
ar
X

iv
:0

70
5.

30
15

v1
 [

cs
.P

F]
 2

1
M

ay
 2

00
7

An Extensible Timing Infrastructure for

Adaptive Large-scale Applications

Dylan Stark1, Gabrielle Allen1, Tom Goodale1, Thomas Radke2, and
Erik Schnetter1

1 Center for Computation & Technology, Louisiana State University,
216 Johnston Hall, Baton Rouge, LA 70803, USA

http://www.cct.lsu.edu/, <dstark@cct.lsu.edu>
2 Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, D-14476 Golm, Germany

Abstract. Real-time access to accurate and reliable timing informa-
tion is necessary to profile scientific applications, and crucial as simula-
tions become increasingly complex, adaptive, and large-scale. The Cac-
tus Framework provides flexible and extensible capabilities for timing
information through a well designed infrastructure and timing API. Ap-
plications built with Cactus automatically gain access to built-in timers,
such as gettimeofday and getrusage, system-specific hardware clocks,
and high-level interfaces such as PAPI. We describe the Cactus timer
interface, its motivation, and its implementation. We then demonstrate
how this timing information can be used by an example scientific ap-
plication to profile itself, and to dynamically adapt itself to a changing
environment at run time.

1 Introduction

Profiling has long been an important part of application development. In the
early days profiling was restricted to overall performance metrics such as wall-
clock time for a particular calculation or routine, and optimisation was often
limited to finding better algorithms — ones which would take fewer operations.
Today it is possible to access hardware counters which give developers informa-
tion on memory metrics such as cache behaviour and floating point performance,
and many tools such as SGI Speedshop, Intel’s VTUNE, or the Sun Studio Per-
formance Analyzer are available which can provide a complete performance pro-
file of an application down to individual source lines. These tools are excellent for
application developers tuning their codes, but are not useful for adaptive tuning
by applications themselves, and further are limited to particular platforms or op-
erating systems. Self-tuning of applications is becoming increasingly important
in today’s world of massively networked, dynamic data-driven applications [1]
and the Grid computing and peta-scale applications of tomorrow.

For modern applications it is necessary to have a programming API which
allows the application to query and analyze its own performance characteristics
on-the-fly. It must be easy to create caliper points between which to measure

http://arXiv.org/abs/0705.3015v1

performance and to query them, and it must be possible to access the wide range
of different metrics available on modern hardware. In this paper we describe the
approach taken within the Cactus framework. Cactus provides a rich timing
API which can be used with basic timing metrics such as wall clock or user CPU
time, or more sophisticated metrics available by plugging in libraries such as the
Performance API (PAPI) [2] developed at the University of Tennessee.

The Cactus Framework [3–5] is an open source, modular, highly portable
programming environment for collaborative high performance computing. Cac-
tus has a generic parallel toolkit for scientific computing with modules providing
parallel drivers, coordinates, boundary conditions, elliptic solvers, interpolators,
reduction operators, and efficient I/O in different data formats. Also, generic
interface definitions (e.g. an abstract elliptic solver API) make it possible to use
external packages and improved modules, which are immediately available to
users of the abstract interface.

Although Cactus originated in the numerical relativity community, it is now
used as an enabling HPC framework for applications in many disciplines includ-
ing computational fluid dynamics, coastal modeling, astrophysics, and quan-
tum gravity. Cactus has also been a driving application for computer science
research, particularly in Grid and distributed computing. For example, the so-
called “Cactus-Worm” application [6] used contracts based on runtime perfor-
mance to trigger migration of an astrophysics application across distributed Grid
resources. Another Cactus application used MPICH-G2 to distribute a single
simulation across multiple machines connected by wide area networks. Using
adaptive algorithms to tune communication patterns to available bandwidth,
this application showed good overall scaling [7].

By using abstract interfaces for accessing meta-information about the system
state on which it is running, Cactus enables an application to be aware of its
surroundings in a very portable, system-independent manner. This allows users
to easily implement and experiment with dynamic scenarios, such as respond-
ing to increased delays in disk I/O times, adapting algorithmic parameters to
changes in an AMR (adaptive mesh refinement) grid hierarchy, or postponing
analysis methods from in-line to a post-processing step.

In this paper, we describe the design and implementation of the Cactus timing
infrastructure. Sec. 2 covers the timing infrastructure and clock API. Sec. 3
discusses how it can be used in different applications scenarios, including a new
use to adaptively control checkpointing intervals for large scale simulations. In
Sec. 4 the results of a case study for the checkpointing scenario are presented,
and Sec. 5 compares the Cactus timing infrastructure with other packages and
libraries, and explains the benefits of profiling within the application code.

2 Cactus Timing Infrastructure

Code using the Cactus framework is divided into modules, or components, called
thorns. Each thorn declares an interface to Cactus and schedules a number of rou-
tines. Cactus controls the execution of these routines, providing a natural place

Fig. 1. Left: The relationship between timers and clocks in Cactus. Clocks are low-
level entities representing e.g. hardware counters, timers are used by application code.
Right: Example wall time distribution onto different stages of a simulation.

to put caliper points to time routines. The presence of timers in the scheduling
mechanism obviates the need for developers to place explicit timers in code and
allows any user or other routine to obtain timing statistics for any routine used
in a particular simulation by querying the internal timer database.

Cactus provides a generic and extensible timing infrastructure. This infras-
tructure allows the code to access timers such as gettimeofday and getrusage,
system-specific hardware clocks, and high-level interfaces such as PAPI, all in
a portable manner. This timing information can be accessed programmatically
at runtime through the Cactus timing API and made available to the user via
online application monitoring interfaces integrated in Cactus. It is also logged
semi-automatically for post-mortem review.

The Cactus timing infrastructure consists of two core concepts: timers, which
are used to place caliper points around sections of code and can be switched on
and off or reset, and clocks, which provide the actual timing measures, such as
wall-clock time or number of floating point operations. Figure 1 shows the rela-
tionship between clocks and timers. Querying a timer returns the timing results
for all clocks associated with that timer. Clocks themselves can be registered
with the timing infrastructure using Cactus’s standard registration techniques
and thus can be provided by a thorn. This provides an extensible mechanism by
which extra clocks, and hence timing metrics, can be used with no modification
to any of the existing timing code.

Cactus thorns offer a wide variety of clocks. Some of these clocks are only
available on certain architectures, or if certain libraries have been installed. A
new clock can be easily added by providing callback functions to create, destroy,
start, stop, read out, and reset the clock. Clocks are not restricted to measure
time; they can measure any kind of event, e.g. discrete events such as cache
misses, I/O failures, or network packet losses. Table 1 lists clocks which are

Clock name Unit Description

gettimeofday sec UNIX wall time
getrusage sec UNIX system time
MPI Wtime sec Wall time
PAPI counts Many hardware counters, e.g. instructions or Flop
rdtsc Intel CPU time stamp counter

Table 1. Available clocks in Cactus. Some of these clocks are only available on certain
architectures, or if certain libraries have been installed.

Function Description

create Create a new clock, returning a pointer to it
destroy Destroy the clock
start Start this clock
stop Stop this clock
reset Reset this clock, i.e., set the accumulated time to zero
get Get the clock’s values
set Set the clock’s values

Table 2. Cactus clock API. A clock is an object which measures certain events. Several
clocks of the same kind can exist and can be running at the same time, measuring
potentially overlapping durations. Clock can measure several values at the same time,
e.g. multiple PAPI counters. Clocks are not meant to be called by user thorns (although
this is of course possible); instead, clocks are encapsulated in timers. See also Table 3.

currently available. Table 2 describes the Cactus clock API. Clocks are usually
not used directly; they are instead encapsulated in timers.

The Cactus timing API is the interface which can be used to time or profile
events or regions of code. Timers are usually created at startup time (or the first
time a routine is entered), and they are started and stopped before and after the
events that should be measured. The values of the clocks associated with a timer
can be output explicitly using timer calls, or using a Cactus functionality that
outputs all existing timers periodically to a log file. Table 3 gives an example of
using timers, the complete API is described in the reference manual [3].

The accuracy of the timing information is obviously limited by the accuracy of
the underlying clocks. Many clocks have accuracies measured in microseconds,
and are hence not suitable for profiling very short events or routines. Other
clocks, such as e.g. rdtsc, have nanosecond resolution and can measure with a
very fine granularity. One has to keep in mind that measuring time changes the
instruction flow through the CPU, often acting as barriers, so that it is impossible
to measure with sub-nanosecond accuracy on today’s CPU architectures.

The Cactus timer interface is a high performance interface. Creating and
destroying timers typically requires allocating and freeing memory, so this should
not be done in inner loops. Starting and stopping timers is as efficient as the
underlying clocks implement it, plus overhead from indirect function calls. (The
clocks’ routines are called via function pointers.)

/* Create timer */

static int handle = -1;

if (handle < 0) {

handle = CCTK_TimerCreate ("Poisson: Evaluate residual");

if (handle < 0) CCTK_WARN (CCTK_WARN_ABORT, "Could not create timer");

}

... other code ...

CCTK_TimerStartI (handle); /* Start timer */

... evaluate residual ...

CCTK_StopTimerI (handle); /* Stop timer */

... other code ...

CCTK_TimerPrintDataI (handle, -1); /* Output all clocks of this timer */

Table 3. Example source code using Cactus timers, illustrating how a timer is created,
started, stopped, and printed.

3 Use Cases

In this section we present use cases for application self-profiling. We give two
examples describing the current use of the timing infrastructure for automated
report generation and the use of profiling information to guide adaptive control
of applications. We also suggest some other possible application scenarios which
are possible given the above timing infrastructure.

3.1 Timer Report

Cactus automatically sets up timers for each scheduled routine, as described
in Sec. 2. The information from these timers is dynamically available to the
application through the timer API. This information is used to provide details
about application performance while the simulation is running, reporting it e.g.
to standard output, via a web-accessible HTTP interface3, or via log files. The
same mechanism can also be used to influence the behaviour of the application,
allowing it to adapt itself to changes in the simulation or the environment.

Timer reports are generated for any Cactus application by setting the pa-
rameter Cactus::print timing info="full". Figure 2 shows part of such a
report for one of the runs of the use case presented below. The information in
the report is collected by querying the timers periodically. In this case, the two
clocks available to the simulation were gettimeofday and getrusage. Figure 1
shows a graphical representation of such a report.

3.2 Adaptive Checkpointing

Checkpointing is often used by applications deployed on clusters and super-
computers to provide protection again hardware and software failures, to allow

3 See http://cactus.cct.lsu.edu:5555/TimerInfo/index.html for timing informa-
tion for the perpetual Cactus demonstration run

Thorn | Scheduled routine in time bin | gettimeofday [secs] | getrusage [secs]
===
CarpetIOHDF5 | Evolution checkpoint routine | 79.76328000 | 13.66692200

| Total time for CCTK_CHECKPOINT | 79.76328000 | 13.66692200

===
AdaptCheck | Adaptive checkpointing startup | 0.00001300 | 0.00000000

BSSN_MoL | Register provided slicings | 0.00000700 | 0.00000000
===

| Total time for simulation | 1417.13730900 | 1305.43354400

===

Fig. 2. Part of the standard timer report available for any Cactus application by setting
a simple parameter. This report shows the time spent in some scheduled routines.

for simulations which require longer run times than available on batch queues,
and more recently to enable different dynamic grid computing scenarios. Cactus
provides application-level checkpointing which saves a snapshot of the running
simulation by writing to file all active grid variables, parameters and other state
information. The checkpoint file uses a platform independent file format, and
the run can be restarted either on the same machine or on a completely different
architecture using a different number of processors.

The current checkpointing mechanism in Cactus allows for checkpointing af-
ter initial data generation, periodic checkpointing based on iteration count, and
checkpointing on termination. We developed a new thorn AdaptCheck which dy-
namically controls the checkpointing characteristics of a Cactus application using
real-time profiling timing information provided through the timer infrastructure.

Writing a checkpoint file for a simulation can take a relatively long time,
depending on the number of state variables to be saved, the file system charac-
teristics, and the efficiency of I/O layer. The time needed can also vary over the
lifetime of a simulation. For example, when using adaptive mesh refinement, the
amount of data to be stored varies with the number of refinement levels, which
itself depends on dynamic quantities such as the truncation error.

Assuming that the run is allocated some fixed amount of wall time for which
it can use a resource, a growing checkpoint time would necessarily take away from
the actual time spent on the problem. AdaptCheck allows the user to specify the
maximum percentage of a time the simulation should spend checkpointing in
order to best use the fixed amount of time available on some resource. This is a
weak upper bound, which means that the thorn guarantees that no checkpoint
will be performed if the current percentage of time spent checkpointing is above
the specified level, but it does not guarantee that a checkpoint will not occur
which will result in the percentage of time being higher than the specified level.

The quality of the fault tolerance provided by checkpointing depends on the
frequency of the snapshots. Cactus currently allows the user to specify a check-
pointing interval in terms of iterations, independent of the runtime performance
of the simulation. Adaptive checkpointing in the manner described above could
result in long periods of time without checkpointing. In order to prevent this,
AdaptCheck also respects an upper bound on the length of wall time a simula-

tion will progress without checkpointing. This guarantees that checkpoints will
be generated with some regularity, with respect to wall time.

The current implementation of AdaptCheck uses the gettimeofday clock
for measuring both the simulation and checkpointing durations. This will be
extended to allow for the use of other user-specified clocks. We also plan to
incorporate a better prediction for the time required for the next checkpoint.
This will then be used to remain closer to the user-specified maximum percentage
of wall time. It will also make final checkpoints reliable, which have to be finished
before the queue time is used up. We present in Sec. 4 some results from tests
using AdaptCheck to control checkpointing for an AMR code.

3.3 Future Scenarios

The previous examples illustrate two scenarios where application-side real-time
profiling is used by large scale applications. Taking advantage of the flexible,
well-designed timing infrastructure in Cactus, many other uses are planned.

Building on the basic timing report mechanisms described in Sec. 3.1, more
advanced and informative reports can generated, for example with the web in-
terface providing graphical interpretation of results, or automated documents
could be produced in a readable format that can be easily interpreted.

The technique for adaptive checkpointing can be applied to Cactus anal-
ysis thorns, whose methods are called only when output is required. As with
checkpointing, it is usual to output at regular iteration intervals, a more effec-
tive mechanism would involve choosing the output frequency dynamically based
both on user requirements and performance for a particular analysis method.

In Grid computing, as new capabilities become available on production re-
sources, taking advantage of application-oriented APIs such as the Simple API
for Grid Applications [8], previously prototyped scenarios such as simulation
migration, adaptive distributed simulations, task spawning, will become more
regularly used. Accurate information from applications will be needed to make
decisions about when and how to use such services. As described in Sec. 5, current
profiling services rely on a remote service discovering and interpreting informa-
tion from applications, however we believe scenarios will be more powerful and
reliable when closely coupled in the application code.

For peta-scale machines, currently being deployed in the US with tens or
hundreds of thousands of processors, dynamic and real-time profiling will be
essential, and in particular profiling which is inherently tied into the applica-
tion and automatically generated with little overhead during an application run.
Current projects, in the D-Grid and US, are developing technologies for Cactus
simulations to automatically produce and store profiling and application meta-
data from simulations. This information will then be used for analysis to lead to
optimized codes and potentially improved parallel computing paradigms.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20

%
 o

f
ti
m

e
 s

p
e
n
t
c
h
e
c
k
p
o
in

ti
n
g

Iterations x 1000

Original
Adaptive

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20

W
a
ll

ti
m

e
 [
s
e
c
o
n
d
s
]

Iterations x 1000

Original
Adaptive

Number of grid points

Fig. 3. Left: Percentage of time spent checkpointing during a run. The adaptive run
keeps within the desired bound (5%). Right: Total time spent checkpointing during a
run. The adaptive version checkpoints less frequently to keep close to the 5% bound.
The dashed line indicates the increase in the number of grid points as new refinement
levels are added.

4 Experiment and Analysis

To illustrate the advantages of application-side adaptivity using real-time pro-
filing a series of experiments was performed using the adaptive checkpointing
described in Sec. 3.2. The application code used was the Ccatie astrophysics
code [9], which can simulate the collision of black holes, to test the adaptive
checkpointing functionality. This compute and data intensive application solves
Einstein’s equations for general relativity in 3D, evolving over twenty partial
differential equations using high order finite differences. We used the Carpet
driver [10, 11] to provide adaptive mesh refinement. Starting from a uniform
grid with 403 grid points, we added additional refined levels every 5120 itera-
tions. Such a strategy is e.g. necessary to simulate the collapse of a stellar core
in a supernova, where the central density increases considerably during the col-
lapse. Note that for L refinement levels, the computing time per iteration grows
as O(2L), while the amount of data to be checkpointed grows at the same time
as O(L).

The simulation runs for 1, 737 seconds, spending 19% of the total time check-
pointing. The original configuration checkpointed every 512 iterations. With the
AdaptCheck thorn the maximum percentage of time spent checkpointing was
restricted to 5% of the total wall time in the adaptive configuration. Figure 3
compares the actual percentage of time spent checkpointing for the original and
the adaptive configuration. The results show that we are able to successfully
bound this measure. This also yielded a 17% reduction in the total runtime.

Each regridding increases the problem size by 403 grid points. This increase
means that, with additional levels, each iteration takes more time to compute,
the time between periodic checkpoints will increase, and the amount of time to
checkpoint increases during the run.

A common practice is to choose the checkpointing interval to be short enough
at all times of the run. Unfortunately, this means that checkpointing occurs much
too frequently early in the run. In another run using the AdaptCheck thorn, we
bounded the interval between checkpoints independent of the performance of the
run and the I/O system. This reduced the amount of time spent checkpointing
from 319 s to 75 s; the total runtime was reduced by 20%. This functionality
can be used to guarantee a certain level of fault tolerance when adapting the
checkpointing based on the simulation’s characteristics.

5 Related Work and Conclusions

The above results indicate how a scientific code can use a generic, self contained
timing infrastructure for runtime profiling and adaption leading to significantly
improved overall performance — in this case increasing the time spent in com-
putation and the fault tolerance of the run, while reducing checkpointing time.
The timing infrastructure was implemented in a highly portable manner in the
Cactus Framework, and is easily available to users, either via parameter choices
for higher level tools, or through an API for code developers. The infrastructure
is able to use platform dependent clocks, as well as libraries such as PAPI.

A substantial amount of work has recently been seen in automated applica-
tion profiling and adaption, motivated by new possibilities in Grid computing,
and a growing realization of the new tools needed for peta-scale computing.
Attention has focused on developing general libraries and tools for application
profiling, adaption and steering (e.g. SciRun, GrADS, RealityGrid). For example,
in the GrADS project, a program development framework has been developed
which can encapsulate general applications as configurable object programs, and
then optimize these for execution on a specific set of Grid resources [12]. GrADS
uses the Autopilot system for real-time application monitoring and closed loop
control. Autopilot sensors can be embedded in application code by developers,
or as in the GrADS system an automated mechanism can be used.

The Cactus timing infrastructure incorporates its own application profiling,
adaption and steering. The design of the Cactus Framework also allows thorns to
be easily written to connect to external packages when these provide an advan-
tage, as in experiments with GrADS, Autopilot, and ongoing work with SciRun.
A key advantage of the Cactus infrastructure, however, is that there is an in-
timate connection with the scientific application — even with no attention to

application profiling. Cactus applications are automatically enabled with steer-
able parameters and profiling at the level of thorn methods, thorns, schedule
bins, as well as communication times and I/O times. Such an understanding
of the application structure and scientific content is crucial for effective steer-
ing and control [13]. Higher level Cactus tools can build on these capabilities,
and leverage current work on intelligent adaption in distributed environments
(e.g. [14]), to provide powerful capabilities for analysis and control of scientific
applications in HPC and Grid environments.

Acknowledgements

We acknowledge contributions from the Cactus Team in the timing infrastructure
implementation, in particular David Rideout, Thomas Schweizer, John Shalf,
Jonathan Thornburg, Andre Werthmann, and Steve White. We thank Ed Seidel
for suggestions, and Elena Caraba for her help with preparing this manuscript.
This work was partly supported by NSF Grant 540179 (DynaCode) and the
German Federal Ministry of Education and Research (D-Grid 01AK804). Com-
puting resources were provided by the Center for Computation & Technology at
LSU.

References

1. Report from NSF DDDAS Workshop, January 2006, Washington. http://www.
nsf.gov/cise/cns/dddas/2006 Workshop/wkshp report.pdf.

2. The Performance API (PAPI) http://icl.cs.utk.edu/projects/papi/.
3. Cactus Computational Toolkit http://www.cactuscode.org/.
4. Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Seidel, E., Shalf,

J.: The Cactus framework and toolkit: Design and applications. In: High Perfor-
mance Computing for Computational Science - VECPAR 2002, 5th International
Conference, Porto, Portugal, June 26-28, 2002, Berlin, Springer (2003) 197–227

5. Allen, G., Goodale, T., Lanfermann, G., Radke, T., Rideout, D., Thornburg, J.:
Cactus Users’ Guide. (2004)

6. Allen, G., Angulo, D., Foster, I., Lanfermann, G., Liu, C., Radke, T., Seidel, E.,
Shalf, J.: The Cactus Worm: Experiments with dynamic resource discovery and
allocation in a grid environment. Int. J. of High Performance Computing Applica-
tions 15(4) (2001)

7. Allen, G., Dramlitsch, T., Foster, I., Karonis, N., Ripeanu, M., Seidel, E., Too-
nen, B.: Supporting efficient execution in heterogeneous distributed computing
environments with Cactus and Globus. In: Proceedings of Supercomputing 2001,
(2001)

8. Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., von Laszewski, G., Lee,
C., Merzky, A., Rajic, H., Shalf, J.: SAGA: A Simple API for Grid Applications
– High-Level Application Programming on the Grid. Computational Methods in
Science and Technology 8(2) (2005)

9. Alcubierre, M., Brügmann, B., Dramlitsch, T., Font, J.A., Papadopoulos, P., Seidel,
E., Stergioulas, N., Takahashi, R.: Towards a stable numerical evolution of strongly
gravitating systems in general relativity: The conformal treatments. Phys. Rev. D
62 (2000) 044034

10. Schnetter, E., Hawley, S.H., Hawke, I.: Evolutions in 3D numerical relativity using
fixed mesh refinement. Class. Quantum Grav. 21(6) (2004) 1465–1488

11. Adaptive mesh refinement with Carpet http://www.carpetcode.org/.
12. Berman, F., et al: New grid scheduling and rescheduling methods in the grads

project. Int. J. Parallel Program. 33(2) (2005) 209–229
13. Vetter, J.S.: Experiences with computational steering on existing scientific appli-

cations. In: Parallel Processing for Scientific Computing. (1999)
14. Reed, D.A., Mendes, C.L.: Intelligent monitoring for adaptation in grid applica-

tions. Proceedings of the IEEE 93(2) (2005) 426–435

