Skip to main content

Maps Ensemble for Semi-Supervised Learning of Large High Dimensional Datasets

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4994))

Included in the following conference series:

Abstract

In many practical cases, only few labels are available on the data. Algorithms must then take advantage of the unlabeled data to ensure an efficient learning. This type of learning is called semi-supervised learning (SSL). In this article, we propose a methodology adapted to both the representation and the prediction of large datasets in that situation. For that purpose, groups of non-correlated attributes are created in order to overcome problems related to high dimensional spaces. An ensemble is then set up to learn each group with a self-organizing map (SOM). Beside the prediction, these maps also aim at providing a relevant representation of the data which could be used in semi-supervised learning. Finally, the prediction is achieved by a vote of the different maps. Experimentations are performed both in supervised and semi-supervised learning. They show the relevance of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, S.: JPMAX: Learning to recognize moving objects as a model-fitting problem. In: Advances in Neural Information Processing Systems, vol. 7, pp. 933–940. MIT Press, Cambridge (1995)

    Google Scholar 

  2. Bellmann, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1975)

    Google Scholar 

  3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT: Proceedings of the Workshop on Computational Learning Theory, pp. 92–100. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Information Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  7. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  8. Demartines, P.: Analyse de données par réseaux de neurones auto-organisés. Ph.d. dissertation, Institut National Polytechnique de Grenoble, France (1994)

    Google Scholar 

  9. Duin, R., Tax, D.: Experiments with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Freund, Y.: Boosting a weak learning algorithm by majority. In: Proceedings of the Workshop on Computational Learning Theory, Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  11. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computing 4(1), 1–58 (1992)

    Article  Google Scholar 

  12. Jacobs, R., Jordan, M., Barto, A.: Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks. Cognitive Science 15, 219–250 (1991)

    Article  Google Scholar 

  13. Kaiser, H.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200 (1958)

    Article  MATH  Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps, vol. 30. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  15. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. Advances in NIPS 7, 231–238 (1995)

    Google Scholar 

  16. Leskes, B.: The Value of Agreement, a New Boosting Algorithm. Springer, Heidelberg (2005)

    Google Scholar 

  17. McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  18. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  19. Prudhomme, E., Lallich, S.: Quality measure based on Kohonen maps for supervised learning of large high dimensional data. In: Proc. of ASMDA 2005, pp. 246–255 (2005)

    Google Scholar 

  20. Rakotomalala, R.: Tanagra: un logiciel gratuit pour l’enseignement et la recherche. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 697–702. Springer, Heidelberg (2005)

    Google Scholar 

  21. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Information Fusion 6, 63–81 (2005)

    Article  Google Scholar 

  22. SAS, SAS/STAT user’s guide, vol. 2. SAS Institute Inc. (1989)

    Google Scholar 

  23. Tumer, K., Ghosh, J.: Theoretical foundations of linear and order statistics combiners for neural pattern classifiers. Technical report, Computer and Vision Research Center, University of Texas, Austin (1995)

    Google Scholar 

  24. Valentini, G., Masulli, F.: Ensembles of learning machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–20. Springer, Heidelberg (2002)

    Google Scholar 

  25. Verleysen, M., François, D., Simon, G., Wertz, V.: On the effects of dimensionality on data analysis with neural networks. In: International Work-Conference on ANNN: Computational Methods in Neural Modeling, vol. II, pp. 105–112. Springer, Heidelberg (2003)

    Google Scholar 

  26. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of American Statistical Association 58(301), 236–244 (1963)

    Article  Google Scholar 

  27. Zanda, M., Brown, G., Fumera, G., Roli, F.: Ensemble learning in linearly combined classifiers via negative correlation. In: International Workshop on Multiple Classifier Systems (2007)

    Google Scholar 

  28. Zhou, Y., Goldman, S.: Democratic co-learning. In: ICTAI, pp. 594–202 (2004)

    Google Scholar 

  29. Zhu, X.: Semi-supervised learning literature survey. Technical report (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aijun An Stan Matwin Zbigniew W. Raś Dominik Ślęzak

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prudhomme, E., Lallich, S. (2008). Maps Ensemble for Semi-Supervised Learning of Large High Dimensional Datasets. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds) Foundations of Intelligent Systems. ISMIS 2008. Lecture Notes in Computer Science(), vol 4994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68123-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68123-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68122-9

  • Online ISBN: 978-3-540-68123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics