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Abstract. A tri-redundant version of a system S is a system T that
is specified from S as follows. First, system T has the same number of
processes and the same topology as system S. Second, each variable x in
a process in system S is replaced by three variables x, x′, and x′′ in the
corresponding process in system T . Third, the actions in each process in
system S are modified before they are added to the corresponding process
in system T and some new actions are added to the corresponding process
in system T . In this paper, we show that a tri-redundant version T of a
system S has interesting stabilization and fault-masking properties. In
particular, we show that if S is stabilizing, then T is also stabilizing. We
also show that if T ever reaches stabilization, and then a “visible fault”
occurs, then the effect of the fault is masked and the reached stabilization
of T remains in effect.

1 Introduction

A system S is called P -stabilizing, where P is a boolean expression over the
variables in S, iff the following two conditions hold. First, any computation of S,
that starts at a state where P is false, reaches a state where P is true. Second,
the execution of any action in system S that starts at a state where P is true,
ends at a state where P is true. See for example [4, 5, 9].

The fact that a system S is P -stabilizing indicates that S is fault-tolerant to
some degree. In particular, if a fault ever causes system S to reach a state where
P is false, further executions of the actions in S causes S to return to a state
where P is true. Moreover, once S reaches a state where P is true, P continues
to be true at each subsequent state of S.

There are (at least) two research directions that can be followed in order
to enhance the relationship between stabilization and fault-tolerance. The first
research direction is called fault-containment and it has been explored in [7, 8,
10]. The second research direction is called fault-masking and it is the subject
of the current paper. We compare these two research directions next.



Let S be a P -stabilizing system, and let F be a class of faults each of which
can change the value of some variable in S. Assume that each fault f in F is
assigned a “severity measure” m(f). System S is called F -containing iff for each
fault f in F , any computation of S, that starts at a state sf , where sf can be
reached by applying fault f to a state where P is true, reaches a state where
P is true after at most O(m(f)) transitions from the starting state sf . In other
words, F -containment ensures that the time that system S needs to recover from
a fault f in F is proportional to some measure of the severity of fault f .

Let S be a P -stabilizing system, and let F be a class of faults each of which
can change the value of some variable(s) in S. System S is called F -masking iff for
each fault f in F , and for each variable x whose value is changed by fault f , any
computation of S, that starts at a state sf , where sf can be reached by applying
fault f to a state where P is true, has an execution of some action ac that restores
the value of variable x to its value before f is applied, and moreover any action
execution, that preceeds the execution of ac in the computation, neither reads
nor writes variable x. In other words, F -masking ensures that the application of
any fault f in F has a limited effect on the action execution in system S.

In this paper, we describe a transformation that can transform any stabilizing
system S to a “tri-redundant” version T such that T is both stabilizing and F -
masking, where F is a rich class of faults called visible faults.

The concept of fault masking presented in this paper has somewhat similar
objectives, if not the same technical details, as two earlier concepts: supersta-
bilization and snap stabilization. A superstabilizing system [6] is a stabilizing
system that dampens the effects of its own “topology changes” when they oc-
cur. This is accomplished by ensuring that the system satisfies a specified safety
predicate from the instant when the topology of the system changes, causing the
system to lose its stabilization, until the instant when the stabilization of the
system is restored. A snap stabilizing system [3] is a stabilizing system that is
guaranteed to always behave according to its specification regardless of how the
state of the system is changed due to fault occurrence. Clearly, snap stabilization
is a lofty goal. Unfortunately, many systems cannot be made snap stabilizing.

2 Stabilizing Systems

The topology of a system is a connected undirected graph, where each node
represents one process in the system, and each edge between two nodes p and q
indicates that processes p and q are neighbors in the system, and so each of the
two processes can read the variables of the other process, as discussed below.

Each process in a system is specified by a finite set of variables and a finite
set of actions. The values of each variable are taken from some bounded domain
of values. Each action of a process p is of the form

〈guard〉 → 〈assignment〉

where 〈guard〉 is a boolean expression over the variables of process p and the
variables of all neighboring processes of p, and 〈assignment〉 is a sequence of
assignment statements, each of which is of the form



x := E(y, . . . )

where x is a variable in process p, E is an expression of the same type as variable
x, and y is a variable either in process p or in any neighboring process of p.

A state of a system S is specified by one value for each variable, taken from
the domain of values of that variable, in each process in S.

A transition of a system S is a triple of the form

(s, ac, s′)

where s and s′ are two states of system S and ac is an action in some process in
S such that the following two conditions hold.

i. Enablement: The guard of action ac is true at state s.
ii. Execution: Executing the assignment of action ac, when system S is in

state s, yields system S in state s′.

A computation of a system S is a sequence of the form

(s0, ac0, s1), (s1, ac1, s2), . . .

where each element (si, aci, s(i+1)) is a transition of S such that the following
two conditions hold.

i. Maximality: Either the sequence is infinite or it is finite and its last ele-
ment (s(z−1), ac(z−1), sz) is such that the guard of every action in system
S is false at state sz.

ii. Fairness: If the sequence has an element (si, aci, s(i+1)) and the guard
of some action ac is true at state s(i+1), then the sequence has a later
element (sk, ack, s(k+1)) where ac is ack or the guard of ac is false at state
s(k+1).

A predicate P of a system S is a boolean expression over the variables in all
processes in system S.

A predicate P of a system S is said to be closed in S iff for every transition
(s, ac, s′) of system S, if predicate P is true at state s, then P is true at state s′.

A system S is called P -stabilizing iff predicate P satisfies the following two
conditions [1].

i. Closure: Predicate P is closed in system S.
ii. Convergence: Predicate P is true at a state in every computation of

system S.

3 Systems with Tri-Redundancy

In the previous section, we discussed how to specify a system S. Next, we describe
how to specify a tri-redundant version T of any system S. The tri- redundant
version T is specified from S as follows.



i. Topology: System S has the same number of processes and the same
topology as system T . Thus, there is a natural one-to-one correspondence
between the processes in S and those in T . For convenience, each process
p in S has the same name as that of the corresponding process p in T .

ii. Variables: For each variable x in a process p in system S, there are three
corresponding variables x, x′, and x′′ in the corresponding process p in
system T . Each of the variables x, x′, and x′′ in system T is of the same
type and has the same domain of values as variable x in system S. We
refer to x in T as the original copy of variable x in S, and refer to x′

and x′′ in T as the shadow copies of x in S.

iii. Actions: For each action of the form 〈guard〉 → 〈assignment〉 in a process
p in system S, there is a corresponding action of the form 〈guard′〉 →
〈assignment′〉 in the corresponding process p in system T such that the
following three conditions hold.

(a) First, each occurrence of a variable x in 〈guard〉 is replaced by an
occurrence of the original copy of x, also called x, in 〈guard′〉.

(b) Second, for each variable x that occurs in 〈guard〉 or in 〈assignment〉,
add a conjunct of the form (x = x′ ∧ x′ = x′′) to 〈guard′〉.

(c) Third, each statement of the form x := E(y, . . . ) in 〈assignment〉
is replaced by a statement of the form (x, x′, x′′) := E(y, . . . ) in
〈assignment′〉. The latter statement computes the value of expression
E and then assigns the computed value to each of the three copies
x, x′, and x′′ in T .

iv. Additional Actions: For each original copy x in a process p in system T ,
add an action of the following form to process p in T

x 6= x′ ∨ x′ 6= x′′ → (x, x′, x′′) := MJR(x, x′, x′′)

where MJR(x, x′, x′′) is the bit-wise majority function applied to the
three variables x, x′, and x′′. This function is defined in some detail
next.

Recall that each variable in a system has a bounded domain of values and that
the three copies x, x′, and x′′ have the same (bounded) domain D(x) of values.
Thus, every value of each of the three copies x, x′, and x′′ can be represented by
the same number, say r, of bits. The function MJR(x, x′, x′′) computes a value
in the same domain D(x) of values, and so each value of MJR(x, x′, x′′) can be
represented by r bits.

The bits of MJR(x, x′, x′′) can be computed from the bits of x, x′, and x′′

as follows. For every i in the range 0 . . (k − 1), the i-th bit of MJR(x, x′, x′′) is
computed as the majority of three bits: the i-th bit of x, the i-th bit of x′, and
the i-th bit of x′′.



4 Stabilization Theorem

In this section, we show that if a system S is stabilizing, then any tri-redundant
version T of S is also stabilizing.

Theorem 1. (Stabilization of Tri-Redudant Systems)
Let S be a P -stabilizing system, and T be a tri-redundant version of S. System
T is Q-stabilizing, where Q is the predicate

P ′ ∧ (for every original copy of x in T , x = x′ ∧ x′ = x′′)

and predicate P is syntactically identical to predicate P ′. (Note that P is a
predicate of system S and P ′ is a predicate of system T . Thus, each occurrence
of x in P refers to a variable x in system S, and each occurrence of x in P ′

refers to the original copy of x in system T .)

Proof. The proof is divided into two parts. In the first part, we show that pred-
icate Q is closed in system T , and in the second part, we show that Q is true at
a state in every computation of system T .

First Part: Let (t, ac′, t′) be a transition of system T and assume that predicate
Q is true at state t, we need to show that Q is true at state t′.

Because Q is true at t, we conclude that the predicate (for every original
copy of x in T , x = x′ ∧x′ = x′′) is true at t. Thus, the guard (x 6= x′ ∨x′ 6= x′′)
of each additional action in system T is false at t, and so ac′ in the transition
(t, ac′, t′) is not an additional action in system T . Rather, ac′ is an action in
system T that corresponds to an action ac in system S. The two actions ac and
ac′ are of the form

ac : 〈guard〉 → 〈assignment〉
ac′ : 〈guard′〉 → 〈assignment′〉

where 〈guard′〉 is the predicate 〈guard〉 ∧ (for every variable x that occurs in
ac, x = x′ ∧ x′ = x′′), also, 〈assignment〉 and 〈assignment′〉 are identical except
that each statement x := E(y, . . . ) in 〈assignment〉 is replaced by the statement
(x, x′, x′′) := E(y, . . . , ) in 〈assignment′〉.

Let s and s′ be the two states of system S that correspond to states t and
t′, respectively, of system T . It follows that the triple (s, ac, s′) is a transition of
system S. Moreover, because predicate Q is true at state t, we conclude that P
is true at state s.

From the fact that system S is P -stabilizing (and so P is closed in system
S), and the fact that triple (s, ac, s′) is a transition of system S, and the fact
that P is true at state s, it follows that P is true at state s′. Thus, both P ′ and
Q are true at state s′.

Second Part: Let the sequence (t0, ac0, t1), (t1, ac1, t2), . . . be a computation
of system T . We need to show that predicate Q is true at some state in this
computation.



Let x be an original copy in system T where the predicate (x 6= x′ ∨ x′ 6= x′′)
is true at the initial state t0 of this computation. Then the guard of the additional
action x 6= x′ ∨ x′ 6= x′′ → (x, x′, x′′) := MJR(x, x′, x′′) in T is true at t0.
From the fairness condition of the computation, it follows that the predicate
(x = x′∧x′ = x′′) is true at a later state tj in the computation. Moreover, because
each action in system T either keeps the values of x, x′, and x′′ unchanged, or
assigns each of them the same new value, the predicate (x = x′ ∧ x′ = x′′)
remains true at each of the states that occur after tj in the computation.

From the above discussion, the computation (t0, ac0, t1), (t1, ac1, t2), . . . has
a suffix (tk, ack, t(k+1)), (t(k+1), ac(k+1), t(k+2)), . . . where the predicate (for each
original copy x in T , x = x′ ∧ x′ = x′′) is true at each state tk, t(k+1), . . . in
this suffix. Along this suffix, the execution of system T mirrors that of system S.
Because system S is P -stabilizing, predicate P ′ is true at some state tz in this
suffix. Therefore, predicate Q is true at the same state tz in the computation.

ut

5 Fault Masking Theorem

Let S be a P -stabilizing system and T be a tri-redundant version of S. From
the stabilization theorem of tri-redundant systems (in the previous section), T
is Q-stabilizing where Q is the predicate (P ′ ∧ (for each original copy x in T ,
x = x′∧x′ = x′′)). In this section, we argue that if T is at a legitimate state, one
where Q is true, and then some fault, from a rich class of faults called visible
faults, occurs, then the effects of the fault are masked and the system quickly
returns to a legitimate state, one where Q is true. We start by defining visible
faults.

A fault f is visible iff it changes the values of some variables in system T
such that the following two conditions hold:

i. Legitimacy: Immediately before f occurs, system T is at a legitimate
state where predicate Q is true. It follows that for every original copy x
in T , xa = xa′∧xa′ = xa′′, where (xa, xa′, xa′′) is the value of (x, x′, x′′)
immediately before f occurs.

ii. Transparency: For every original copy x in T ,

MJR(xa, xa′, xa′′) = MJR(xb, xb′, xb′′),

where (xa, xa′, xa′′) is the value of (x, x′, x′′) immediately before f occurs
and (xb, xb′, xb′′) is the value of (x, x′, x′′) immediately after f occurs.

Assume that a visible fault f occurs in system T , and also assume that f
changes the value of some (x, x′, x′′) in T from (xa, xa′, xa′′) to (xb, xb′, xb′′).
From the legitimacy condition of f , xa = xa′ ∧ xa′ = xa′′. Thus, from the
transparency condition of f and from the fact that f has changed the value of
(x, x′, x′′), xb 6= xb′ ∨ xb′ 6= xb′′.



Let t be the state of system T immediately after f occurs. Then, the predicate
(x 6= x′∨x′ 6= x′′) is true at state t. System T has two types of actions where the
triple (x, x′, x′′) occurs: actions ac0, ac1, . . . that correspond to some actions,
where x occurs, in system S and the added action ac:

ac : (x 6= x′ ∨ x′ 6= x′′) → (x, x′, x′′) := MJR(x, x′, x′′)

The guard of each action aci in T has a conjunct (x = x′ ∧ x′ = x′′) and so
none of these actions can be executed until after action ac is executed. From
the transparency condition of f , executing action ac changes back the value
of (x, x′, x′′) from (xb, xb′, xb′′) to (xa, xa′, xa′′). Thus, the effect of fault f on
the triple, and ultimately on system T , is masked. This argument proves the
following theorem.

Theorem 2. (Fault-Masking of Tri-Redundant Systems)
Let S be a P -stabilizing system and T be a tri-redundant version of S. System
T is F -masking, where F is the class of visible faults.

6 A Tri-Redundant Spanning Tree

As an example, consider a system S that consists of n processes p[i : 0 . . n− 1].
The processes in S maintain an outgoing spanning tree whose root is process
p[0]. Each process p[i] has a variable ds[i] to store the smallest number of hops
needed to go from p[0] to p[i]. Also each process p[i], other than process p[0] has
a variable pr[i] to store index g of the parent p[g] of p[i]. The processes in S can
be specified as follows.

process p[0]

var ds[0] : 0 . . n

begin
true → ds[0] := 0

end

process p[i : 1 . . n− 1]

var ds[i] : 0 . . n
pr[i] : index of parent of p[i] in spanning tree

par g : index of an arbitrary neighbor of p[i]

begin
ds[i] 6= min(n, ds[pr[i]] + 1) →

ds[i] := min(n, ds[pr[i]] + 1)



ds[i] > ds[g] + 1 →
ds[i] := ds[g] + 1;

pr[i] := g
end

This system has been shown to be stabilizing [2]. Unfortunately the system is
not F -masking for any reasonable class F of faults. Consider for example a fault
that changes the value of ds[0] in process p[0] from 0 to 1. The first action in
any neighboring process p[g] can be executed and read the faulty value of ds[0]
before the correct value of ds[0] is restored (by the action of process p[0]).

To achieve F -masking, for class F of visible faults, system S needs to be
transformed to a tri-redundant version T . The processes in system T are specified
as follows.

process p[0]

var ds[0], ds′[0], ds′′[0] : 0 . . n

begin
(ds[0] = ds′[0] ∧ ds′[0] = ds′′[0]) →

(ds[0], ds′[0], ds′′[0]) := 0

(ds[0] 6= ds′[0] ∨ ds′[0] 6= ds′′[0]) →
(ds[0], ds′[0], ds′′[0]) := MJR(ds[0], ds′[0], ds′′[0])

end

process p[i : 1 . . n− 1]

var ds[i], ds′[i], ds′′[i] : 0 . . n
pr[i], pr′[i], pr′′[i] : index of parent of p[i] in spanning tree

par g : index of an arbitrary neighbor of p[i]

begin
ds[i] 6= min(n, ds[pr[i]] + 1) ∧
(ds[i] = ds′[i] ∧ ds′[i] = ds′′[i]) ∧
(pr[i] = pr′[i] ∧ pr′[i] = pr′′[i]) ∧
(ds[pr[i]] = ds′[pr[i]] ∧ ds′[pr[i]] = ds′′[pr[i]])

→
(ds[i], ds′[i], ds′′[i]) := min(n, ds[pr[i]] + 1)



ds[i] > ds[g] + 1∧
(ds[i] = ds′[i] ∧ ds′[i] = ds′′[i]) ∧
(pr[i] = pr′[i] ∧ pr′[i] = pr′′[i]) ∧
(ds[g] = ds′[g] ∧ ds′[g] = ds′′[g])

→
(ds[i], ds′[i], ds′′[i]) := ds[g] + 1;

(pr[i], pr′[i], pr′′[i]) := g

(ds[i] 6= ds′[i] ∨ ds′[i] 6= ds′′[i])

→
(ds[i], ds′[i], ds′′[i]) := MJR(ds[i], ds′[i], ds′′[i])

(pr[i] 6= pr′[i] ∨ pr′[i] 6= pr′′[i])

→
(pr[i], pr′[i], pr′′[i]) := MJR(pr[i], pr′[i], pr′′[i])

end

7 Concluding Remarks

In this paper, we described a transformation to transform any system S to a tri-
redundant version T . We showed that if S is stabilizing then T is both stabilizing
and F -masking for the class F of visible faults.

In our presentation, we assumed that system S is stabilizing under the as-
sumption that the actions of S are executed one at a time. Nevertheless, the
presentation can be extended in straightforward manner to the case where sys-
tem S is stabilizing under the assumption that any subset of actions (at most
one action from each process) in S are executed at a time. In this case, system
T is stabilizing and F -masking under the same assumption that any subset of
actions (at most one action from each process) in T are executed at a time.

In the above presentation, we assumed that the redundant version of any
system S has “three” copies (x, x′, x′′) of every variable x in S. However, the
only magic that is associated with this number “three” is that it is odd, and so
when any fault occurs in the redundant system, the MJR function can always
return a meaningful value. Therefore, the above presentation can be generalized
in a straightforward manner such that the redundant version of a system has
(2 · r + 1) copies of every variable in that system, where r is a positive integer.

In [11], Huang and Gouda have shown how to utilize two ideas, namely state
checksums and tri-redundancy, to design a stabilizing token system that masks
visible faults. Surprisingly, the theory of fault masking presented in the current
paper is based solely on the idea of tri-redundancy. The question, of how to enrich



this theory by injecting the idea of state checksums into it, seems interesting and
enticing, but so far remains open.
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