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Abstract. This work concentrates on the design of a system intended
for study of advanced scheduling techniques for planning various types
of jobs in a Grid environment. The solution is able to deal with common
problems of the job scheduling in Grids like heterogeneity of jobs and
resources, and dynamic runtime changes such as arrivals of new jobs.
Our new simulator called Alea is based on the GridSim simulation toolkit
which we extended to provide a simulation environment that supports
simulation of varying Grid scheduling problems. To demonstrate the fea-
tures of the GridSim environment, we implemented an experimental cen-
tralised Grid scheduler which uses advanced scheduling techniques for
schedule generation. By now local search based algorithms and some
dispatching rules were tested.

The scheduler is capable to handle both static and dynamic situation.
In the static case, all jobs are known in advance while the dynamic
situation means that jobs appear in the system during simulation. In
this case generated schedule is changing through time as some jobs are
already finished while the new ones are arriving. Comparison of FCFS,
local search and dispatching rules is presented for both cases and we
demonstrate that the new local search based algorithm provides the best
schedule while keeping the running time acceptable.
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1 Introduction

Grid [9] is generally understood as a distributed and heterogeneous computing
system with various types of different resources. First of all it is important to
maximise their usage, on the other hand it is also desirable to provide nontrivial
quality of service to the users and their applications.

We are proposing a complex and extensible simulation environment unlike
to frequently used ad-hoc simulators [2,12,24, 3] that is able to model various
situations such as different types of jobs and applications or different Grid topol-
ogy and then evaluate proposed solutions and algorithms. The goal is to use the
simulator to design Grid schedulers with differing scheduling techniques and test
their behaviour in different but fully controlled conditions.

We apply known advanced scheduling techniques [11, 5, 22] to the Grid schedul-
ing problem [8]. Currently we are focusing on local search based algorithms [11]



and dispatching rules [13,22]. Various techniques were applied in related prob-
lems such as job scheduling on single machine [20,17], identical parallel ma-
chines [24, 2] or heterogeneous parallel machines [21, 3]. Unfortunately, these so-
lutions are usually tested only in static situation, i.e., when all the jobs are known
to the scheduler before execution. One of our main interest is the dynamic aspect
of scheduling [25, 4, 16], i.e., scheduling of jobs arriving during the system run [3,
12], sometimes referred to as incremental scheduling [16] or on-line reasoning [4].

Using the extended GridSim environment we can simulate scheduling and
execution of different types of non preemptive jobs in both static and dynamic
fashion on resources composed of parallel and heterogeneous machines. Admin-
istrator’s demands on resource utilisation can be satisfied by makespan minimi-
sation and user requirements can be handled through optimisation of the total
tardiness of all jobs. The simulation environment allows us an easy comparison of
the scheduling algorithms. Among other algorithms we have implemented local
search algorithms [15, 14] for both the static and dynamic problems. The typical
use of the local search for the static problems is related with a high computa-
tional costs. Our experiments show that this cost can be significantly reduced for
dynamic problems while its optimisation performance is preserved. This seems
to be very interesting since we are not aware of any relevant work in the area of
local search for dynamic problems’.

The structure of this paper is following. The next section describes the sim-
ulation toolkit we used as the basis for the Alea simulator, the extensions we
have done, and it presents design description of the scheduler. The following sec-
tion describes the algorithms used to create and optimise the schedule. Next we
present some experimental results, and the last section concludes our research
and discuss the future work.

2 Characteristics of the Alea Simulator

There are numerous Grid simulators that provide various functionality. Bricks [23]
is designed for simulations of client—server architectures in Grids, SimGrid [18] is
used for the simulation and development of distributed applications in heteroge-
neous and distributed environment. Simbatch [10] allows to evaluate scheduling
algorithms for batch schedulers and MicroGrid [19] can be used for system-
atic study of the dynamic behavior of applications, middleware, resources, and
networks. As the basis of our simulator we use Java based simulation toolkit
GridSim [6]. This toolkit is flexible and universal and it has a very good docu-
mentation. It provides functionality to simulate the basic Grid environment and
its behaviour. GridSim provides simple implementation of common entities such
as computational resources or users and also allows to simulate simple jobs, net-
work topology, data storage and other useful functionalities. However, provided

1 Our investigation and questions addressed to the Institute on Resource Management
and Scheduling of the European CoreGRID Network of Excellence to get informa-
tion about previous applications of local search-based algorithms on dynamic Grid
scheduling problems did not give any relevant response.



implementations are too simple and it was necessary to extend these entities to
fit more complex requirements. This has been done by implementing new Java
class which inherits from the existing GridSim class. Then new functions can
be implemented or modified and new parameters can be added to provide the
desired functionality of this new entity. Since all important components like Grid
resource, job, etc., are defined in separate classes, it is very easy to modify them
or create a new one.

We have developed new specialised entities such as the centralised scheduler,
the jobs with special parameters or the submission system with dynamically
appearing jobs that allows us to build complex dynamic simulations of Grid
environment. There exists decentralised scheduler implemented in GridSim [1],
but it does not allow dynamic behaviour of the system and, due to the older
version of GridSim, it is not capable of simulating network topology and other
recent features. The reason is the incompatibility between older and new GridSim
versions. The following text describes our solution and its main features.

2.1 Description

The Alea simulator? is modular, composed of independent entities which cor-
respond to the real world. It consists of the centralised scheduler, the job sub-
mission system, and the Grid resources. These entities communicate together
by message passing. Currently Grid users are not directly simulated but a job
generator attached to the job submission system is used to simulate job arrivals.

The Job submission system stores jobs before and after they are executed and
communicates with the scheduler to get a scheduling strategy, which it further
uses to select a resource to execute a job.

The Job generator is attached to the job submission system and it is used to
simulate job arrivals. It generates new synthetic jobs that appear during simula-
tion run. The job arrival times correspond to the selected statistical distribution.
Currently we support uniform and normal distribution, but it is easy to add new
distributions or real workload data.

The scheduler is responsible for schedule generation and further optimisation.
In the dynamic situation this schedule may change in time as some jobs are
already finished while new ones appear. Since it is a standalone entity it has
to be able to communicate with other entities, mainly with the job submission
system. To keep the scheduler extensible it was designed as a modular entity
composed of three main parts. The first part is responsible for communication
with the job submission system. The second part stores dynamic information
about each Grid resource such as jobs currently being executed or prepared
schedule. It also implements functions that approximate makespan, tardiness,
and other values important for the scheduling process. These information are
used by the third part of the scheduler, i.e., by the scheduling algorithms.

2 Alea can be downloaded from http://www.fi.muni.cz/~xklusac/alea.



Each Grid resource is responsible for the job execution. The resource is se-
lected by the scheduler and job is then submitted by the job submission system.
Completed jobs are returned to the job submission system.

2.2 Communication Scheme

The figure 1 shows the common communication scheme between the job submis-
sion system, scheduler, and one Grid resource. Job submission system submits
job descriptions to the scheduler. The scheduler uses the list of all available Grid
resources and their parameters such as the number of CPUs and their rating.
The scheduler is centralised, therefore it has information about and access to
all available resources in the system. On the basis of this information scheduler
generates separate schedule for each Grid resource. Using these schedules and
also information of jobs currently in execution the scheduler is able to approxi-
mate various parameters of the schedule such as makespan or expected tardiness
for the jobs before their execution and completion. This allows the scheduler to
compare two different schedules with respect to the optimisation criteria and
select the better one.
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Fig. 1. Communication scheme between the job submission system, the scheduler and
the Grid resources.

According to the constructed schedule and the current simulation time the
scheduler responds to the submission system with scheduling information, i.e.,
provides information which resource was selected to execute the job. It is impor-
tant to notice that this communication is asynchronous. Job submission system
does not wait for the response from the scheduler and sends the job descrip-
tions as the new jobs are available from the job generator. On the other hand
the scheduler sends the scheduling information to the job submission system
according to the current load of the resources. The scheduler works with the



job description while the job stays with the job submission system. This helps
to save scheduler’s network bandwidth and prevents the scheduler to become a
bottleneck of the whole system.

Once some job is finished the job submission system sends the acknowledge
message to the scheduler. The scheduler then updates its internal information
of the current resource load. It is also an impulse to check whether another job
should be sent on a resource to prevent the resource from being idle.

2.3 Extensibility

Since the Alea simulator is modular and the main functionality of the sched-
uler is divided into separate parts, it is easier to simulate different types of job,
scheduling algorithms or optimisation criteria by making small changes in exist-
ing simulator. For example, if we want to test some new scheduling algorithm we
will modify only the appropriate class. If we want to schedule different type of
jobs we will only change the job generator and possibly corresponding objective
function in the scheduler. The rest of the classes stays intact so the experiments
can be repeated with the exactly same setup. The changes are encapsulated and
the results are easily comparable. The Alea’s behaviour is driven by the events,
the active entities like job submission system, scheduler or resources are simu-
lated as independent interacting entities, which makes this solution more closer
to the real world. Therefore the simulation environment is ready for a future
extensions, e.g., adding network simulation or fault tolerance.

3 Problem Description and Algorithms

The Grid scheduling problem [8] is generally defined by a set of resources (typ-
ically machines, storage, memory, network, etc.), a set of tasks, an optimality
criterion, an environmental specification and by other constraints. Grid is also a
typical example of the dynamic environment. The problem complexity strongly
depends on the machine, job, and environmental characteristics. We understand
the machine as a computational resource with one or more CPUs. The machine
environment may consist of a single machine, identical parallel machines, paral-
lel machines with different speeds, etc. Machines may also become unavailable
(breakdown). Job parameters are also very important. Jobs have computational
length (processing time), may require one or more CPUs, they may have various
release and due dates or priorities (weight). Some jobs may be migrated during
the execution from one resource to another (preemption) or may have the prece-
dence constraints typical for workflows or parallel DAG applications. Some jobs
require only specific kind of machines (machine — job suitability). Problem com-
plexity rises yet more with additional parameters such as Grid network topology,
network bandwidth requirements or fault tolerance. The goal of the scheduling
is to satisfy user’s and system administrator’s demands, e.g., to minimize the
total or weighted tardiness of the jobs or to minimize the makespan.



Currently we consider system with no failures such as resource failure or job
loss, etc. The system is composed of parallel multiprocessor machines. Different
machines may have different CPU rating. We also assume that the computational
length of the job is known prior to its execution and job requires one or more
CPUs for its run. We simulate the static situation when all jobs are known in
advance as well as dynamic situation when new jobs appear in the system during
execution so the generated schedule is changing through the time as some jobs are
already finished while the new ones are arriving. In such case the scheduler has
to create schedule incrementally. Our scheduler does not support job preemption
or job migration yet.

We have implemented various algorithms to minimise the makespan, the to-
tal tardiness or the number of delayed jobs. Different queue-based policies such
as First Come First Served (FCFS), Earliest Release Date (ERD) or Earliest
Due Date (EDD) [13] were implemented. We also proposed and implemented
various algorithms based on the construction of the global schedule such as com-
posite dispatching rules or local search based algorithms such as Tabu search [15,
14], Hill climb or Simulated annealing [11]. We will concentrate on some of the
interesting results with the total tardiness minimization that demonstrate the
variability of the simulator.

3.1 Dispatching Rules and Local Search

We developed composite dispatching rules [14] that select a proper resource in the
first step and then use common dispatching rule to put a new job into the existing
schedule of this resource. Minimum Tardiness Earliest Due Date (MTEDD) dis-
patching rule selects such resource where the overall tardiness after adding new
job will rise minimally. In that resource’s schedule the job is placed according to
its due date so the jobs with earlier due dates will be executed earlier. Gener-
ally it leads to the minimization of the tardiness of this job. Another option is
to apply Minimum Tardiness Earliest Release Date (MTERD) dispatching rule
where the job is placed to the resource’s schedule wrt. its release date.

When using local search optimisation an initial schedule is always required.
The scheduler uses two steps to create the final schedule. The MTEDD (or
MTERD) dispatching rule is used for initial schedule generation then the Tabu
search [14] algorithm is applied to optimise this schedule. The algorithm moves
delayed jobs from one resource’s schedule to another and checks if this move is
good or not. The job is placed into tabu list to prevent cycling of the algorithm.
The Tabu search finishes when there is no job in the schedule expected to be
delayed. It also finishes after a fixed number of non improving moves or when
the upper bound of iterations is reached. Detailed description of the dispatching
rules and local search algorithms can be found at [15, 14].

4 Results and Discussion

The experiments were performed on the Intel Pentium4 2.6 GHz machine with
512 MB RAM. The tests were run for a different number of available machines



with different CPU rating. Each machine has 4 CPUs. Tests were done for two
to eight machines available in the Grid. Single machine situation was not tested
because Tabu search only moves jobs between different schedules. We have run
tests for 1000 jobs with release dates and due dates. The release date is taken
as a hard constraint in the sense that the job cannot start its execution earlier
while the due date is a soft constraint which may not be complied. The data sets
were generated synthetically and results were averaged from 20 different data
sets. The scheduler optimises the total tardiness of all jobs. In the following, we
compare the results between the FCFS, MTEDD dispatching rule, the MTERD
dispatching rule, and their Tabu search optimisation.

The figure 2 shows the total tardiness and the time required to generate the
schedule when using FCFS, MTEDD, MTERD, or their Tabu search extensions
in the static situation (all the jobs were known to the scheduler before the start
of the scheduling process). In the dynamic case the simulated environment was
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Fig. 2. Total tardiness and total schedule generation time for FCFS, MTEDD, MTERD
and Tabu search in static situation.

identical to the static simulation example but the jobs were submitted to the
system during the execution. The time intervals were generated with the uniform
distribution. In the present experiment, the Tabu search optimisation with the
fixed number of iterations was performed in three different ways. In the first
scenario the Tabu search was run for each newly arrived job. In the other two
cases the Tabu search was run only after each five or ten jobs. The figure 3 shows
the total tardiness and the time required to generate the schedule when using
FCFS, MTEDD, MTERD and Tabu search applied to initial MTERD.

4.1 Discussion

It is clear that the total tardiness strongly depends on the number of available
machines. We can see that the Tabu search makes improving moves in all tested
situations. On the other hand the basic methods (FCFC, MTEDD and MTERD)
are much faster than the Tabu search in both static and dynamic situation.
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Fig. 3. Total tardiness and total schedule generation time for FCFS, MTEDD, MTERD
and Tabu search in dynamic situation.

The static MTERD schedule is not very good but the Tabu search is able to
perform more significant improvement in the value of objective function. The
figure 3 also shows that the total time required to create schedule (i.e., sum of
all times required to include new job into existing schedule) rises when the Tabu
search is used for each newly arriving job in contrast to the situation when it
is performed only after every five or ten new jobs. The reason why the Tabu
search is much slower than MTEDD is because it makes more complex changes
in existing schedule and computes the expected total tardiness. This value has
to be calculated many times which makes it much more time consuming than
MTEDD. The Tabu search combined with MTERD was the best approach wrt.
the total tardiness minimisation in comparison with the other algorithms applied.
When the Tabu search optimisation is run only after every five or ten jobs, the
total time increase is acceptable while the resulting schedule is still very good
among all the compared schedules. As expected, the time required to perform
Tabu search in the dynamic situation becomes stable with the growing number of
available machines. We used the same number of jobs for all the simulations, i.e.,
with more machines the size of the schedule decreases because jobs previously
scheduled are already finished and the algorithm in each run works with the
smaller number of jobs. It is natural that in such case the calculation of expected
tardiness of yet unfinished jobs on one machine is faster but on the other hand
it has to be calculated for higher number of machines.

5 Conclusion and Future Work

In our research we managed to propose an extensible simulation environment
Alea usefull to design and test the scheduling algorithms for some typical Grid
scenarios. Using this environment, new centralised scheduler with different schedul-
ing algorithms was implemented and its behaviour was evaluated. The tested
Tabu search extensions of MTEDD and MTERD methods demonstrated the
added value of the local search in dynamic cases. An easy combination of the



scheduling algorithms using our environment allowed to detect promising direc-
tion in the development of new efficient local search algorithms applicable for
Grid scheduling as a part of the evaluation of the new simulation environment.
Further study of local search-based algorithms designed to solve dynamic prob-
lems is the main subject of our current work since it is a new unexplored area [15,
14].

Our future work will on one hand focus on extensions of the simulation en-
vironment, e.g., addition of network topology, support for different job types
including preemptive and priority jobs, workflows, etc. We will also be able to
model job migration or an estimated running time of the job. The environment
will be further extended to simulate different failures (resource or job crash,
network disconnection, etc.) to test robustness of scheduling algorithms. On the
other hand, we plan to use this environment to implement and evaluate differ-
ing scheduling algorithms and technologies, such as Backfilling or Convergent
Scheduling [7].
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