution intomore complex objects called branch-spiders. Unfortunately, �nding branch-spiders of minimumratio is computationally very intensive as it uses weighted matchings repeatedly, so this algorithmis not practical for large graphs. This algorithm is described in Section 3. We then show howto use generalizations of branch-spiders to develop a new algorithm with an approximation factorapproaching 1:35 lnk.Our second approach yields a much faster algorithm and also addresses generalizations to thecase when the optimal solution is a collection of components. It has a worst case approximationfactor of 1:6103 lnk. It is not di�cult to observe that this algorithm can be extended easily toproblems de�ned by 0-1 proper function[9, 6]. This algorithm is described in Section 4.In Section 5 we give an algorithm for the case when all the node weights are 1. This algorithmhas an approximation factor of ln k.In Section 6 we show how to use the method developed to solve the node weighted Steiner treeproblem to solve the Connected dominating set problem. This improves the 3 lnn factor shown forthe weighted CDS problem in [7].2. PreliminariesWe assume that the input graph is connected and that only the vertices have weights. Withoutloss of generality the subset of required vertices, also called terminals have zero weight since theyare included in every solution. We assume that these have degree one, since for each terminal s,we can create a new vertex s0 and add the edge (s; s0) and consider s0 as the terminal.De�nition 1: A spider is de�ned as a tree having at most one node of degree more than two. Sucha node (if one exists) is called the center of the spider.De�nition 2: An m spider (m > 2) is de�ned as a spider with a center of degree m.A 2 spider is one with no node of degree more than two.An m spider has m leaves, and each path to a leaf from its center is called a leg. A 2 spider isa path. (By our assumption on the terminals, all terminals are leaves.)2



(a) (b)

center

leg

terminalFigure 1: (a) a 2 spider (b) a 4 spider.De�nition 3: An m+ spider (m > 2) is de�ned as a spider with one node of degree at least m.The cost of a spider is the sum of the weights of the nodes in the spider. The ratio of a spideris the ratio of its cost to the number of its terminals. The leaves of a minimal ratio spider areterminals.Contracting a spider is the operation of contracting all nodes of the spider to form one vertex.If we contract a spider S in graph G, making the contracted vertex into a terminal, then it is easyto argue that the cost of the optimal solution is at most the cost of the spider together with thecost of the optimal solution for the new graph. The shrunken node has zero weight, and we makeit a degree one node once again.Klein and Ravi [9] give an algorithm that repeatedly contracts the min-ratio spider. The reasonone obtains a 2 ln k factor is that one may repeatedly contract 2 spiders, and each time a spider iscontracted, we create a new terminal to denote the contracted spider (see [9] for the proof). If wecould restrict our attention to larger spiders, then we get a better algorithm. However, we cannotshow that a decomposition into large spiders exists { to achieve this, we modify spiders into moregeneral structures.The next two lemmas are due to Klein and Ravi [9], and used in their proof for the approximationfactor of 2 ln k.Lemma 2.1: Any solution to the node weighted Steiner tree problem can be decomposed intospiders having terminals as leaves, without increasing the cost.Lemma 2.2: In iteration i having ni terminals to connect, the minimum ratio spider has min ratiocost 
m � w(OPT )ni .3. Algorithm for Node Weighted Steiner TreesBefore describing the new decomposition theorem, we introduce the notion of branch-spiders.De�nition 4: A branch is de�ned as a tree with at most three leaves. We refer to one of the leavesas the root.De�nition 5: A branch-spider is constructed by merging the roots of a collection of branches intoa single vertex, called the center. 3



Fig. 2(a) shows a picture of a branch with three leaves and Fig. 2(b) shows a picture of abranch-spider.De�nition 6: A 3+ branch-spider is one with at least three terminals.
root

terminals

(a) (b)Figure 2: (a) A branch with three leaves. (b) A branch-spider with four branches and seventerminals.Lemma 3.1: Any solution to the node weighted Steiner tree problem, with at least three terminals,can be decomposed into 3+ branch-spiders having terminals as leaves.Proof: Consider a solution to the node weighted Steiner tree problem. This is a tree that includesall the terminals as leaf nodes. The depth of a node is the distance of a node from an arbitrarilychosen root. The theorem can be proven by induction on the number of terminals. Choose anode v of maximum depth, such that the subtree rooted at v contains at least three terminals. Weimmediately obtain a branch-spider (with at least three terminals) rooted at v. Note that no properdescendant of v has three terminals in its subtree, hence this satis�es the requirement of being abranch-spider. Delete the subtree rooted at v. If the tree still contains at least three terminals, bythe induction hypothesis we can �nd a decomposition of the remaining tree into 3+ branch-spiders,and we are done. If there are at most two terminals, we can attach them to v while maintaining abranch-spider rooted at v. This concludes the proof. 2We now address the issue of computing minimum ratio 3+ branch-spiders. (The ratio of abranch-spider is de�ned in the same way as for spiders, the total weight divided by the number ofterminals that it connects.)We show how to �nd a minimum weight branch-spider centered at vertex v that has exactly `terminals in it. Using this procedure it is easy to compute the minimum ratio branch-spider withat least three terminals by simply enumerating over all possible centers and sizes of branch-spiders(` � 3).Algorithm for �nding a minimum weight 3+ branch-spider (G�; v; `)Step 1. Construct a weighted graph G0v = (V 0v ; E 0v) where V 0v = f all terminals in G�g andw(x; y) = weight of the minimum weight Steiner tree in G� connecting terminals fx; y; vg (in thiscalculation we do not include the weight of the center v).Step 2.Case (a) If ` is odd, for each terminal x, we �nd a a minimum weight matching Mx of cardinalityb 2̀c in G0v�fxg. The total weight of the spider is w(v)+w(Mx)+w(x) where w(x) is the distance4



from v to x in the graph G�. We take the minimum weight spider over all choices of x.Case (b) If ` is even, we �nd a a minimum weight matching M of cardinality 2̀ in G0v. The totalweight of the spider is w(v) + w(M).(The problem of �nding a min weight matching of cardinality b 2̀c in H = (VH ; EH) may bereduced to minimum weight perfect matching by creating jVH j � 2b 2̀c dummy vertices, and byadding zero weight edges from each vertex in H to each dummy vertex. A minimum weight perfectmatching in the new graph permits all vertices, except for 2b 2̀c vertices, to be matched at zero costto the dummy vertices. The remaining vertices are forced to match each other at minimum cost,yielding a matching M of cardinality b 2̀c.)Lemma 3.2: The algorithm described above computes a 3+ branch-spider of minimum ratio.Proof: Let the minimum ratio 3+ branch-spider have its center at vertex v0 and have ` terminals. Apair of branches, each having a single terminal, can be viewed as a single branch with two terminals.In this way we can pair up branches with only one terminal, leaving at most one unpaired branch.This naturally induces a matching in G0v of cardinality b 2̀c. This shows that there is a matching ofsize b 2̀c, the center vertex and possibly a single branch of total cost at most the cost of the branch-spider. When the algorithm tries v0 as its center, with the correct choice of ` and tries x as theunpaired branch, we should compute a structure of cost at most the cost of the 3+ branch-spider.2The algorithm works iteratively. In each iteration, let ni denote the number of terminalsremaining at the start of iteration i. Initially, n1 = k the number of terminals in S.Node Steiner Tree Algorithm:IRepeat the following steps until we have at most two terminals left, and then connect theterminals optimally.Step 1. Find a 3+ branch-spider in G with minimum ratio.Step 2. Contract the chosen branch-spider, and update G.The following lemma can be proven quite easily.Lemma 3.3: In iteration i having ni terminals to connect, the minimum ratio branch-spider hasratio at most w(OPT )ni .Theorem 3.4: The algorithm described above yields a node weighted Steiner tree of cost at most1:5 lnk times the optimal, where k is the initial number of terminals.Proof: Denote the cost of the spider chosen at iteration i to be Ci.We will prove that Ci � 1:5w(OPT ) ln nini+1 .Summing up all the Ci values (over all z iterations) gives the required bound.zXi=1Ci � zXi=1 1:5w(OPT ) ln nini+1zXi=1Ci � 1:5w(OPT ) lnk5



Assume the minimum ratio 3+ branch-spider has t terminals. Since t � 3, we have t � 1 � 23 t.From Lemma 3.3, Cit � w(OPT )niThis gives us that tni � Ciw(OPT ) . Since ni+1 = ni � (t� 1), we getni+1 � ni � 23 t � ni(1� 2Ci3w(OPT )):ln nini+1 � � ln(1� 2Ci3w(OPT )) � Ci1:5w(OPT ) :The last step uses the fact that � ln(1� x) � x. We conclude thatCi � 1:5w(OPT ) ln nini+1 : 2Further Improvements:We can improve the approximation ratio by restricting ourselves to minimum ratio objects thathave size at least four. However, to perform a decomposition of the optimal solution into structuresof size at least four, we need to prove a lemma like Lemma 3.1.De�nition 7: A bramble is de�ned as a tree with at most four leaves. We refer to one of theleaves as the root.De�nition 8: A bramble-spider is constructed by merging the roots of a collection of bramblesinto a single vertex, called the center.De�nition 9: A 4+ bramble-spider is one with at least four terminals.Fig. 3(a) shows a picture of a bramble and Fig. 3(b) shows a picture of a bramble-spider.
(a) (b)Figure 3: (a) A bramble with four leaves (b) A bramble-spider with four brambles and nine termi-nals.The di�culty is that we do not know how to �nd the min ratio 4+ bramble-spider in polynomialtime. We will use a greedy approach to approximate this structure.Node Steiner Tree Algorithm:II 6



Let w = w(OPT )=ni and � = 1:35, and C = 1� .Repeat the following steps until we have at most C terminals left, and then connect the remain-ing terminals optimally.Step 1. Compute the best ratio spider. Ratio is 
m.Step 2. Compute the best ratio 3+ spider. Ratio is 
3+.Step 3. For each j = 0 : : :C compute the best ratio 4+ branch-spider with at least 4 terminals,and exactly j brambles with three terminals in each, attached to it. This can be done by enumer-ating over all j subsets of three terminals and then �nding the minimum cost branch-spider of eachpossible size. Let the ratio be 
.Step 4. Compute 
apx, an approximate min ratio bramble spider that has at least C terminals(We will try each size, and greedily construct one of that size).Step 5. If 2
m � �w then shrink spider from step 1. If 1:5
3+ � �w then shrink spider fromstep 2. Else shrink spider achieving the minimum in min(�
; 
apx).For this algorithm to work, we have to know the weight w(OPT ) of the optimal solution. Sincewe only know an upper bound on this weight (sum of the weight of all vertices), we have to to\guess" the weight approximately, and run the algorithm for each possible guessed value. Supposethe cost of each iteration is Ci. In each iteration, let ni denote the number of terminals remainingat the start of iteration i. Initially, n1 = k the number of terminals in S.We �rst prove the following theorem.Theorem 3.5: If Ci is the cost of the spider contracted in iteration i, then Ci � �(1+�1��)w(OPT ) ln nini+1 ,for any � > 0.We will prove Theorem 3.5 in two steps.Lemma 3.6: In step 5 if we contract the spider chosen in Step 1 or Step 2, then Ci � �w(OPT ) ln nini+1 .Proof: Assume we contracted the spider chosen in Step 1. Suppose the minimum ratio spider hast terminals. Since t � 2, we have t � 1 � t2 . By the condition in Step 5, we have2
m � �w2Cit � �w(OPT )ni :Thus t2 � niCi�w(OPT ) . Since ni+1 = ni � (t� 1), we getni+1 � ni � t2 � ni(1� Ci�w(OPT )):ln nini+1 � � ln(1� Ci�w(OPT )) � Ci�w(OPT ) :The last step uses the fact that � ln(1� x) � x. We conclude thatCi � �w(OPT ) ln nini+1 :7



Now suppose we contracted the spider chosen in Step 2. Suppose the minimum ratio 3+ spiderhas t terminals. Since t � 3, we have t � 1 � 2t3 . By the condition in Step 5, we have32
3+ � �w(OPT )ni32 Cit � �w(OPT )ni :This gives us that 2t3 � niCi�w(OPT ) . Since ni+1 = ni � (t � 1), we getni+1 � ni � 2t3 � ni(1� Ci�w(OPT )):ln nini+1 � � ln(1� Ci�w(OPT )) � Ci�w(OPT ) :The last step uses the fact that � ln(1� x) � x. We conclude thatCi � �w(OPT ) ln nini+1 : 2Lemma 3.7: If the �rst two conditions in Step 5 are not met, and the best ratio bramble-spideris large (> C triples) then 
apx � �(1 + �)w where w is w(OPT )=ni.Proof: Consider the min ratio bramble-spider with a large (> C) number of brambles of threeterminals. Let w3 (n03) be the cost (number) of the brambles with three terminals, and w2 (n02) bethe cost of the brambles with two terminals. Let w1 be the cost of the single leg (if one exists), andc be the cost of center. Since the ratio cost is at most w, we havew3 + w2 + w1 + c � (3n03 + 2n02 + 1)w:We can view the brambles with three terminals, as brambles with two terminals by droppinga terminal from consideration. Hence, if we can �nd the best ratio branch-spider, and if the ratiocost is at most �w, we get an approximation factor of (� + �) ln k. (We need to elaborate on this {basically, this implies the existence of a large branch-spider with low ratio weight.)Hence we may assume thatw3 + w2 + w1 + c � �(2n03 + 2n02 + 1)w:This gives us the following equation(3� 2�)n03 � (� � 1)2n02 + (� � 1):Take three of the brambles with two terminals and make them into two brambles with threeterminals each. Thus we increase the cost of pairs by 43 because the cheapest pair is now repeated.We now greedily pick brambles with three terminals in each. We only pick (n03+ 2n02=3) terminals,because what we pick may lay waste to at most three good tridents. Our net cost is at most,(w3 + 4w23 )13 + w1 + c � 13(w3 + w2 + w1 + c) + 19(w2 + w1 + c) + 59(w1 + c):8



By the assumption that the �rst two conditions in Step 5 are not met, we have the followingproperties. The min ratio spider has ratio cost at least �w2 , hence w2 � n02�w. Since the min ratio3+ spider has ratio cost at least 23�w, hence w3 � 2n03�w. We can bound the total cost as13(3n03 + 2n02 + 1)w+ 19((3n03 + 2n02 + 1)w � 2n03�w) + 59((3n03 + 2n02 + 1)w � 2n03�w � n02�w):� w(3n03 + 2n02 � 4�3 n03 � 5�9 n02 + 1):Now we remember the equation we �rst derived, multiply it by w2 and add it to what we have.Total cost is at most � w((92 � 7�3 )(n03 + 23n02) + 32 � �2):Since the number of terminals in this spider is at least n03+ 23n02, dividing by the number of terminalsyields a ratio cost of at most w(92 � 7�3 + �32 � �2):The last term is obtained by using the fact that n03 > C = 1� . Setting � = 1:35 yields a ratio costof w�(1 + �). 2Proof: (Of Theorem 3.5). If we contract the spider chosen in Step 1, or Step 2, we can useLemma 3.6 to prove the claim. If we contract the spider chosen in Steps 3 or 4, we have to considerthe following cases.Case 1: suppose the best ratio bramble-spider is small (� C brambles of size three)(a) �
 � 
apx. In this case 
 � w. Since Cit � w(OPT )ni and t � 1 � 34 t (we contract at least4 terminals), we get Ci � 43w(OPT ) ln nini+1 .(b) 
apx � �
(� �w). Since in step 4 we �nd a spider with at least C terminals, we get abound of Ci � �1��w(OPT ) ln nini+1 .Case 2: suppose the best ratio bramble-spider is big (> C brambles of size three)(a) �
 � 
apx In this case, by Lemma 3.7, �
 � 
apx � �(1 + �)w and we get Ci �43(1 + �)w(OPT ) ln nini+1 .(b) By Lemma 3.7 
apx � �(1 + �)w. Since it has at least C terminals, we obtain Ci �� 1+�1��w(OPT ) ln nini+1 . 2Theorem 3.8: The node weighted Steiner tree problem can be approximated to a factor of 1:35(1+�0) ln k for any �0 > 0.Proof: Summing up all the Ci values gives a total cost of �(1+�1��)w(OPT ) lnk. For any given �0 > 0,we set � = 1:35 and set � = �02+�0 so that 1+�1�� = 1+ �0 to obtain the required approximation factor.2 9



4. 0-1 Proper functionsA considerable e�ort has been spent on solving a generalized network design problem where theconnectivity requirements are speci�ed as a function of a subset of vertices. These problems assumeedge and node weights, and the objective function is to minimize the sum of the weights. Properfunctions have several restrictions imposed on them. A 0-1 proper function is a general class offunctions where the connectivity requirement is 0 or 1 across a cut. For details and de�nition ofproper functions, the reader is referred to [6].Klein and Ravi show that the node weighted Steiner tree algorithm can be modi�ed to �nda solution for the more general class of problems. A cut which is unsatis�ed is called an activecomponent. They show that active components behave as terminals in a node weighted Steinertree formulation. However the �nal solution need not have a single connected component. Hencethe decomposition lemmas developed for branch-spiders do not hold. It may be the case that theoptimal solution has connected components having only two terminals in each. Typical problemsinclude generalizations of Steiner trees.We present a greedy algorithm for node weighted Steiner trees, which is practical and extendsto the class of 0-1 proper functions as well. This algorithm has the same complexity as the originalalgorithm of Klein and Ravi [9]. For simplicity we describe it only for the node weighted Steinertree problem.AlgorithmRepeat the following steps until we have at most two terminals left, and then connect theterminals optimally.Step 1. Find a spider with the minimum ratio. (this can be done by using the method by Kleinand Ravi [9]). Let the ratio be 
m. If it is a 3+ spider contract it.Step 2. Else if the minimum ratio spider is a 2 spider, �nd the 3+ spider with the minimumratio. Let this ratio be 
3+.For each terminal j �nd its closest terminal, with the distance being the sum of the weights of thenodes on the path. Call this path Pj . Order these Pj 's in increasing order of cost. (We use Pj todenote both the path and its cost as convenient.)De�ne S = fjjPj � 2 �min h4
m3 ; 
3+ig. Let the number of distinct paths Pj such that j 2 S be`i. Denote the forest induced by these `i paths be T . Let Cost(T ) denote the cost of this forest.Consider min " Cost(T )� ln(1� `ini ) ; 2ni
m; 32ni
3+#.Subcase (a). If minimum is achieved with the �rst term, contract the forest inducedby the paths.Subcase (b). If minimum is achieved with the second term, contract the minimumratio spider. Subcase (c). If minimum is achieved with the third term, contract the minimum ratio3+ spider.4.1. Proof of Approximation FactorIn this section we prove the following theorem. 10



Theorem 4.1: The algorithm described above yields a node weighted Steiner tree of cost at most1:6103 lnk times the optimal, where k is the initial number of terminals.Denote the cost paid at iteration i to be Ci.Lemma 4.2: In iteration i, if only step 1 is executed, then Ci � 1:5w(OPT ) ln nini+1 .This proof is the same as the proof of Theorem 3.4.Lemma 4.3: In iteration i, if step 2 is taken, thenmin " Cost(T )� ln(1� `ini ) ; 2ni
m; 32ni
3+# < 1:6103w(OPT ).We will prove this lemma a little later. We �rst see how to �nish the proof using this lemma.Lemma 4.4: In iteration i, if step 2 is taken, then Ci < 1:6103w(OPT ) ln nini+1 .Proof: If subcase (a) is chosen, then Ci = Cost(T ) and ni+1 = ni � `i. Since 1 � `ini = ni+1ni , andCost(T )w(OPT ) < 1:6103(� ln(1� `ini )), Ciw(OPT ) < 1:6103 ln nini+1If subcase (b) is chosen then Ci = 2
m, and ni+1 = ni � 1. From the lemma above, 2
mni <1:6103 w(OPT ), we get 1:6103w(OPT )ni > Ci.ln nini+1 = � ln(1� 1ni ) > 1ni :Thus, 1:6103 w(OPT ) ln nini+1 > Ci:If subcase (c) is chosen, let the minimum ratio 3+ spider have t legs. Then Ci = t
3+, andni+1 = ni � (t� 1). By virtue of the above lemma,3Cini2t < 1:6103 w(OPT ):Now, ln nini+1 = ln nini � t + 1 = � ln(1� t � 1ni ) � t � 1ni :Since t � 3, thus (t� 1) � 2t3 ,ln nini+1 � t� 1ni � 2t3ni > Ci1:6103 w(OPT ) :This proves the lemma for all the cases. 2The proof of Theorem 4.1 now follows easily.11



Proof: (Of Theorem 4.1 ) Let there be z � 1 iterations. Then nz = 1. Also if initially there were kterminals to connect, n1 = k. For all iterations i, we have 1:6103w(OPT ) ln nini+1 > Ci. Summingover the iterations, 1:6103 w(OPT ) z�1Xi=1 ln nini+1 = 1:6103 w(OPT ) ln k > z�1Xi=1 Ci:Since our solution has cost z�1Xi=1 Ci, the theorem follows. 2Proof: (Of Lemma 4.3) We can view each path Pj from terminal j to its closest terminal x, as adirected edge from j to x. By imposing a lexical ordering, we can ensure that the only directedcycles we get are 2-cycles. Note that the induced spanning forest has at most jSj edges, and can bea lot smaller (as low as jSj2 , if the terminals form pairs). The collection of edges form a spanningforest of at least jSj terminals.Let P � = 2min h4
m3 ; 
3+i. By the de�nition of Set S, for j 2 S, Pj � P �.We wish to upper-bound the total cost of the forest produced. Let each vertex j in S havedegree dj in the forest. We charge the cost of the path to the two end vertices equally. Node j getsa charge of at most (dj � 1)P �2 + Pj2 . Summing over all the vertices the cost is at mostCost(T ) � Xj2S(dj � 1)P �2 + Pj2 = (2li � jSj)P �2 +Xj2S Pj2 :Using Lemma 2.1, OPT can be decomposed into spiders of total cost at most w(OPT ). Bycharging the terminals the spider ratio of the spider they belong to, we can obtain a lower-boundon w(OPT ). (This charging is the same as in Lemma 2.2.) Consider a terminal j. If j is in a 2spider in the decomposition obtained by Lemma 2.1 then the spider ratio is at least Pj2 . Otherwise,j gets a charge of at least 
3+ = P �2 . In any case, j gets a charge of at least min hPj2 ; P �2 i. If j 62 S,then min hPj2 ; P �2 i = P �2 . Thus we get,w(OPT ) � (ni � jSj)P �2 +Xj2S Pj2 :Multiplying the above with �1 and adding to the equation before, we get (taking �w(OPT ) toRHS.) Cost(T ) � (2`i � ni)P �2 + w(OPT ) :Setting y = niP �2w(OPT ) , (note P �2 � 4
m3 � 4w(OPT )3ni and hence y � 43),Cost(T )� ln(1� `ini ) � (2 `ini � 1)y + 1� ln(1� `ini ) w(OPT ) :From de�nition of y,3y2 w(OPT ) = 3ni2 P �2 = 3ni2 min �4
m3 ; 
3+� = min �2ni
m; 3ni2 
3+�12



Fact: For all values of 0 < x � 1 and y � 43 ,min �(2x� 1)y + 1� ln(1� x) ; 3y2 � < 1:6103Thus min " Cost(T )� ln(1� `ini ) ; 2ni
m; 3ni2 
3+# = min " Cost(T )� ln(1� `ini ) ;min �2ni
m; 3ni2 
3+�#= min �(2x� 1)y + 1� ln(1� x) w(OPT ); 3y2 w(OPT )� < 1:6103 w(OPT ) :Which proves the lemma. 25. Algorithm for Unweighted CaseFor the case where each node has the same cost, and we are counting the number of nodes in our�nal solution, we can show that an approximation guarantee of ln k + �(1) is possible. We canalso show that if the value of the optimal solution is at least a �xed constant then we can achievean approximation factor of ln k. The reason behind the improvement lies in the fact that we canprovide better lower bounds on the optimal solution if we cannot �nd good ratio spiders.In this section we present a simple algorithm with an approximation ratio of ln k when all thevertices have unit weight.We have k required vertices (terminals) in a graph G = (V;E), that we want to connect usingthe least number of non-terminals. We assume that the non-terminals have weight 1, and theterminals have weight 0.We �rst note that connected components induced by terminals can always be shrunk to singleterminals. Our algorithm runs in two phases. In the �rst phase, the algorithm greedily picks highdegree stars (a star is a vertex that has at least two required vertices as neighbors) and mergesthem, until very few components are left. In the second phase, the algorithm runs a Steiner tree(edge) approximation algorithm with each edge having unit weight.We pick � = 2cs + 1 where cs is the best approximation ratio for the unweighted Steiner treeproblem.Algorithm AStep 1. In each iteration choose a vertex that merges the largest number of required vertices untilwe reach a stage that the number of components left to merge is less than iteration countlnk�� + e� or nomerging is possible.Step 2. Apply an (edge weighted) Steiner tree approximation algorithm, with each edge havingunit weight.Theorem 5.1: The above algorithm �nds a solution to the unit node weighted Steiner tree (UNST)problem with an approximation factor of ln k (which is best possible), when the optimal solutionis greater than cs � e�. 13



Proof: Assume that the set of components remaining after the �rst phase is A0. We claim thatthere is a Steiner tree with at most jA0j + jOPT j edges. Thus when we apply an (edge weighted)Steiner tree approximation, we get a tree with at most cs � (jA0j+ jOPT j) edges.If the number of iterations in the �rst phase is r, the �nal solution has a cost r+cs�(jA0j+jOPT j).We now proceed to give a bound on r.Let ai components be left after the ith iteration. Since jOPT j nodes are capable of merging thesecomponents, for each i, in the ith iteration, there must be a node that merges l ai�1jOPT jm components.This gives a bound on ai,ai � ai�1 � � ai�1jOPT j� + 1 � ai�1(1� 1jOPT j) + 1:We can easily verify that ai � a0 � (1� 1jOPT j)i+Pi�1j=0(1� 1jOPT j)j . The second term is a geometricseries that sums to at most jOPT j. Thus when i = (ln k � �) � jOPT j the �rst term is at most e�,and the number of components ai � jOPT j+ e� � ilnk�� + e�. This guarantees that the numberof iterations, r � (ln k � �) � jOPT j.If we stop because no merging by stars is possible, then the components have disjoint neigh-borhoods, and OPT has to pick at least one vertex from each neighborhood. Thus jA0j � jOPT j.If we stop because the number of components is small, then jA0j � jOPT j + e�. In any case,jA0j � jOPT j+ e� and this yields a solution of cost at most ln k � jOPT j+ cs � e�+ (2cs� �)jOPT j.Putting � = 2cs+1 gives at most ln k � jOPT j vertices in our solution when jOPT j � cs � e2cs+1 . 2The optimality of this approximation ratio was established by Berman (see [9]).We can modify the above algorithm, to run until no further merging is possible.Algorithm BStep 1. In each iteration choose a vertex that merges the largest number of required vertices (atleast two).Step 2. Apply an (edge weighted) Steiner tree approximation algorithm, with each edge havingunit weight.Theorem 5.2: The above algorithm �nds a solution to the unit node weighted Steiner tree (UNST)problem with an approximation factor of ln� + 2cs + 1, where � is the maximum degree.Proof: As before, let ai denote the number of vertices left after the ith iteration and a0 = k. Thenafter jOPT j � ln a0jOPT j ; there are at most 2 � jOPT j components to connect. Hence we will continueto merge by stars for jOPT j more iterations then the number of components will be de�nitely lessthan jOPT j.Since each Steiner vertex can be adjacent to at most � required vertices, jOPT j � a0� .If at this stage we use af more iterations before invoking the edge weighted Steiner tree al-gorithm, there is a tree with jOPT j � af + jOPT j edges. So we �nd a solution of cost at mostcs � (jOPT j � af + jOPT j). The �nal solution has at most jOPT j � ln a0jOPT j + jOPT j + af + cs �(jOPT j� af + jOPT j) nodes. Since jOPT j � a0� , we get a performance guarantee of ln�+ 2cs+1for the algorithm. 214



6. Application to Connected Dominating SetsThe connected dominating set (CDS) problem is de�ned as follows: given a node weighted graphG, �nd a subset S of vertices of minimum weight, such that S induces a connected subgraph andthe vertices in S form a dominating set in G. See [7] for applications and other results for the CDSproblem on unweighted graphs.We can develop a similar approximation scheme for connected dominating sets. As the algorithmproceeds, certain vertices are added to the current CDS. Initially, the CDS is empty, and �nallyit forms a valid CDS when the algorithm terminates. We use the following color notation { eachvertex in the CDS is black. All vertices which are adjacent to a black vertex are colored gray. Theremaining vertices are colored white.De�ne a piece as a black connected component or a white vertex. Treat each piece as a terminal.De�ne spiders as in the previous section, but include only the weight of non-leaf gray and whitenodes when computing the weight of a spider. In this algorithm, we only shrink black connectedcomponents, and not complete spiders.It is easy to observe that a spider connecting ` pieces, reduces the number of pieces by ` � 1.And ultimately when we have found a solution only one piece should be remaining. Notice thatall the decomposition claims in the previous section follow. We can proceed analyzing in a similarway to achieve an approximation ratio of (1:35 + �) ln k.References[1] P. Berman and V. Ramaiyer, \Improved approximation algorithms for the Steiner tree prob-lem", J. Algorithms, 17:381{408, (1994).[2] M. Bern and P. Plassmann, \The Steiner problem with edge lengths 1 and 2", InformationProcessing Letters, 32: 171{176, (1989).[3] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, The MIT Press, 1989.[4] U. Feige, \A threshold of lnn for approximating set-cover", 28th ACM Symposium on Theoryof Computing, pages 314{318, (1996).[5] M. R. Garey and D. S. Johnson, \Computers and Intractability: A guide to the theory ofNP-completeness", Freeman, San Francisco (1978).[6] M. X. Goemans and D. P. Williamson, \A general approximation technique for constrainedforest problems", SIAM Journal on Computing, 24:296{317, (1995).[7] S. Guha and S. Khuller, \Approximation algorithms for connected dominating sets", Proc.of 4th Annual European Symposium on Algorithms, pages 179{193, (1996). To appear inAlgorithmica.[8] L. Kou, G. Markowsky and L. Berman, \A fast algorithm for Steiner trees", Acta Informatica,15, pp. 141{145, (1981).[9] P. N. Klein and R. Ravi, \A nearly best-possible approximation algorithm for node-weightedSteiner trees", J. Algorithms, 19(1):104{114, (1995).15
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