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Abstract. Research scientists increasingly turn to large-scale heteroge-
neous environments such as computational grids and the Internet based
facilities to satisfy their rapidly growing computational needs. The in-
creasing complexity of the scientific models and rapid collection of new
data are drastically outpacing the advances in processor speed while the
cost of supercomputing environments remains relatively high. However,
the heterogeneity and unreliability of these environments, especially the
Internet, make scalable and fault tolerant search methods indispensable
to effective scientific model verification. An effective search method for
these types of environments is asynchronous genetic search, where a pop-
ulation continuously evolves based on asynchronously generated and re-
ceived results. However, it is unclear what effect heterogeneity has on
this type of search. For example, results received from slower workers
may turn out to be obsolete or less beneficial than results calculated by
faster workers. This paper examines the effect of heterogeneity on asyn-
chronous panmictic (single population) genetic search for two different
scientific applications, one used by astronomers to model the Milky Way
galaxy and another by particle physicists to determine the existence of
theory predicted, yet unobserved particles such as missing baryons. Re-
sults show that for both applications results received from slower workers
while overall less beneficial are still useful. Additionally, a modification of
asynchronous genetic search shows that different parameter generation
strategies change their effectiveness over the course of the search !.

1 Introduction

The rate of increase in CPU performance does not nearly match the rapidly
increasing rates of data acquisition in all scientific disciplines. This is leading to
significantly long, if not intractable, turn around times between the development
of a scientific model and its verification using traditional computing environ-
ments. Testing current scientific models can involve processing terabytes of data
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using computationally intense modeling techniques, which results in program
execution times of weeks to months on a single high end computer to calcu-
late only a single parameter set for a scientific model. Even the best scientific
model verification search methods require the evaluation of thousands of param-
eter sets of a scientific model over the data set. This makes using large-scale
computing environments, such as computational grids and the Internet, highly
desirable platforms for performing scientific model verification. The processing
power these environments provide enables them to compute these models in a
short amount of time, which in turn allows scientists to more quickly gather
results and improve their models and understanding.

Grids and the Internet introduce additional challenges in comparison to ho-
mogeneous large-scale computing environments such as supercomputers. In ad-
dition to scalability and heterogeneity concerns, the reliability of the host nodes
comes into question, especially in the case of internet computing architectures
such as BOINC [4] where computing nodes can disconnect at random and for
computationally significant amounts of time. Most search methods used in scien-
tific model verification are iterative (or synchronous) in nature [7], and therefore
not well suited to heterogeneous and unreliable computing environments. Addi-
tionally, it is uncertain what the effect of heterogeneity will have on asynchronous
search.

A software framework for distributed scientific model evaluation and search
(GMLE [8]) was extended with an asynchronous distributed evaluation frame-
work. GMLE was used to implement an asynchronous panmictic (single pop-
ulation) genetic search, and a modification to it which improves the rate of
convergence to a solution. Two different scientific applications, one used for as-
tronomical modeling and the other for particle physics modeling, were used to
evaluate the convergence rates of the asynchonous genetic searches. To compare
the effect of heterogeneity on the search, the applications were run using Rensse-
laer’s CCNI BlueGene as a high-performance homogeneous testing environment
and the Rensselaer Grid as a heterogeneous testing environment.

Results show that the asynchronous genetic search (AGS) with continuous
update converges in a half to a third of the evaluations compared to traditional
iterative genetic search (IGS) on the BlueGene. Additionally, AGS on the Rens-
selaer Grid still converges within half the number of evalautions as needed by
IGS. For a heterogeneous environment, it is shown that while fitness evaluations
from slower workers are not as effective in improving the population, they still do
provide benefit. This means that over large-scale heterogeneous environments,
any additional processors, even slow ones, can still improve the performance of
an AGS. The benefit of different types of parameter generation, in addition to
the benefit of results with different calculation times, is shown to change over
the course of the application. This means it may be possible to develop modifi-
cations to AGS which reduce the effect of heterogeneous calculation times. Such
modification may be combined with improvements in convergence resulting from
adaptively determining what parameter generation methods to use.



The paper proceeds as follows. Section 2 discusses related parallel genetic
search methods and frameworks for large-scale scientific evaluation. Section 3
describes the GMLE architecturem, the asynchronous distributed evaluation
framework and the genetic searches used. The different searches are evaluated
in Section 4. Lastly, conclusions and future work are discussed in Section 5.

2 Related Work

A wide range of parallel genetic algorithms (PGAs) have been examined for
different distributed computing environments. Generally, there are three types of
parallel genetic algorithms: single population (panmictic, coarse-grained), multi-
population (island, medium-grained), or cellular (fine-grained) [7]. Typically,
these approaches are synchronous. Panmictic GAs create a population, evaluate
it in parallel, and use the results to generate the next population. Island [3, 5]
approaches evaluate local populations for a certain number of iterations, then
exchange the best members with other islands. Cellular algorithms [2, 9] evaluate
individual parameter sets, then update these individual sets based on the fitness
of their neighbors. Hybrid approaches [14, 18] have also been examined.

P-CAGE [11] is a peer-to-peer (P2P) implementation of a hybrid multi-island
genetic search built using the JXTA protocol [12] which is also designed for use
over the Internet. Each individual processor (a member of the P2P network) acts
as an island (a subpopulation of the whole) and evolves its subpopulation cellu-
larly. Every few iterations, it will exchange exterior neighbors of its population
with its neighbors.

There have also been different approaches taken in develping PGAs for com-
putational grids. Imade et. al. have studied synchronous island genetic algorithms
on grid computing environments for bioinformatics [13]. Lim et. al. provide a
framework for distributed calculation of genetic algorithms and an extended API
and meta-scheduler for resource discovery [15]. Both approaches use synchronous
island-style GAs. Nimrod/O [16] is a tool that provides different optimization
algorithms for use on grids and has been used to develop the EPSOC algo-
rithm [14] which is is a mixture of a cellular and traditional GA. Populations
are generated synchronously but the elimination of bad members and mutating
good ones is done locally.

It has already been shown by Dorronsoro et. al. that asynchronous cellu-
lar GAs can perform competitively and discuss how update rate and different
population shapes affect the convergence rate [10]. In this paper, we introduce
a novel approach (to the best of our knowledge) that evaluates asynchronous
panmictic GAs. This approach is well suited for both Internet and Grid comput-
ing infrastructures, because it easily facilities scalability, fault tolerance without
redundancy, and does not require inter-worker communication.
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Fig. 1. GMLE with an asynchronous distributed evaluation framework.

3 Distributed Search on Heterogeneous Environments

The GMLE framework has been designed to facilitate collaboration between re-
searchers in machine learning, distributed computing and experts with different
scientific domain knowledge who are interested in distributed model verification
or parameter optimization. GMLE has previously used a synchronous distributed
evaluation framework for performing maximum likelihood evaluation with astro-
nomical and particle physics applications on an IBM BlueGene supercomputer
and the Rensselaer Grid [8]. The framework partitions data across a set of pro-
cessors that perform partial evaluations of the model in parallel, after which the
results are composed into the final result. This has been shown to be efficient for
both supercomputing and grid environments, however it does not work well on
highly heterogeneous and unstable environments like the BOINC infrastructure
and some grids.

GMLE was extended with an asynchronous distributed evaluation framework
(see Figure 1). Evaluators request work from a master, process that work and
return the result, repeating as necessary. Work requests and results are all pro-
cessed asynchronously by the master which peforms the different search methods.
The master does not need to wait or have any dependencies on the results of the
different evaluators which makes evaluator failures easily ignored and reduces
the need for redundant, wasted computations. The rest of this section details
the different search methods and how they are parallelized.

Tterative Genetic Search Algorithm 1 shows pseudocode for the IGS algorithm.
In this algorithm, an initial population of parameter sets is generated randomly
and the fitness of the model for each of those parameter sets is calculated. The
iterative genetic search repeatedly calculates a new population based on the pre-



Algorithm 1: Tterative Genetic Search (IGS)

Data: X /*Best to keep*/, Y /*Number of Reproductions*/, Z /*Number of
Mutations*/

Result: Converged Population

for p € P[1] ... P[X+Y+Z] do p.params = random_params()

evaluate(P)

while not converged(P) do
for p € P’[1] ... P’[X] do p = P.get_next_best()
for p € P'[X+1] ... P’[X+Y] do p = reproduce(P[random()], P[random()])
for p € P’[X+Y+1] ... P’[X+Y+Z] do p = mutate(P[random()])
P=P
evaluate(P)

Algorithm 2: Asynchronous Report Work

Data: P /*Population*/, max /*Maximum Population Size*/, R /*Result*/
Result: Updated Population
if P.size < maz then P.insert(R)
else if R.fitness > worst(P).fitness then
P.insert(R)
L P.remove(worst(P))

vious one using selection, reproduction and mutation. Selection takes the best
members of the previous population and moves them to the new population.
Reproduction takes two randomly selected members of the previous population
and generates a new parameter set that is their average. Mutation takes a ran-
domly selected member of the previous population and creates a new parameter
set which is equal to the selected member except that one value is mutated to a
new randomly selected value. In this way, iterative genetic search will converge
to minima using reproduction and use mutation to prevent being stuck in a local
minimum. The population size, S, is typically kept constant, so S = X +Y + Z,
where X is the number of selections, Y is the number of reproductions, and Z
is the number of mutations.

Asynchronous Genetic Search AGS is similar to IGS in that it keeps a population
of parameters and generates reproductions and mutations based on it. However,
instead of using a parallel model of concurrency like IGS, it uses a master-worker
approach. Instead of iteratively generating new populations, new members of the
population are generated when a worker requests work, and the population is
updated when a worker reports work to the master. The AGS algorithm consists
of two phases and uses two asynchronous message handlers (see Algorithms 2
and 3). The server can either be processing a request work or a report work
message and cannot process multiple messages at the same time.

In the first phase of the algorithm (while the population size is less than the
maximum population size) the server is being initialized and a random popu-



Algorithm 3: Asynchronous Request Work

Data: P /*Population*/, C /*Reproduction Probability*/, max /*Maximum
Population Size*/
Result: New Parameters to Evaluate
if P.size < maz then return random_params()
else
if random() < C then
\; pl = P[random()]

p2 = P[random()], where pl != p2
return reproduce(pl, p2)
else return mutate(P[random()])

Algorithm 4: Double Shot Reproduce

Data: Member m1, Member m2

Result: Reproduced parameters

Member|] result

result[0].params = (ml.params + m2.params),/2
diff = result[0].params - m1.params
result[1].params = diff - m1.params
result[2].params = diff + m2.params

return result

lation is generated. When a request work message is processed, a random pa-
rameter set is generated, and when a report work message is processed, the
population is updated with the parameters and the fitness of that evaluation.
When enough report work messages have been processed, the algorithm proceeds
into the second phase which actually performs the genetic search.

In the second phase, report work will insert the new parameters and their
fitness into the population but only if they are better than the worst current
member, and remove the worst member to keep the population size the same,
otherwise the parameters and the fitness is discarded. Processing a request work
message will either return a mutation or reproduction from the population.

Asynchronous Double-Shot Genetic Search The AGS algorithm was extended
with the double shot method, on the observation that for the astronomy model
(along with many other scientific modeling applications), the parameter space
is not well formed. In this case, when a reproduction is generated from two
parameter sets, they often both lie on a slope, so using the average of two points
will typically would not improve the fitness. The AGS double shot (AGS-DS)
algorithm improves AGS by generating three children when doing a reproduction
(see Algorithm 4). One child is the average of its parents, but the other two
children lie outside the parent parameters. One child is equally distant from the
average outside the first parent, and the other child is equally distant from the



average outside the second parent. This allows the population to travel down
gradients much faster leading to improved convergence times.

Genetic Search Distributed Evaluation There are three ways that IGS can be
parallelized: (1) the fitness of each member in the population can be evaluated
in parallel, (2) the fitness calculation can be done in parallel, and (3) the fitness
calculation can be done in parallel as well as the population being evaluated in
parallel.

The first approach can scale to a number of processors equal to the population
size, while the scalability of the second approach is dependent on how much of
the fitness calculation can be done in parallel. The third approach can scale to
a number of processors equal to the first times the second, however it is the
most complex to implement. All three approaches suffer from the scalability
limitation imposed either by the population size and/or the scalability of the
fitness calculation. None perform well on heterogeneous environments without
intelligent partitioning. In the first case, the algorithm will only progress as fast
as the slowest fitness calculation, while in the second case, the algorithm will
only progress as fast as the slowest calculation of part of the fitness. The third
case suffers from both, making partitioning the most difficult.

AGS and AGS-DS can be distributed in two ways: (1) workers request and
report work individually and asynchronously, and (2) all workers can calculate
fitness collectively based on parameters generated by the current population
which are then reported, and this process repeats iteratively.

The first approach has significant benefits in heterogeneous environments
because the calculation of fitness can be done by each worker concurrently and
independently of each other. The algorithm progresses as fast as work is received,
and faster workers can processes multiple request work messages, in the style of
CILK’s work stealing [6], without waiting on slow workers. However, the second
approach can be better on homogeneous environments due to the fact that new
parameter sets are always generated from the newest (and best) population.

4 Results

Test Applications The physics application uses data from particle wave analysis
(PWA) to determine the existence of theory predicted, but unobserved particles
(missing baryons) [19]. PWA observes particle states and measures their quan-
tum spin and parity using a beam of mesons formed in an accelerator. This beam
strikes a liquid hydrogen target, causing some pions interact with a proton at
the target which can result in a spray of particles. After this, some particles will
live long enough to create trails in a particle detector and be observed. Missing
baryons decay after an extremely short time (10%® seconds) and do not travel
a measurable distance. A scientific model with 10 to 100 fit parameters is used
to calculate the occurence of missing baryons based on the observed data. The
genetic search finds values for these fit parameters that most closely match the
data.



The astronomy application uses data from the SLOAN digital sky survey [1],
which is measuring the positions and other data about all the stars in the sky.
Currently, over 10TB of data has been collected. This data is used to calculate
the accuracy of 3-dimensional models of the Milky Way galaxy [17]. Any given
model consists of the background (stars uniformly dispersed in the galaxy) and
different streams of stars formed when other galaxies have come close to the
Milky Way, were ripped apart and spread around it. The genetic search finds
values for parameters describing the background and different star streams which
most closely match the observed sky survey data.

Test Environments Various test environments were used to evaluate the different
types of asynchronous genetic search. Rensselaer’s CCNI BlueGene was used as
a homogeneous high-performance test environment. A 512 node partition was
used in virtual mode for a total of 1024 processors, each a 7T00MHz PowerPC 440
with 1GB of RAM connected by a 3-dimensional torus with 175MBps in each
direction and 1.5usec latency. The Rensselaer Grid was used as a heterogeneous
test environment, consisting of four different clusters. The Solaris cluster (SOL)
consists of four single core, dual processor SunBlade 1000 Sun Solaris machines,
running at 800MHz. The AIX cluster (AIX) consists of four quad-processor
single-core Power-PC processors running at 1.7GHz. Two Opteron clusters were
also used. The first (OP1) consists of 8 quad-processor, single-core machines, and
the second (OP2) consists of 2 quad-processor, dual-core machines with each
core running at 2.2MHz. Inter-cluster communication is over the Rensselaer’s
wide-area network (WAN).

Convergence Figure 2 shows the convergence rates of the different algorithms on
the BlueGene and Rensselaer Grid. The convergence rates of the IGS, AGS and
AGS-DS algorithms on a homogeneous environment were tested on the CCNI
BlueGene in part because of the expensive fitness calculation of the astronomy
application — 5 to 25 minutes on any of the processors in the Rensselaer Grid.
Similar results were obtained by the physics application. The known optimal
fitness for the sample astronomy data set used was approximately 3.026. IGS
had not converged to the optimum even after 50,000 evaluations, while AGS
took approxmiately 30,000 evaluations and AGS-DS took 18,000 evaluations.
Both AGS and AGS-DS quickly converged to a local minimum in the data set
(at a fitness of approximately 3.1). AGS-DS converged faster to both minima (the
local and the optimal) due to the double shot technique allowing the algorithm
to travel down gradients quicker. AGS-DS was also run on the Rensselaer Grid
to evaluate the effect of heterogeneity on the search. The convergence rate was
not as fast, but still better than IGS, converging at at around 30,000 evaluations.
Compared to the homogeneous evaluation of AGS and AGS-DS, the population
had more variation over the entire execution. Again, the physics application
performed similarly, with heterogeneous AGS-DS converging faster than IGS,
but not as fast as AGS and AGS-DS on a homogeneous environment.
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Fig. 2. Minimum, median and maximum population values for the astronomy applica-
tion on the BlueGene with IGS (upper left), AGS (upper right), AGS-DS (lower left),
and AGS-DS on the Rensselaer Grid (lower right).

FEvaluation Utility The utility of the different evaluations performed by the
search was also examined (see Figure 3). Utility is was calcualted as the number
of results inserted into the population divided by the total number of results
received for that speed. While results that were calculated faster had a higher
chance of being inserted into the population, those with slower calculation rates
still were useful. While initially, faster results tended to be much more useful
than slow results, as the search began to converge, the utility of the results for
all speeds decreased. Interestingly, after approximately 10,000 evaluations in the
physics application, and 16,000 evaluations in the astronomy application, the
utility rate started to increase again. For the physics application, the slower
results gained the most benefit, while in the astronomy application the faster
results improved the most. However, for both applications results of all speeds of
improved their utilities. One possibility for this effect is that as the populations
had both converged closely to a minima, the population was not changing as
drastically, so the chance of a result being useful increased.

The utility of the different parameter generation strategies was also calcu-
lated for both applications for both applications. The benefit of mutation is
initially very good and tapers off sharply, aftewards not adding much benefit.
The average method of generating new parameters is the strongest of all three
approaches, with the lower (the parameters generated outside the more fit par-
ent) and higher (the parameters generated outside the less fit parent) methods
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Fig. 3. Utility of results based on their calculation time for the astronomy application
(upper left) and physics application (upper right), and utility of results based on how
they were generated for the astronomy application (lower left) and physics application
(lower right).

being less effective. For astronomy, as with calculation time, after 16,000 eval-
uations the average and lower methods started to improve in their ability to
return beneficial results, however the improvement did level off as the search
converged. Likewise, with the physics application after 10,000 evaluations aver-
age, lower and higher methods began to improve, but they also tapered off as
the search converged.

5 Discussion

This paper examines two different types of asynchronous panmictic (single popu-
lation) genetic search using the GMLE distributed modeling and search package.
AGS is a desirable search technique for large scale and heterogeneous environ-
ments due to its inherent scalability and fault tolerance. Asynchronous genetic
search (AGS) was evaluated with two different scientific applications, one used
in astronomy and the other in physics. Traditional iterative genetic search (IGS)
was compared to continuously updated asynchronous genetic search on a IBM
BlueGene supercomputer and to asynchronous genetic search on a heterogeneous
grid environment. AGS is shown to improve the convergence rate over IGS for
all cases, with continuously updated AGS performing the best.



The effects of heterogeneity on AGS were also measured. Results have shown
that the utility of a result, measured by its improvement of the population, is
partially dependent upon how long it takes to be computed. Results which take
longer to calculate are generated from older populations with less fitness, and
thus have less chance to improve the current population. However, even results
which are received from very slow workers still improve the population providing
some benefit to the search. The utility of different types of parameter generation
methods for the genetic search was also tested. Interestingly, it was shown that
while the asynchronous double shot algorithm has the fastest convergence rate,
the additional types of parameter generation used (higher and lower) were less
likely to improve the population. For a faster convergence rate, even though the
higher and lower methods of parameter generation are less likely to generate
a result that will improve the population, the results generated must provide
better benefit to the population when they are correct.

It was also shown that the utility of results based on calculation time and
parameter generation type changes over the course of program execution. In fu-
ture work, more types of parameter generation could be developed to ameliorate
the effect of slowly evaluated fitnesses, reducing the impact of heterogeneity.
Additionally, an adaptive search could be developed which dynamically chooses
which types of parameter generation to use based on the speed of the processor
and past performance.

More future work will involve extending GMLE to work with the BOINC
framework. This will allow AGS to be be evaluated on a very large-scale and
heterogeneous environment. Additionally, this work evaluated single population,
or panmictic versions of asynchronous genetic search. As the number of available
workers inscreases, asynchronous island (multi-population) genetic search will be
of interest, especially if multiple servers are required to handle the load from a
large BOINC community. This work shows that while heterogeneity does have
a negative effect on the convergence rate of AGS, it is not excessive, even when
the evaluation time of workers differs by an order of magnitude. Additionally,
with different types of parameter generation strategies and an adaptive search,
it may be possible to reduce the impact of heterogeneity even more — allowing
AGS to be done over very heterogeneous and large-scale environments.
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