ro a r' @UEL

research open access repository

University of East London Institutional Repository: http:/roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Capiluppi, Andrea., Boldyreff, Cornelia

Article Title: Identifying and improving reusability based on coupling patterns
Year of publication: 2008

Citation: Capiluppi, A., Boldyreff, C. (2008) ‘Identifying and improving reusability
based on coupling patterns.’ In: High confidence software reuse in large systems.
Lecture notes in computer science, 5030/2008. Springer, Berlin / Heidelberg, pp.
282-293

Published version available from: http://www.springer.com
ISBN: 9783540680628

Publisher statement:
http://www.springer.com/authors/journal+authors?SGWID=0-154202-12-467999-0

Identifying and Improving Reusability Based on
Coupling Patterns

Andrea Capiluppi and Cornelia Boldyreff

Centre of Research on Open Source Software — CROSS
Department of Computing and Informatics
University of Lincoln
{acapi | uppi, cbol dyreff} @i ncol n. ac. uk

Abstract. Open Source Software (OSS) communities have not yet taken full ad-
vantage of reuse mechanisms. Typically many OSS projects whichtblessame
application domain and topic, duplicate effort and code, without fully Eyieg

the vast amounts of available code.

This study proposes the empirical evaluation of source code fold&S8fprojects
in order to determine their actumternal reuse and their potential as shareable,
fine-grained an@xternallyreusable software components by future projects.
This paper empirically analyses four OSS systems, identifies which arenp®

(in the form of folders) are currently being reused internally and stub@scou-
pling characteristics. Stable components (i.e., those which act asespruidders
rather than service consumers) are shown to be more likely to be teusab

a means of supporting replication of these successful instances of€DS§,
source folders with similar patterns are extracted from the studied sysaeichs
identified as externally reusable components. The intended users r@utgenseof

the OSS development community.

Based on the empirical study of the OSS systems and observations mrade d
ing the study, four practical courses of action are recommended ar tvcen-
hance the reusability of current folders that have not been identifipdtestially
reusable, both from an internal and external standpoint.

1 Introduction

Reuse of software components is one of the biggest promisssftware engineer-
ing [3]. Enhanced productivity, increased quality and ioyed business performance
are often pinpointed as the main benefits of developing swéfrom a stock of reusable
building blocks [33].

Recently, practical approaches to commercial softwarserdiave included both
in-house and COTS-based approaches. Many companies headyasuccessfully pro-
duced and reused in-house components, in the forms of dotatiza, system and
components design, source code, and so on, which are keptugdble assets and not
made available elsewhere [25,29]. One of the most critispkets of successful in-
house reuse is the long-term commitment of the managemeht [3

Reuse of small scale compoments, e.g. functions of progiagilanguage libraries,
either in-house or externally produced has been commotigeaince high level lan-
guages have been in use. A new possibility for reusabilitgdérnal components has

arisen through the exploitation of both COTS and OSS in what termed "whole
system reuse". New products can be developed based omgxgstems, either on a
closed-source basis (e.g., commercially available COT§,[8r by reusing entire OSS
systems, such as web-server Apache, the MySQL databasgemeat system, or the
PHP language [37]. In the latter case, OSS systems alsadertiwe source code under-
lying the system, and the code can be modified before reuseo0Othe drawbacks of
this approach is that entire systems are reused, even tlomlgh subset of their func-
tionalities may be required in the new system. Commerciaigamies must address
these issues in order to take advantage of the propriet@¥SCshift: whether to use
COTS,how to useCOTS, andwhat to modifyin their in-house systems to cope with
COTS [10] and the same questions apply in the selection of @& onent reuse.

Although much attention has already been focused on thg stugtusable COTS,
including OSS components in corporate software productiwreusability of software
“from” OSS projects “in” other OSS projects has only starteddraw the attention
of researchers and practitioners in OSS communities [20]leAhhuge amount of
code is daily created, modified and stored in OSS reposstosiEftware reuse is rarely
perceived by OSS developers as a critical factor in thejepts, nor is the source code
of other projects considered as a potential way to build n&8 Gystems upon existing
ones. For different and composite reasons [34], brieflyustad here in the following
Sections, several OSS projects typically address the saftvease need independently.
For example, a search for therhail client topic on the SourceForge site will result
in more than 500 different projects being listed, each imyaeting some features of
the same topic. Duplication of coding effort therefore isreatly producing similar
products with little sharing of the basic building blockstbe larger subsystems. In
order to address this missing “reuse” link in OSS projedtts,dbjective of this paper
is to provide OSS communities with a technique for identifyand benefiting from
reusable components (under a “design with reuse” persed@b]).

2 Definitions and Approach

The terminology and definitions used in this paper are etdcafrom similar stud-
ies in the literature, for example, the definitionafupling (intended for both object-
oriented [1, 21] and procedural [13] languages) and theonaif instability of source

packages [17]. In this section an overview of these term#/engas they will be used
throughout this work.

— Source functionbasic unit of source code; this term is used to refer to floces,
subroutines, but also OO methods.

— Source fileany file with at least one source function.

— Source folderany folder containing at least one source file [9]. The teraduleis
used to refer to source code functions, files and folders.

— Folder structurefrom the perspective of file naming, code organisation amichge,
this is the tree structure composed of elementary compsrfsatirce files, source
folders). The root of the tree is represented by the pardadeifdo, 8].

— Extensibility of a source foldefollowing Martin[24] who definesxtensibilityas
the number of concrete and abstract classes in a packagefine the number of

source files contained in a folder as tiensibilityof that folder. This attribute
serves to characterise the potential usefulness of a staldee. Ideally, one would

want to reuse folders with large extensibility, i.e., witkaege number of similarly

scoped functionalities (in the forms of files or functiongther than a number of
related smaller folders.

— Coupling this is a measure of interconnection among modules in avaodtstruc-
ture [33]. In this study, three types of coupling are exedctased on the defini-
tions of common coupling [36]:

i. The dependency relationshipis based on source files, and describes, for each
file, how many and which other files are currently including it

ii. Theinclude relationship is also based on source files, and describes the number
of external files that a specific source file includes in itdalations.

ii. The function call relationship is based on source functions, and describes the
relationship among functions or procedures. It produces gesult the represen-
tation of calls within functions. These couplings were agted via the Doxygen
engine, and, albeit related, they represent differentiosdior the links among mod-
ules.

— The number ofAfferent Couplings (Caor in-bound coupling) of a source folder
represents the sum of other source folders that dependantift is an indicator of
the itsresponsibility [17] used this metrics for OO languages and specifically for
packages. In the following, the focus is on source foldergaagages of a system,
even if the system is written in procedural languages.

— The number oEfferent Couplings (Geor out-bound coupling) of a module repre-
sents how many other modules it depends on, and it is an todioathe folder’s
independencfl7].

— Thelnstability (1) of a module is the ratio of efferent coupling (Ce) to total cou

pling (Ce + Ca) such that = %. This metric is an indicator of the
folder’s resilience to change [17]. The range for this neeisiO to 1, with] = 0
indicating the lowest instability for a folder arfd= 1 indicating a completely un-
stable folder [17]. Since Ca and Ce are measured at the fieddel; and couplings
among folders may greatly vary due to larger or smaller arnoticalls, weighted

instability factors will be introduced below, termed wCalamCe.

3 Case Studies — Evolutionary Analysis

The first part of this study has been performed over all thdipubleases of four large
OSS projects, and is specifically targeted at understarttimgtructural relationships
among source folders. It can be observed that both MPlageX8MS share the same
functionalities, yet they are developed by independemhseaf developers. This is hot
an isolated case in the OSS environment; there are sevealllmujects (such as kftp,
gftp, sftp, among others, which are all dealing with fik Transfer Protocolman-

agement) and large projects (such as the desktop GUIs, KDES&IOME) which are

being developed in parallel, without sharing or reusingecotl other similar-scoped
projects. The reasons discovered by past works [34] aregénfou developers to start
their own project and duplicate efforts. This could mearo dlsat the reuse of code

written by others has to overcome similar obstacles, apamn the technical ones, as
already evaluated by [20].

In terms of activity and code released, it was observed tteafirla project spans
some 8 years of development, Gaim approximately 6.5 yedP&ayér 4.5, while XMMS
5 years. In terms of productivity, a high frequency of reé=awas visible for the Gaim
and MPlayer projects (on average, more than one releaseqehjnwhile it is lower
in the case of Arla (less than one per month). The XMMS caséyfislhows that a new
release has been available on average every two monthgy@resal productivity trend
has had a repercussion on size achieved (in LOCs) and oneraber of source folders
found in the latest observed release.

In terms of developers, it was observed that the MPlayeeeptajas the most suc-
cessful in forming an OSS community providing code patcheg; functionalities and
bug fixes (210 developers). A direct link between the comtyuiormed and the size
achieved was also detected in the overall size at the ldbssireed release: in the cases
of the 4 projects studied here, larger communities usualhyeae larger systems, apart
from the Gaim case (25 developers, 235 KLOCs), where a smadi@munity has
achieved a larger system than those developed by otheerlaamnmunities (Arla —
with 83 developers, 215 kLOCs — and XMMS — 43 developers, 110Gs).

The last row of table 1 shows which folders are already sisfolbg reused across
the selected OSS systems. The most notably folders areltowifay:

1. libraries of the C language (libcthey provide generic functionalities, like the 1/0O
output (the module “stdio.h”), or the stub functions forlssioccommunication (con-
tained in “socket.h”). In this work, all the connectionsahwing calls to elements
of the generic libc libraries are, for simplicity, rediredtto a generic “libc” folder;

2. localisation/international folderthe code contained in this specific subsystem trans-
lates the messages, or the interfaces, of the applicatithreitocal language of the
user. OSS projects using code of this subsystem typicatlijudte it in a folder
named “intl”.

3.1 Source Folders as Reusable Units

Empirical findings reported in [23] demonstrate that objgi¢nted packages show four
basic patterns @ure client, “ pure servet, “ hybrid” and “silent’), based on whether
they mostly require, or are called by, other packages. Atbei cited work deals with
Java packages and creates a taxonomy of components, teatfpnesk expands these
findings in two ways:

1. it considers the folders of procedural languages as resduthen asked, the de-
velopers of the XMMS case study confirmed that source folderge to them as
place-holders for “similar-scoped” source fleThe “wav” folder, for instance,
keeps all the source files for the wav audio file format.

2. itevaluates coupling among folders to build an instgbitidex: folders with lowest
instability index are identified as candidates for reuse.

! Reported from conversations, email correspondence and privateonication

In all the case studies apart Arla (see below), an initialealf at least 80% of all
the couplings are contained inside the same source foldasi@ering only the “func-
tion calls” coupling, this value is at least 90%. On a patd#eel, all the analysed
systems show an initial pattern of growth in number of sodiotgers, and a decreas-
ing coupling pattern: the overall amount of intra-foldeupbngs decreases while the
system increases in size. This recalls the results of acthital erosion mentioned in
[27]; as systems depart from thimitial architecture’s intent and conceptual integrity
couplings connect many other folders, and the whole arctoite becomes much harder
to understand and maintain.

The Arla case is an outlier, and shows a complex and inteeveystem already
from its initial releases, where half of the couplings afffeeo or more source folders.
All the other factors being equal, this system is going toesigmce less externally
reusable folders, since most of the existing folders areadly linked into a complex
network of couplings.

This initial result shows that, on average, OSS developtiigedy use source fold-
ers as containers of similar-scoped elements, and preléng elements in the same
folder rather than coupling different folders. Howeveiistresult should not be used
to statically judge a software system; the Arla system isimioérently worse than the
others analysed, but on average its source folders are msiedble, as per the definition
given. Based on that, it is likely that selecting reusabldds from this system will be
more difficult.

3.2 Evaluation of Reuse and Architectural Properties — Gaim

The trend of Gaim’s folders growth has a stabilisation plwadg in the middle part of
its lifecycle. It is possible to conclude that MPlayer haBieged a mature status similar
to XMMS, while Gaim is still on a fully development stage. They findings in the case
of Gaim are as follows:

1. External libraries: this folder in the latest release afrfhas an afferent coupling
of 26 (out of 32 overall) folders, but no efferent couplindni§ confirms that, from
a coupling perspective, the “libc” folders is highly reukgland its instability is
minimum.

2. International folder: Gaim incorporates the “intl” feld albeit not from the first
release, and this folder behaves in a similar way to thatrebdebelow in the
XMMS system. Again, this confirms it as a reusable asset,dbasea coupling
perspective.

3.3 Identifying Reusable Folders — Dynamic Analysis

In this section, the data gathered in the evolutionary espilon of the four case studies
will be used to extract reusable folders. In particular,dbepling patterns of the “libc”
and the “International” folders will be looked for in otheslders. Low values in the
instabilities will trigger the definition of reusability afie folder, and a preference will
be given to folders with larger extensibility. Tentativetwo thresholds were set: the

joint combination of an instability lower than 0.2, and anemsibility larger than 10,
highlight a folder as reusable.

In table 1, a list of reusable folders per project is giversdubon the instability and
extensibility factors, defined above. The following poiats relevant to interpreting the
columns of the table:

1. Each project has a set of rows, pointing at reusable felgcond column) found
in that project. In each set, folders with a small instapi(8rd column) and con-
taining a larger amount of source files (i.e. higher extaligib4th column) are
preferred as potential reusable folders.

2. Efferent coupling (5th column) has been evaluated vigptioeuct of the number
of efferent folders and the number of total efferent callffefent coupling (6th
column) is given by a similar product, but involving affetéolders and calls. Intra-
folder calls are summarised by the “Calls to self” columnilevtinks to the “Libc”
folder are shown in the “Calls to libc” column. In many cagbg, amount of intra-
folder calls are much more than the amount of efferent caltéch confirms the
lowest instability of these folders.

3. A description of each folder (last column of table 1) hasrbdetermined either
from the description files contained in the folder, or by bsovg the documentation.
This task is of key importance in order to describe a foldgydtential reuses, and
it has not been possible to automate this task.

Validation of the predictors — Instability and Extensibility As stated above, and con-
sidering the relatively few empirical studies focused amrbuse of OSS components,
the practice of reuse of OSS components is not widesprealdit axeeds further in-
vestigation. The implemented algorithm selects folderglhre being actively reused
by these systems (the “rx” folder, third row, provided by IBMused in the Arla sys-
tem; the folder “tremor” in the MPlayer system). In terms afigtation of the proposed
metrics as predictors of external reusability, the follogvlists the approach used:

— Detecting reused foldersthe list of reusable folders, as listed in table 1, has been
processed in a semi-automatical way, through various esgite main Source-
Forge site?, the Krugle code search engidgand the FLOSSmole repositofy
have been searched against each of these folders. The Boigessite has been
searched manually, browsing for the names of each folddraaalysing whether
new projects exist as a spin-off from that folder, or if exigtprojects include
the requested fodler; the Krugle engine has also been mgrsggrched, and the
existing OSS projects that include the requested fodlee lmen detected; the
FLOSSMole repository has been automatically searched &icmng names of
new projects with the name of the requested folder.

— Detection of actual reusethe folders found in any of the information sources have
been detected as such. No further analysis has been peddaomeheck whether

2 http://sourceforge.net/
3 http://www.krugle.com/
4 http://ossmole.sourceforge.net/

their current coupling interaction, or their extensilgilihas changed overtime as
the original case studies.

Based on the approach above, it was found that some of thédhitdd folders are
currently distributed amdependen©SS projects:
— the “liba52” folder of MPlayer (7th row of table 1, and
— the “libxmms” folder of XMMS (12th row of table 1).

In terms of “external” reusability [32], it was also foundattsome of the folders in
the MPlayer project are reused in various OSS projects:
—the “liba52” folder is currently reused by the “gst-ffmpgmoject;
—the “libavcodec” folder is currently reused by severabot®SS projects (“gst-ffmpeg”,
“xmovie”, “quicktime4linux”, “mythtv” among others);
—the “libfaad2” folder is reused by the “audacious-plugipsoject;
— the “libmpdemux” folder is reused by the “nmm?” project.

False Positives The algorithm as illustrated above is subject to detecefalssitive,
i.e. targetting folders as reusable but never reused. Ras#tk given thresholds (Insta-
bility <= 0.2; Extensibility >= 10), the latest analysedaases of the analysed projects
presented the false positives listed in the last columntdéta. One could gather these
false positives into two main categories, the first contttiese folders which currently
represent most of the functionalities of the systeng.the “root/src” folder in Gaim,
and the “root/xmms” in the XMMS system). These cases areciyiyi large-grained
components, and in terms of reusability, they should be ispti other components be-
fore being reusable. The second category contains those fotlders which present a
reusability potential, but currently are not reused. Ithis bpinion of the authors that
these false positives represent missed reuse opporgunitie

4 Related Work

This work is related to various research areas: reuse of aoenis, empirical studies
on software systems, graphic visualizations, softwar@logs, and software architec-
tures. Since this work is in a larger research context,edltd the study of the evolution
of OSS systems, from which the case studies presented ipapir have been taken,
empirical studies of OSS are also relevant to this rese&nche following Section, an
overview of the related works is presented, and considerasi given to determining
how this work expands upon the related work.

The research with the closest scope to the present work sgipted in [20], where
a framework is proposed for the reuse of components in thegd88nment. It points
out some key aspects to consider carefully, and which coypede its implementation,
such as the license types, the ego-boosting problems orrtlgggmnming languages;
these social aspects were previously stressed also inTBé]technical aspects of in-
corporating external code are also mentioned, but no inhdapalysis is provided. The

present work studies some of the technical details of satpotusable folders, but the
mentioned aspects are all key points which should be givasideration as well.

As mentioned above, mamguseresearch studies (and a set of specific conferences
on the topic of “Software Reuse”) have been devoted to dpimitechniques [22, 37]
and frameworks for globally enhancing reuse [3], estabigistate-of-the-art and crit-
ical aspects of reuse [25, 30]. This present work has beered@d as having the OSS
development communities as its main recipients and beagésiin order that results
and techniques of this academic research can be fed back @SB communities and
advance the development of their systems.

This work is also related to the study sbftware architecturesprevious works
([28, 19, 38]) have defined and used different views of aeciiitre of a software sys-
tem. For example, [19] refers to a “4+1” view model to deserébsystem involving
logical, process, physical, development views, and usanes@s. This model defines
different perspectives for different stakeholders; thespnt work uses the concepts of
logical (“hierarchical”) and process (“coupling”) views establish a comparison be-
tween them. Similarly, [18] defines four architectural vieef software systems, which
in turn focus on coarser degrees of granularity (conceptuahe abstract design level,
module, or the concrete design level; code, or componews; lend execution level).
As stated above, the present research focuses on the vigals avk closer to the work
of software developers, as, for instance, the folder or {edédvel. In the selection of
attributes, the limit is on those that it is possible to defrom projects found in exist-
ing OSS repositories with a reasonable effort. Hierardiffedstract design level”) and
coupling (“component level”) views can both provide indigito how developers deal
with macro and micro-components of software systems, otispdy.

Recently, it has been realized that empirical data for OSEesys is more widely
available than that for proprietary systems. A generalrmiibn can be drawn among
these studies. In part, research studies are based “on” @3& s “for” advancing
the Open Source Software Engineering body of knowledgesrattudies access OSS
projects for generating boundary crossing conclusionsoftware systems in general.
Recent studies of the first kind include those examininglsi@fsS projects [2, 15, 16]
[14, 35], or those examining several OSS projects [6, 7, PBis work is intended as
a means to directly inform OSS developers of the availgbdft existing potentially
reusable folders upon which they can build new applications

As previously reported, recent work [11, 23] has been fodaseOOpackage anal-
ysis in order to characterise the roles of specific folders. TWusk is greatly inspired
by these research studies, and focuses the “source foldaheafundamental unit in
a network of couplings. The advances presented in this pagebased on consider-
ing interaction coupling within procedural languages a&stiost representative in an
OSS context [7], on providing an evolutionary perspectif/hese interactions, and on
focusing the analysis on the reusability of folders basetheir couplings.

Recent work oncode couplinggn OSS has been reported in [1, 39], where the
analysis used the definition of common coupling; two or mooelutes are commonly
coupled when they share a reference to the same variablappuach is slightly dif-
ferent, since the source code (mostly C with some C++) is/apdlby considering three
different couplings (dependency, and include coupling, @alls among functions). We

consider their relevance from the point of view of two diffat visualizations, in order
to define a relationship between code coupling and what weeala the folder struc-
ture of a software system at a given stage of its evolutior.définitions of coupling, as
used throughout this paper are mirrored in those presem{86]; specifically, the com-
mon coupling (in this paper calculated as file dependencies) the control coupling
(in this paper calculated as function calls).

5 Conclusions, Further Work and Threats to Validity

This paper has presented an approach to evaluate the soldeesfof a software system
as potentially reusable and shareable fine-grained compsriEhe current state of the
artin terms of reusability are two-fold: the commerciakimtal reuse, which is typically
not shared, and the COTS approach, which reuses “blackd¢mrponents.

This paper focused its reuse approach on smaller compgrbatfolders (or di-
rectories) of a software system. Building on the vast amofif®SS knowledge and
the OSS code base, specific source folders were observeda&ssiully reused across
OSS systems. An analysis of the coupling (i.e., the intemastamong various other
folders) was carried out in order to characterise thesefepéaiders based on patterns
of interaction. The approach described above had two abgsctThe first objective
was to look for similar coupling patterns in other foldersoier to identify potential
candidates for reuse in other OSS projects. The second wderttify actions that de-
velopers should consider in order to improve the reusghilitfolders of their project
for other OSS projects.

Regarding the first objective, the empirical results areeasn literature defini-
tions. It was found that successfully reused folders havanaihstability index, i.e.,
they provide more services to other folders than they askréon other folders. In a
service-based terminology, these folders act mostly assefor other folders. This
coupling pattern was searched for in other source folders,aalist of folders with a
similar behaviour was provided in table 1; these foldersesgnt potentially reusable
components. In terms of external reusability, the algarittientified some source fold-
ers which are already being reused in the OSS community agsajects of existing
OSS systems.

Various areas are being evaluated as further work: a keycagpehis research
that should be enhanced is the extraction of informatiorheracterise the potentially
reusable source folders; this should be made automatic @mdhmasive. Then, as ex-
posed above, other types of coupling (dynamic and data cmsplinheritance etc.)
have been identified in previous works, and should be coregid® provide a more
complete picture. Finally, it is planned to use a toolinghtéque to bind and/or resolve
external dependencies: we wish to explore whether even lem®dith many dependen-
cies could be highly reusable.

Threats to validity have been identified in the following ests:

1. The usage of instability and extensibility alone coultilmmenough to categorize a
source folder as reusable. Due to transitive dependergesioping a new module
using others, it will automatically becomes less reusalidm tthe ones that were

10

reused (because Ce increases), unless it was manage ®mi@at dependencies
to the new module (such that Ca increase as well).

. Only the dependency, inclusion and function calls caysliare studied. Other

types such as data coupling [5], or dynamic coupling, [1i§ @aot considered.
Further works will enhance our analysis to consider thepedyand could bring
more insights into these types of coupling.

Other characteristics determine whether a module shmitdused in another sys-
tem. Apart from those already cited by [20], there could theenent reasons for not
reusing a specific module, even if its instability is low a ttoupling level. It could
be that it is too small, or that it is very complex (in terms pélomatic complexity,
for instance).

References

1.

2.

10.

11.

12.

13.

14.

Arisholm, E., Briand L.C. and Foyen, A.: Dynamic Coupling Measoent for Object-
Oriented Software. IEEE Transactions on Software Engineering):39(B-506, 2004.
Aoki, A., Hayashi, K., Kishida, K., Nakakoji K., Nishinaka Y., Res B., Takashima A.,
and Yamamoto, Y.: A case study of the evolution of jun: an object-orieapsh-source
3d multimedia library. In Proceedings of the 23rd International Confereon Software
Engineering, pages 524-533, Toronto, Canada, 2001. ICSE.

. Basili, V.R. and Rombach, H.D.: Support for ComprehensivesRelEEE Software Engi-

neering Journal, 6(5):303-316, 1991.

. Beecher, K., Boldyreff, C., Capiluppi, A., and Rank, S.: Evolnéity Success of Open

Source Software: an Investigation into Exogenous Drivers. Elect®@aimmunications of
the EASST: ERCIM Symposium on Software Evolution, 17(8), 2007.

. Briand, L.C., Morasca, S. and Basili, V.R.: Property-basedw&w€& Engineering Measure-

ment. IEEE Transactions on Software Engineering, 22(1):68-8@.199

. Capiluppi, A: Models for the Evolution of OS Projects. In Proceedirfgh® International

Conference on Software Maintenance, 65—74, Amsterdam, Netterl2003.

. Capiluppi, A., Lago, P. and Morisio, M.: Evidences in the Evolution 8f@¥ojects Through

Changelog Analyses. In Proceedings of the 3rd Workshop on Opemté&8oftware Engi-
neering, Portland, OR, USA, 2003. ICSE.

. Capiluppi, A., Morisio, M., and Ramil, J.F.: Structural Analysis ofédiSource Systems.

In N. H. Madhavji, J. F. Ramil, and D. Perry, editors, Software Evolutod Feedback:
Theory and Practice, pages 207—222. Wiley, 2006.

. Capiluppi, A., Morisio, M. and Ramil, J.F.: The Evolution of Sourcdd€o Structure in

Actively Evolved Open Source Systems. In Proceedings of the 10tinattenal Software
Metrics Symposium, pages 2—-13, 2004.

Carney, D.: Assembling Large Systems from COTS Componep{soi@unities, Cautions,
and Complexities. Technical report, SEI Monographs on the Use o@onial Software
in Government Systems, 1997.

Ducasse, S., Lanza, M. and Ponisio, L.: Butterflies: A visuakéggh to Characterize Pack-
ages. In Proceedings of the 11th International Software Metrics Ssinmpp2005.

Ellson, J., Gansner, E., Koutsofios, L., North, S.C. and Walb@h: Graphviz, Open Source
Graph Drawing Tools, 2002.

Fenton N.E. and Pfleeger, S.L.: Software Metrics: a PractichlRigorous Approach.
Thomson, 1996.

Koch, S. and Schneider, G.: Effort, Cooperation and Coordmatian Open Source Soft-
ware Project: GNOME. Information Systems Journal, 12(1):27-4@220

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

11

German., D. M.: Using Software Trails to Reconstruct the Evoluti@oftware. Journal of
Software Maintenance and Evolution: Research and Practice, 16{6388, 2004.
Godfrey, M.W. and Tu, Q.: Evolution in Open Source Software:a&&€Study. In Proceed-
ings of the International Conference on Software Maintenance, f&fesl42, San Jose,
CA, USA, 2000.

Gorton ., and Zhu, L.: Tool Support for Just-In-Time Architee Reconstruction and Eval-
uation: an Experience Report. In Proceedings of the 27th internationdrence on Soft-
ware engineering, pages 514-523, 2005.

Hofmeister, C., Nord, R. and Soni, D.: Applied Software ArchitextiAddisonWesley,
2000.

Kruchten, P.: The 4+1 View Model of Architecture. IEEE Softwdr#(5):88-93, 1995.
Lang, B., Abramatic, J.F., Gonzalez-Barahona, J.M., GorRezPedersen, M.K.: Free
and Proprietary Software in COTS-Based Software. Lecture Notes nmpQr Science,
34(12):2, 2005.

Li, W. and Henry, S.: Object-oriented Metrics that Predict MaintalityabJournal of Sys-
tems and Software, 23(2):111-122, 1993.

Llorens, J., Fuentes, J., and Astudillo, H.: Incremental SoftWause. In Proceedings of
the International Conference on Software Reuse, Torino, Italy, . 2QER.

Lungu, M., Lanza, M. and Girba, T.: Package Patterns for Vidrehitecture Recovery. In
Proceedings of the Conference on Software Maintenance and Reeriggy 32—41, 2006.
Martin, R.C.: Agile Software Development, Principles, Patterns, Ruadtices. Prentice
Hall, October 2002.

Matsumoto, Y.: Some Experience in Promoting Reusable SoftwaseRation in Higher
Abstraction Levels. IEEE Transactions on Software Engineering) #3460, 2004.
McClure, C.: Software Reuse Techniques. Prentice-Hall, 1997.

Medvidovic, N. and Jakobac, V.: Using Software Evolution to Féaahitectural Recovery.
Automated Software Engineering, 13(2):225-256, 2006.

Mockus, A., Fielding, R. T. and Herbsleb, J. D.: Two Case Studfi€3pen Source Soft-
ware Development: Apache and Mozilla. ACM Transactions on Softwaggrgering and
Methodology, 11(3):309-346, 2002.

Mohagheghi, P. and Conradi, R.: Different Aspects of Prodautily Adoption. In Proceed-
ings of 5th International Workshop on Product Family Evolution, pa@8s-434, 2003.
Morisio, M., Ezran, M. and Tully, C.: Success and Failure Fadto8oftware Reuse. IEEE
Transactions on Software Engineering, 28(4):340-357, 2002.

Morisio, M., Seaman, C.B., Parra, A.T., Basili, V.R., KrafESand Condon, S.E.: Investi-
gating and Improving a COTS-based Software Development. In Ritogeeof International
Conference on Software Engineering, pages 32—41, 2000.

Poulin, J.S.: Measuring Software Reuse: Principles, Practiogls,Eaonomic Models.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,6.99

Pressman R.S.: Software Engineering: a Practitioner’s Apprtad ed.). McGraw-Hill,
Inc., New York, NY, USA, 1986.

Senyard, A. and Michlmayr, M.: How to Have a Successful Fafen@re Project. In Pro-
ceedings of the 11th Asia-Pacific Software Engineering Conferemegmsp34—91, Busan,
Korea, 2004. IEEE Computer Society.

Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G. L.: CQdmlity Analysis in Open-
Source Software Development. Information Systems Journal, 13 2002.

Stevens, W.P., Myers, G.J. and Constantine, L.L.: StructuesigB. IBM Systems Journal,
13:115-139, 1974.

Torchiano, M. and Morisio, M.: Overlooked Aspects of COT SellaBevelopment. IEEE
Software, 21(2):88-93, 2004.

12

38. Tu, Q. and Godfrey, W. M.: The Build-Time Software Architectuiew In Proceedings
of 2001 International Conference on Software Maintenance, pagesi6 Florence, Italy,
2001. IEEE.

39. Yu, L., Schach, S.R., Chen, K. and Offutt J.: CategorizatioB@hmon Coupling and Its
Application to the Maintainability of the Linux Kernel. IEEE Transactions ont&afe En-
gineering, 30(10):43-60, 2004.

Folder | E | wCe wCa [Calls |Calls |Description False
to selfjto libc positive

Arla project — reusable folders

root/lib/ro- | 0.01(145 11*73 | 71*1326|395 (367 |Library handling missing or brokeyes

ken parts
root/rx 0.03(33| 13*111|53*1042|495 [141 |Library implementing the rx protoro
col

Gaim project — reusable folders

root/src |0.03013912*111730*144629437 [868 |Common source files of the Galyes
system

MPlayer project — reusable folders

root/liba52| 0.02| 23| 2*21 9*230 |196 |15 ATSC A/52 stream decoder no

root/libav- | 0.03(154 22*155| 27*4493|3780 [168 |Library for coding and decodingo
codec video and audio streams

root/libaf |0.03|38| 7*52 | 25*464 |294 [112 |Audio filter layer library no

root/lib- 0.06(86| 6*23 | 2*1063 |1096 |37 |Decoding library for AAC formatgno
faad2

root/libmp-| 0.06 (136 21*257| 28*2852|2740 |353 |Demultiplexer Library for MPEGno

demux ASF, AV| formats

root/tremor0.045 29| 4*17 4*363 [372 |34 |Tremor integer-only Ogg Vorbis apno
dio codec

root/loader|0.054 27| 8*203 | 24*1192|688 |75 |N/A yes

root/osdep|0.066 25| 6*47 | 23*174 |17 |54 |N/A yes

root/loader/0.138 27| 5*142 | 14*318 |83 |11 |Header files for the Microsoft Winyes

wine dows compatibility

XMMS project — reusable folders

root/lib- |0.003 19| 4*20 |25*1081|416 (86 |Generic library for the XMM$o

Xxmms project
root/xmms |0.091 87| 20*277| 26*2121|2157 {121 |Common source files of the XMM$es
system

Table 1.Reusable folders detected via the coupling analysis: wCe refers to tthegdre&fferent
folders * Efferent calls”, while wCa refers to a similar product of adfet folders and calls

