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Abstract. One of the potential benefits of formal methods is that they
offer the possibility of reducing the costs of testing. A specification acts
as both the benchmark against which any implementation is tested, and
also as the means by which tests are generated. There has therefore
been interest in developing test generation techniques from formal spec-
ifications, and a number of different methods have been derived for state
based languages such as Z, B and VDM. However, in addition to deriving
tests from a formal specification, we might wish to refine the specification
further before its implementation.

The purpose of this paper is to explore the relationship between testing
and refinement. As our model for test generation we use a DNF parti-
tion analysis for operations written in Z, which produces a number of
disjoint test cases for each operation. In this paper we discuss how the
partition analysis of an operation alters upon refinement, and we develop
techniques that allow us to refine abstract tests in order to generate test
cases for a refinement. To do so we use (and extend existing) methods
for calculating the weakest data refinement of a specification.

Keywords: Testing; Partition Analysis; Disjunctive Normal Form;
Refinement; Calculating data refinements.

1 Introduction

Testing and specifications are intrinsically interlinked. Specifications act as the
benchmark against which any implementation is tested, and they also provide
a means by which to generate the tests themselves. The advent and use of for-
mal methods does not change this. Although the aim of formal methods is to
move some of the effort spent on error detection to more effort spent on cor-
rect construction, even a fully verified formal development will at some stage be
tested against the original specification. Indeed, the use of formal methods offers
a promise of reduced overall development cost by automating part of the testing
process.

There has therefore been interest in developing techniques by which test case
generation and test case scheduling can be automatically (or semi-automatically)
generated from formal specifications. Different paradigms have developed differ-
ent ways to do this, and techniques for state based languages such as Z [17], B
[1] and VDM [12] have been developed, see for example [14, 5, 8, 4, 11, 18].



There are many aspects to the provision of formal support for the testing
process. In this paper we shall be concerned with the issue of test case gen-
eration from individual operations. The attraction of using an abstract formal
specification as the basis to generate the tests (as opposed to an informal spec-
ification of even an implementation) is that it concisely captures the essential
behaviour required: any correct implementation should pass all the tests derived
from this specification, and yet the tests will be as abstract as possible, ensuring
their number is kept low.

One elegant and simple method for generating and sequencing tests from
state based languages has been developed by Dick and Faivre [8]. The basic
technique of test generation consists of a partition analysis, which reduces the
specification of each operation into its Disjunctive Normal Form (DNF). The
approach was based on VDM, but has been applied to Z in [11, 15] and B
in [20], and benefits from tool support, which is described in [8] and [20]. [11]
describes an industrial application of the method to an aircraft control system.

However, in addition to deriving tests from a formal specification, we might
wish to develop or refine the specification further before its implementation.
Indeed we can view any implementation as a refinement of the original specifi-
cation. The conditions under which a development is a correct refinement are
encapsulated into two refinement rules: downward and upward simulations [22].
To verify a refinement the simulations use a retrieve relation which relates the
concrete to abstract states.

The purpose of this paper is to explore the relationship between testing and
refinement. In particular, we aim to develop techniques whereby we can reuse
abstract tests to develop tests for a concrete specification or implementation. As
our model for test generation we use the DNF partition analysis for operations
written in Z as discussed in [11], although it should be noted that the methods
are applicable to other testing scenarios and state based languages such as B
and VDM.

Dick and Faivre did not consider further refinements of the abstract specifica-
tion, however, they posed the open question: does refining a specification create
a super-set of the partitions of the previous level? We will answer this question in
the negative. We will then go onto answer the question: how do we generate tests
for a refinement based on the tests derived from the abstract specification? We do
so by developing a means to calculate concrete tests based upon methods that
generate the weakest (i.e. most general) refinement of an abstract operation. We
do this first for refinements which are downward simulations, and we discuss the
properties of the constructed tests, and in particular whether they capture all
the requirements and whether they are disjoint. We next develop similar results
for upward simulations, however, here we first have to derive techniques to cal-
culate the weakest upward simulation of an operation. In each case the results
simplify if the retrieve relation used in the refinement is a surjective function
from concrete to abstract state spaces.

The structure of the paper is as follows. Section 2 introduces the method
of DNF partition analysis, and Section 3 provides some background material



on refinement in Z. Sections 4 and 5 form the heart of the paper where we
develop the theory of testing refinements by refining tests, and discuss relevant
properties. Section 4 looks at downward simulations and Section 5 considers
upward simulations. We conclude in Section 6.

2 Testing

Testing is an indespensible part of the software construction and maintenance
process, irrespective of whether or not the development of a system has involved
the use of formal methods and verification. Therefore there has been considerable
interest in the use of formal methods to support the testing process as opposed
to viewing formal methods as an alternative to the testing process [19, 5, 8, 4,
11, 18].

Different formal paradigms have associated methods for aiding this test gen-
eration process in an automatic, semi-automatic or manual fashion. For example,
there has been considerable research on testing specifications in the context of
process algebras [10, 6, 3, 2]. There has also been analogous work for state based
languages such as Z, B and VDM. The approach we consider here is that of
Dick and Faivre [8], which describes a means to automate test generation and
sequencing from VDM specifications, and has also been applied to Z specifica-
tions in [11, 15]. For example, [11] describes application of this methodology to a
portion of the Cabin Intercommunication Data System for the Airbus A330/340
aircraft. An alternative approach to testing is discussed in [18] which derives a
testing methodology suitable for the construction of tests from OSI Managed
Object specifications [21], and manual approaches to test generation have also
been considered in [14, 4].

Dick and Faivre consider the complete testing activity from test generation
from individual operations, through the scheduling of tests, to the verification
of test results. The basic technique of test case generation consists of a partition
analysis, which reduces the specification of each operation into its Disjunctive
Normal Form (DNF). Each element in the DNF represents an individual test
case for the operation. The partition then serves as a basis for the construction
of a finite state automaton (FSA) which is then used to derive test suites (i.e. a
structured sequence of test cases).

In this paper we are concerned with the use of DNFs to provide a suitable
partition analysis of operations, and we aim to show how this partition alters
upon refinement.

As an example of the methodology let us consider the specification of a
cinema box office (adapted from [22] and [16]). The Kurbel box office allows
customers to book tickets in advance by telephone. When a customer calls, if
there is an available ticket then the customer’s name is simply recorded. When
a customer whose name has been recorded arrives at the box office, a ticket is
allocated. The Kurbel is specified as follows.



_ Kurbel _ KlInit

kpool : P Ticket Kurbel’

bkd : P Name bed' —
_ KBook _ KArrive

AKurbel AKurbel

name? : Name name? : Name
- o

name? & bkd t!: Ticket

#bkd < #kpool name? € bkd

bkd' = bkd U {name?} bkd' = bkd \ {name?}

kpool’ = kpool t! € kpool

kpool' = kpool \ {t!}

The state variable kpool denotes the pool of tickets and bkd denotes the
set of names of customers who have booked a ticket. The operation KBook
records a booking provided that there are currently less bookings than tickets.
The operation KArrive allocates a ticket to a customer who has a booking. In
order to test an implementation of the box office we generate test cases for each
operation in the specification.

We do this by transforming each operation into a DNF. Each schema in this
DNF then represents a single test case. Each test case will be disjoint, allowing
them all to be treated separately. The transformation into test cases for KBook
and KArrive is thus given by (to simplify the presentation we just consider tests
for a single fixed input name? throughout the paper):

KBook = KBook
KArrive =\, KAt where

__ KA,
AKurbel
name? : Name
t!: Ticket

name? € bkd

bkd' = bkd \ {name?}
th=t

kpool' = kpool \ {t!}

We have used a distributed disjunction (\/) here, which although nonstan-
dard Z, can be defined in the obvious manner (for example, by 3¢ : kpool e KA;).
Similarly, the equality sign between schemas should be viewed as schema equiv-
alence. We retain \/ and = for the sake of clarity.

From this we see that KBook is already in DNF, and thus represents a single
atomic test case in itself. However, KArrive has a number of test cases, each



one representing a different possible choice of allocated ticket. This structuring
of test cases as DNFs has two important properties: coverage and disjointness;
that is, KArrive equals the disjunction of its test cases (coverage) and these
tests are disjoint. In general we say that a collection of tests {AOp;}; covers an
operation AOp acting on state space Astate if

AOp =\, AOp;
and that the tests are disjoint, if, for all i # j
— 3 Astate; Astate’ @ AOp; A AOp,

It is easy to see that {KA:}tcrpoor form a disjoint covering of KArrive.

Note that there are many possible decompositions of an operation into DNF,
and not every decomposition will produce test cases considering single elements
t € kpool. For example, if kpool was infinite some of the test cases would contain
infinite partitions of kpool representing the various test cases we are interested in.
It is by this means that a finite state machine can be obtained from a specification
with infinite state. See [8] for a discussion of this point.

3 Refinement

In addition to deriving tests from a formal specification, we might wish to refine
the specification further before its implementation. Such a refinement might typ-
ically weaken the precondition of an operation, remove some non-determinism
or even alter the state space of the specification. The conditions under which a
development is a correct refinement are encapsulated into two rules: downward
and upward simulations [22]. These refinement rules are known to be sound and
jointly complete, that is any upward or downward simulation is a valid refine-
ment, and any refinement can be proved correct by application of appropriate
upward and downward simulations [9, 23]. (Downward and upward simulations
are sometimes also known as forward and backward simulations respectively.)

The downward simulation rules are more straightforward, and form the usual
presentation of refinement (e.g. as in [17]), however, upward simulations are
occasionally necessary, for example when the resolution of non-determinism has
been postponed [22]. Let us consider an abstract specification with state space
Astate and initialisation schema Ainit being refined by a concrete specification
with state space Cstate and initialisation schema Cinit.

Definition 1. Downward simulation

The concrete specification is a downward simulation of the abstract if there is
a retrieve relation Ret such that every abstract operation AOp is recast into a
concrete operation COp and the following hold.

DS.1 V Astate; Cstate o pre AOp A Ret = pre COp
DS.2 V Astate; Cstate; Cstate’ @ Ret A pre AOp A COp —> 3 Astate’ e Ret' A
AOp



DS.3 V Cstate' o Cinit => 3 Astate’ o Ainit A Ret

Definition 2. Upward simulation

The concrete specification is an upward simulation of the abstract if there is
a retrieve relation Ret such that every abstract operation AQOp is recast into a
concrete operation COp and the following hold.

US.1 V Cstate o (V¥ Astate @ Ret = pre AOp) = pre COp

US.2 V Astate’; Cstate; Cstate’ o (V Astate o Ret = pre AOp) = (COp A
Ret' = 3 Astate o Ret A AOp)

US.3 V Astate'; Cstate' o Cinit A Ret' — Ainit

As an example, consider the specification of the Marlowe box office. Like the
Kurbel, the Marlowe box office allows customers to book tickets in advance by
telephone. However, the procedure is different from that used at the Kurbel.
When a customer calls, if there is an available ticket then one is allocated and
put to one side for the caller. When the customer arrives, they are presented
with this ticket.

_ Marlowe _ MlInit
mpool : P Ticket Marlowe'
tkt : Name »~ Ticket —

tht = @

_ MBook _ MArrive
AMarlowe AMarlowe
name? : Name name? : Name
name? ¢ dom tkt B : Ticket
mpool # & name? € dom tkt
3t : mpool e t! = tkt(name?)

mpool’ = mpool \ {t} tht' = {name?} < tkt
tht' = tht U {name? — t} mpool’ = mpool

The contrast between the Marlowe and the Kurbel box offices is the point of
allocation of tickets (at booking time wvs at collection time). However, at this level
of abstraction the customer cannot tell that the Kurbel is behaving differently
to the Marlowe, and this can be demonstrated by showing (see [22]) that the
Marlowe is a downward simulation of the Kurbel where the retrieve relation is
given by

__ Ret
Kurbel
Marlowe

bkd = dom tkt
kpool = mpool U ran tkt
mpool Nran tht = &




In fact, the Kurbel specification is also a refinement of the Marlowe, but
this must be shown using an upward simulation (i.e. it is not a downwards
simulation), where we use the same retrieve relation as before. Therefore the
Marlowe and Kurbel have identical observational behaviour, and so the tests for
one specification should be able to be applied to the other. In order to do this
and to be able to reuse abstract tests to test a refinement we have to be able to
translate the state spaces of each test case, and we will use the retrieve relation
to do this. This will involve us calculating refinements, a process that we now
describe.

3.1 Calculating Downward Simulations

Given an abstract specification, a concrete state space and a retrieve relation
between the concrete and abstract state spaces, it is possible to calculate the
weakest (most general) description of the concrete operations [13, 22]. Let Astate
and Cstate be the abstract and concrete state spaces, Ret the retrieve relation
and AOp an abstract operation. We calculate* the weakest refinement COp of
AOp by

COp = (3 Astate o pre AOp A Ret)A
(V Astate @ pre AOp A Ret = 3 Astate’ ¢ AOp A Ret'")

In general, if it is not known whether Ret defines a refinement, it is necessary to
check the applicability. This is summarised in the following theorem (for a proof
see [13]) which shows that COp is the weakest refinement of AOp, provided that
one exists.

Theorem 1. Let us denote a downward simulation by C ps. Suppose that AOp
specifies an operation over the abstract state space Astate. Let Cstate be a con-
crete state space, and Ret a retrieve relation between concrete and abstract. Let
COp be defined as above. Then for every operation X

AOp Cps X iff pre AOp A Ret = pre COp and COp Cps X

We are interested in cases when it is known that Ret defines a refinement
since we are generating tests for an existing development, therefore we know
that applicability (pre AOp A Ret = pre COp) holds. In these circumstances
COp describes our most general concrete refinement of the operation AOp.

The calculation can be simplified considerably ([13, 22]) when the retrieve
relation defines a surjective (partial) function from Cstate to Astate, and we find
that the following suffices for COp.

COp = 3 Astate; Astate' @ Ret AN AOp N Ret’

* We use calculate in the sense that COp is described by a formula in terms of known
components. One might also say that COp is specified instead of calculated, and
that the specification of COp is the starting point for its calculation through a series
of simplification steps.



For example, the retrieve relation from Marlowe to Kurbel could in fact
be used to calculate the book and arrive operations in Marlowe. The retrieve
relation is functional since both kpool and bkd are uniquely determined by Ret,
however, Ret is not surjective (states where #bkd > #kpool are not in the range
of Ret). We can in fact make it surjective without altering the specification by
adding the state invariant #bkd < #kpool to Kurbel, the simplified method of
calculation can then be used.

In fact it can be shown [7] that the complex formula given in Theorem 1 can
always be replaced by the simplified version 3 Astate; Astate’ ¢ RetAAOpARet'.
We will therefore use this simplified version subsequently.

The method described in [13, 22] calculates the weakest downward simula-
tion. We shall derive similar results for upward simulations in Section 5.1 below.

3.2 Generating Tests

The technique we develop for generating tests for a refinement is very simple.
Given an abstract specification with operation AOp and a covering disjoint set of
tests {AOp;}:; a concrete specification with operation COp which refines AOp,
and a retrieve relation Ret, we generate a set of tests { COp; }; where each test
COp; is the weakest refinement calculated from Ret and AOp;. The remainder
of the paper discusses the two cases of downward and upward simulations sep-
arately, and each case is subdivided according as to whether Ret is a surjective
function or not. In each case we explore the two questions:

— do the tests {COp;}; cover COp;
— are the tests {COp;}; disjoint.

4 Refining Tests 1: Downward Simulations

Downward simulations are perhaps the most common form of state based refine-
ment: we saw an example above where the Marlowe box office was a downward
simulation of the Kurbel box office. How do the test cases of the operations in the
two specifications compare, and in particular does refining a specification create
a super-set of the partitions of the previous level? [8]. To answer this question
let us derive the test cases for the Marlowe operations:

MArrive = MArrive
MBook =\ ¢,po0r MBt where

_ MB,
AMarlowe
name? : Name

name? ¢ dom tkt

mpool # &

mpool’ = mpool \ {t}

tht' = tht U {name? — ¢}




and document the results in the following table.

|Kurbel Marlowe
Book |KBook Vicmpoor MBt
Arrive|V oot KAt MArrive

From this table we see that for the book operation one test (KBook) be-
comes #mpool tests (MB;) upon refinement, whereas for the arrive operation a
collection of #kpool tests become one. This clearly answers the question of Dick
and Faivre in the negative in the first instance - we do not in general create a
super-set of the partition upon refinement. Let us see how calculating the tests
effects coverage and disjointness in general.

4.1 Functional Surjective Retrieve Relation

We first consider the particular case when the retrieve relation used is a surjec-
tive function from concrete to abstract. Given an operation AOp with AOp =
V, AOp; being its disjoint set of tests, and a retrieve relation Ret which is a
surjective function, the concrete tests are given by

COp; = 3 Astate; Astate’ @ Ret A AOp; A Ret’

These will in some way represent test cases for the original concrete operation
COp, and in fact we have the following result.

Theorem 2. Let AOp be an abstract operation with AOp = \/; AOp; being its
disjoint set of tests. Let COp be a downward simulation of AOp. Let Ret be the
retrieve relation. Let COp; be the concrete tests given above. Then

V,; COp; Eps COp

and if COp is the weakest downward simulation of AOp then COp =/, COp;.

Proof

The proof is simple, and follows from:

V,; COp; =\/,(3 Astate; Astate’ @ Ret AN AOp; N Ret')
= J Astate; Astate’ o \/,(Ret A AOp; A Ret')
= 1 Astate; Astate' @ Ret A\/, AOp; A Ret'
= J Astate; Astate’ @ Ret N AOp A Ret’

Eps COp

The practical consequences of this is that we can use abstract tests together
with the retrieve relation to calculate tests for a refinement.



Example 1. Calculating tests for a refinement.

Consider the following two specifications which describe Staff entering and leav-

ing the box office. The first is specified using a set

_ SSystem _ SInit
s : P Staff SSystem/
#s < mazentry s'=0o

_ SEnter _ SLeave
ASSystem ASSystem
p? : Staff p? : Staff
#s < mazentry p?€Es
e s s = s\ {p7)
s'=sU{p?}

The second description uses a list (an injective sequence)

_ LSystem
[ :iseq Staff

#1 < mazxentry

_ LInit

LSystem’
I'=()

The second specification is a refinement of the first (see [22]), where the

retrieve relation is given by

__ Ret

_ LEnter _ LLeave
ALSystem ALSystem
p? : Staff p? : Staff
#1 < mazentry p? €ranl
p? ¢ ranl I'=11(Staff \ {p?})
'=1"(p?)

LSystem
SSystem

s —=ranl

This is a total surjective function from concrete (list) to abstract (set). The
test cases of SEnter are just SEnter itself, however, calculating the weakest
refinement 3 SSystem; SSystem’ e Ret A SEnter A Ret' to give the concrete test

cases produces:



__LEnter
ALSystem
p? : Staff

#1 < mazentry
p? € ranl
ranl' =ranl U {p?}

The partition of this into DNF will produce a collection of tests {LEnter;};,
one for each possible choice of I’ satisfying ranl’ = ranl U {p?} We can see
that \/l LEnter; Cps LEnter, but since LEnter is not the weakest refinement of
SEnter the calculated tests contain additional tests not included in the concrete
operation.

However, in this case we can construct an exact covering by taking the in-
dividual tests to be LEnter; A LEnter. Indeed this is a general strategy which
works whenever the concrete operation has failed to be the weakest refinement
because it has resolved more non-determinism than formally necessary. O

Note that from this example we can see that after calculating the concrete
tests, further partition analysis might be necessary to put them into DNF.

So much for coverage, what about disjointness? For a functional surjective
retrieve relation disjoint abstract tests will generate disjoint concrete tests.

Theorem 3. Let {AOp;}; be disjoint test cases, Ret a functional surjective re-
trieve relation and {COp;}; calculated from {AOp;};. Then {COp;}; are dis-
joint.

Proof

Suppose that {COp;}; were not disjoint. Then for some i and j
3 Cstate; Cstate' @ COp; A COp;
Thus there exists states Cstate and Cstate’ for which

3 Astate; Astate’ @ Ret A AOp; A Ret’, and
3 Astate; Astate’ @ Ret A AOp; A Ret'

For these states Cstate and Cstate’, there are unique states
Astate and Astate’ such that Ret A Ret'. Therefore

3 Astate; Astate’ ® AOp; N AOp,

and so {AOp,}; are not disjoint. |



Note that disjointness is not the same as inequality (two tests with false
predicates are considered disjoint).

Ezample 2. Refined tests are disjoint.

If we consider the operation KArrive in the Kurbel box office and its set of
tests { KAt} tekpooi- These are disjoint and we produce a set of disjoint concrete
tests

_MAf
AMarlowe
name? : Name
t!: Ticket

name? € dom tkt

t! =t = tkt(name?)
tht' = {name?} <4 tkt
mpool’ = mpool

All but one of these tests are false (tkt is a function, so tkt(name?) must be a
unique t). Therefore the set of concrete tests {MA;} reduces to the single test
MArrive. |

4.2 General Retrieve Relation

We now consider the general case. Recall that to generate tests from abstract
test cases {AOp;}; we can still use the simplified formula

COp; = 3 Astate; Astate’ @ Ret A AOp; A Ret’

Therefore in this general case the covering theorem still holds. However, disjoint-
ness in general fails as the proof needed functionality of the retrieve relation. This
can be seen from the following example.

Ezxample 3. Refined tests are not disjoint in general.

Consider the two specifications which describe staff entering and leaving the box
office. Suppose that we modify the second specification so that LEnter is now

___ LEnter
ALSystem
p? : Staff

#1 < mazentry
p? g ranl
ranl’ =ranl U {p?}




SSystem is now a refinement of this specification with the same retrieve relation
as before. However, viewed this way round the retrieve relation is not functional:
each set s has many (abstract) representations as a list with s = ran .

The DNF for LEnter contains many tests (one for each permutation of I with
p? inserted into it); for example, two such tests would be

_ LEnter _ LEnters
ALSystem ALSystem
p? : Staff p? : Staff
#1 < maxentry #1 < maxentry
p? €ranl p? ¢ ranl
'=1"(p?) '=(p?) "1

Calculating the refined tests for each one of these abstract tests produces

__ SEnter
ASSystem
p? . Staff

#s < mazentry
p?T € s
s'=sU{p?}

in every case. So all the abstract tests were mapped onto the same concrete test,
which are therefore not disjoint. |

5 Refining Tests 2: Upward Simulations

Some valid refinements can not be proved correct with a downwards simulation,
and for these we need to use an upwards simulation. An example of this was
provided above where we commented that the Kurbel box office was a refine-
ment of the Marlowe box office, but this could only be verified using an upward
simulation (see [22] for details). The previous section has discussed how to de-
rive tests from refinements which were downward simulations, we now do the
same for upward simulations, and to do so we will need to derive a method for
calculating the weakest upward simulation of an abstract operation.

Let us first, however, comment upon the partitioning. We found that refining
a specification doesn’t create a super-set of the partitions of the previous level
for refinements that were downward simulations. The same can be seen to be
true for refinements that are upward simulations. From the table of tests for the
Kurbel and Marlowe specifications given at the start of Section 4 we find that
under an upward simulation, one abstract test (MArrive) becomes #kpool tests
(KA;) upon refinement, and a collection of #mpool tests (MB;) become one.
There is thus, in general, no relationship between the size of the partitioning
before and after refinement for both upward and downward simulations.

We will now turn to the problem of calculating the weakest upward simula-
tion, which will allow us to derive concrete tests from abstract ones.



5.1 Calculating Upward Simulations

The methodology given in [13, 22] calculates the most general downward simu-
lation of an abstract operation with respect to a retrieve relation between the
abstract and concrete state spaces. We do the same here for upward simulations.

In a manner similar to downward simulations, the refinement rules for upward
simulations simplify considerably for a retrieve relation which is a total function
from concrete to abstract. In this case it is easy to show that the correctness
condition US.2

V Astate'; Cstate; Cstate' o
(V Astate  Ret = pre AOp) => (COp A Ret' = 3 Astate @ Ret A AOp)

reduces to

V Cstate; Cstate' o (V Astate @ Ret = pre AOp) A
(COp = 3 Astate; Astate’ @ Ret A AOp N Ret')

Then, if the retrieve relation is additionally surjective, the weakest refinement
of AOp will again be given by

COp = 3 Astate; Astate’ @ Ret A AOp A Ret’

a formula that is identical to the downward simulation case.
Turning to the general situation (i.e. an arbitrary retrieve relation), the fol-
lowing will define the weakest refinement of AOp

COp =
(V Astate @ Ret = pre AOp) AY Astate’ o (Ret' = 3 Astate @ Ret A AOp)

For an arbitrary relation R we would still have to check applicability
Y Cstate o (V Astate # R => pre AOp) = pre COp

However, if we know that the retrieve relation does indeed define an upward
simulation it is not necessary to check this.

Theorem 4. Let us denote an upward simulation by Cys. Suppose that AOp
specifies an operation over the abstract state space Astate. Let Cstate be a con-
crete state space, and Ret a retrieve relation between concrete and abstract. Let
COp be defined as above. Then for every operation X

AOp Cys X iff (V Astate @ Ret => pre AOp) = pre COp and COp Cys X

Proof
To show that the above definition of COp does refine AOp we need to show that

V Astate’; Cstate; Cstate' o
(V Astate @ Ret = pre AOp) = (COp A Ret' = 3 Astate ® Ret A AOp)



which reduces to showing that

Y Astate'; Cstate; Cstate' o
(Ret' = 3 Astate @ Ret A AOp) A Ret' = (Ret' = 3 Astate o Ret A AOp)

which can easily seen to be true.

To show that COp defines the most general refinement of AOp, let us suppose
that in addition AOp Cys X, we will show that COp Cyg X. Furthermore, let
us suppose that the refinement AOp Cys COp is verified by a retrieve relation
R; and that of AOp Cys X by a retrieve relation Rs. Let us denote the state
space of COp by C; and that of X by Cs. We abbreviate Astate to A.

We first consider applicability. We know that

VCye(VAeRy=— pre AOp) = pre X (a)
VC e (VAe R = pre AOp) = pre COp (8)

and we need to show that for some retrieve relation R
V(e (VC @ R= pre COp) = pre X

First let us define R as 3 A ¢ Ry ARy. Now suppose that for a given concrete state
Cy, (V Cy ¢ R = pre COp) holds. First note that if C, is not in the domain of
R,, then by «, pre X holds at that state. Next suppose that Cy € dom Ry and
(Cy, C1) € R, and consider a state A then (Cy, A) € Ry implies that (A4, C1) ¢
R;. Then by 3, a and the definition of COp, pre X holds at state Cs. The case
when (Cy, Cy) € R is similar.

To show correctness holds, we have to show that (see figure below)

VCre(VCi @« R—preCOp) =V C|; Cye (X ANR' = 3C, ¢« RN COp)
given that we know

VCye(VAeRy=—preAOp) =V A'; C;e (X ANR),=—3AeRyAAOp)

Given that (VC; ¢ R = pre COp) implies that (VA e Ry = pre AOp), by
correctness of AOp Cys X we have

VA'; C;e(XANR),=3AeRyAAOp)

Now suppose that given any C{; Cj, X A R’ implies that 3 C; ¢ R A COp. Now
if X A R’ then there exists A’ with (Cy, C3) € X, (Cy, A") € Ry, (A', C]) € Ry.
Thus there exists A with AOp A R,. By definition of COp there exists C; with
(Cy, Cl) € COp and (A, Cy) € R. That is 3 C; e R A COp as required.



5.2 Generating Tests

The preceding theorem means that to generate concrete tests from the abstract
test cases {AOp;}; we can use the formula

COp, =
(V Astate @ Ret = pre AOp;) NV Astate’' o (Ret' = 3 Astate @ Ret A AOp;)

Since we know that Ret defines a refinement (no need to check applicability)
each COp; is a refinement of AOp;.

3

Ezample 4. Calculating concrete tests from an upward simulation.

Considering the Kurbel specification as an upward simulation of the Mar-
lowe specification we can generate test cases for the Kurbel operations from the
abstract test cases of the Marlowe operations. Considered in this direction the
retrieve relation is not functional, so we have to use the general formulae given
above.

Calculation shows that the abstract MArrive test case produces a number of
concrete test cases {KA;}:, one for each t € kpool. Similarly, we can calculate
concrete tests for the book operation via its test cases { MB; };, upon refinement
these produce one concrete test KBook for the Kurbel specification. O

Having shown how to calculate tests we now consider their properties of
coverage and disjointness in turn.
We begin with coverage, where we have the following result.

Theorem 5. Let AOp be an abstract operation with AOp = \/, AOp; being its
disjoint set of tests. Let COp be an upward simulation of AOp. Let Ret be the
retrieve relation. Let COp; be the concrete tests given above. Then

V,; COp; Eys COp

and if COp is the weakest upward simulation of AOp then COp =\/, COpj.



Proof
Let us first observe the following:

\/7; COp;
= V,((V Astate « Ret = pre AOp;) N\

V Astate' o (Ret’ => 3 Astate @ Ret A AOp;))
= \/,(V Astate ® Ret => pre AOp;) A

V,(V Astate' o (Ret' => 3 Astate o Ret A AOp;))
= (V Astate o \/,(Ret => pre AOp;)) A

(V Astate’ o \/,(Ret' => 3 Astate  Ret A AOp;))
= (Y Astate o (Ret = \/, pre AOp;)) A

(V Astate’ o Ret' =>\/,(3 Astate @ Ret A AOp;))
= (V Astate o (Ret = pre\/, AOp;)) A

(V Astate' o Ret' = (3 Astate @ Ret A\/, AOp;))
Cys COp

Therefore
V,; COp; Eys COp

If COp was in fact the weakest refinement of AOp then we need to show that
equality holds between COp and \/;, COp;. This will follow from the fact that

(V Astate [} (Ret — pre Vz A0p7)) A
(V Astate’ o Ret' = (3 Astate o Ret A \/; AOp))

Cus V, COp;
which is easily shown. O

Therefore the covering properties for upward simulations are the same as for
downward simulations.

The disjointness properties are also pleasingly symmetric. When the retrieve
relation is a surjective function, the formulae for calculating tests is the same
as for downward simulations. Therefore, as was the case then, disjoint abstract
disjoint tests will produce disjoint concrete tests. However, in general we again
find that refined tests are not disjoint.

Ezxample 5. Refined tests are not disjoint in general.

To see this it suffices to consider again the refinement of the Marlowe specifica-
tion. The retrieve relation is not functional, since the predicates in Ret do not
define the abstract space uniquely (in particular, kpool = mpool U ran tkt allows
many choices of mpool and tkt for a given kpool).

Each abstract test (MB;) of MBook (and there are #mpool of them) is
mapped onto the same concrete test (KBook). Therefore the refined concrete
tests are not disjoint whereas the abstract ones were. O



6 Conclusions

We have provided a means to calculate concrete tests from abstract ones for both
upward and downward simulations. For retrieve relations which are surjective
functions the calculations simplified considerably, and in this case the formulae
for upward and downward simulations coincide.

We can use this as a basis for a methodology to determine the correct concrete
test calculation. Given abstract and concrete state spaces, a retrieve relation and
an abstract operation, we proceed as follows:

1. Determine whether Ret is a surjective function. If it is, then the concrete
tests are given by

COp; = 3 Astate; Astate' o Ret AN AOp; N Ret'

2. If Ret is not a surjective function we determine whether it defines a downward
or upward simulation. We do this by determining if

pre AOp A Ret = pre COp

If this is the case, then the refinement is a downward simulation, and there-
fore the concrete tests are still given by

COp; = 3 Astate; Astate' o Ret AN AOp; N Ret'

3. If Ret does not define a downward simulation, then the refinement must be
an upward simulation. In this case the concrete tests are given by

-~

COp; = (V Astate @ Ret = pre AOp;) N
V Astate’ o (Ret' = 3 Astate @ Ret A AOp;)

4. In all cases, check whether COp was in fact the weakest refinement, we do
this by determining if

V, COp; = COp

If this is the case then the set of covering test cases is {COp;};, if not we
may wish to restrict the set of concrete tests further by taking the tests to
be {COp; A COp},.

Since refining AOp might weaken its precondition, note that it may be nec-
essary to perform further partition analysis in order to place the concrete tests
into DNF.

If COp is the weakest refinement of AOp then the set of tests { COp; }; cover
COp. If Ret is functional then the concrete tests will be disjoint whenever the
abstract tests are disjoint.

In this paper we have just considered the partition analysis for the individual
operations to produce a number of test cases derived by conversion of an opera-
tion into disjunctive normal form. Further work on this methodology would also



consider the partition analysis of the system state and the scheduling of tests to
see how these change under refinement.

The partition analysis of the system state again transforms the state into
a disjunctive normal form, which is then used to construct a finite state au-
tomaton from the specification. The state space changes under refinement and
a new partition will be obtained for the concrete state space. We would expect
that refinements have a similar effect on the state space to those found for the
partition analysis of the operations. This needs to be confirmed.

In addition, we would like to determine whether we can use the retrieve
relation to calculate a new FSA for the concrete specification from the abstract
one using similar techniques to those above. The scheduling of tests for the
concrete specification, which involves finding paths through the FSA which cover
all the required tests, would also have to be investigated in light of our discussion
of refinement.
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