Skip to main content

On a Probabilistic Combination of Prediction Sources

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4994))

Included in the following conference series:

  • 1057 Accesses

Abstract

Recommender Systems (RS) are applications that provide personalized advice to users about products or services they might be interested in. To improve recommendation quality, many hybridization techniques have been proposed. Among all hybrids, the weighted recommenders have the main benefit that all of the system’s constituents operate independently and stand in a straightforward way over the recommendation process. However, the hybrids proposed so far consist of a linear combination of the final scores resulting from all recommendation techniques available. Thus, they fail to provide explanations of predictions or further insights into the data. In this work, we propose a theoretical framework to combine information using the two basic probabilistic schemes: the sum and product rule. Extensive experiments have shown that our purely probabilistic schemes provide better quality recommendations compared to other methods that combine numerical scores derived from each prediction method individually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arrow, K.J.: Social Choice and Individual Values. Ph.D. Thesis, J. Wiley, NY (1963)

    Google Scholar 

  2. Billsus, D., Pazzani, M.: User Modeling for Adaptive News Access. User-Modeling and User-Adapted Interaction 10(2-3), 147–180 (2000)

    Article  Google Scholar 

  3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), July 1998, pp. 43–52 (1998)

    Google Scholar 

  4. Burke, R.: Hybrid Recommender Systems: Survey and Experiment. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  5. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In: SIGIR 1999 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley, CA (1999)

    Google Scholar 

  6. Deshpande, M., Karypis, G.: Item-based Top-N Recommendation Algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)

    Article  Google Scholar 

  7. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An Algorithmic Framework for Performing Collaborative Filtering. In: Proc. of SIGIR (1999)

    Google Scholar 

  8. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  9. Linden, G., Smith, B., Smith, J.X.: Amazon.com Recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 76–80 (January/February 2003)

    Google Scholar 

  10. Papagelis, M., Plexousakis, D., Kutsuras, T.: A Method for Alleviating the Sparsity Problem in Collaborative Filtering Using Trust Inferences. In: Proceedings of the 3rd International Conference on Trust Management (2005)

    Google Scholar 

  11. Pazzani, M.J.: A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review 13(5/6), 393–408 (1999)

    Article  Google Scholar 

  12. Pennock, D.M., Horvitz, E.: Collaborative Filtering by Personality Diagnosis: A Hybrid Memory- and Model-based Approach. In: Proceedings of UAI (2000)

    Google Scholar 

  13. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: CSCW 1994: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, Champal Hill, North Carolina, United States, pp. 175–186. ACM Press, New York (1994)

    Chapter  Google Scholar 

  14. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering Recommendation Algorithms. In: WWW 2001: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM Press, Hong Kong (2001)

    Chapter  Google Scholar 

  15. Tran, T., Cohen, R.: Hybrid Recommender Systems for Electronic Commerce. In: Knowledge-Based Electronic Markets, Papers from the AAAI Workshop, AAAI Technical Report WS-00-04. pp. 78–83. AAAI Press, Menlo Park (2000)

    Google Scholar 

  16. Wang, J., de Vries, A.P., Reinders, M.J.: A User-Item Relevance Model for log-based Collaborative Filtering. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, Springer, Heidelberg (2006)

    Google Scholar 

  17. Wang, J., de Vries, A.P., Reinders, M.J.: Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion. In: Proceedings of SIGIR (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aijun An Stan Matwin Zbigniew W. Raś Dominik Ślęzak

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rousidis, I., Tzagkarakis, G., Plexousakis, D., Tzitzikas, Y. (2008). On a Probabilistic Combination of Prediction Sources. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds) Foundations of Intelligent Systems. ISMIS 2008. Lecture Notes in Computer Science(), vol 4994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68123-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68123-6_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68122-9

  • Online ISBN: 978-3-540-68123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics