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Abstract. In this paper we outline an approach for network-based in-
formation access and exploration. In contrast to existing methods, the
presented framework allows for the integration of both semantically
meaningful information as well as loosely coupled information fragments
from heterogeneous information repositories. The resulting Bisociative
Information Networks (BisoNets) together with explorative navigation
methods facilitate the discovery of links across diverse domains. In addi-
tion to such “chains of evidence”, they enable the user to go back to the
original information repository and investigate the origin of each link,
ultimately resulting in the discovery of previously unknown connections
between information entities of different domains, subsequently trigger-
ing new insights and supporting creative discoveries.

Keywords: BisoNet, Bisociative Information Networks, Bisociation,
Discovery Support Systems.

1 Motivation: The Need for Information Exploration

Data collection and generation methods continue to increase their ability to fill
up information repositories at an alarming rate. In many industries it is nowadays
commonly accepted — although often not openly admitted — that only a fraction
of available information is taken into account when making decisions or trying
to uncover interesting, potentially crucial links between previously unconnected
pieces of information.

In order to allow users to be able to find important pieces of information
it is necessary to replace classical question answering systems with tools that
allow for the interactive exploration of potentially related information — which
can often trigger new insights and spark new ideas which the user did not ex-
pect at start and was therefore unable to formulate as a query initially. It is
especially crucial for such systems to enable the seamless crossing of repository
boundaries to trigger new discoveries across domains. Since we will not know
at the start which types of information are needed or which kind of questions
will be asked throughout this explorative process, the system always needs to
be able to provide access to heterogeneous information repositories. These can
be structured, well annotated repositories, such as an ontology or a database of
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human annotations (“known facts”) but it needs to incorporate other types of
information as well, such as experimental data or the vast amounts of results
from the mining of e.g. published texts (“pieces of evidence”). The real chal-
lenge lies in providing the user with easy access to all of this information so that
she can quickly discard uninteresting paths to information that is not currently
relevant and at the same time focus on areas of interest. Similar to drill down
operations in Visual Data Mining, such a system will need to be able to show
summarizations according to different dimensions or levels of detail and allow
parallel changes of focus to enable the user to ultimately navigate to the infor-
mation entities that explain the connections of interest. Of course, the system
cannot be static but will require not only means for continuous updating of the
underlying information repositories to accommodate new data, but also new and
better methods to extract connections. In [I] we have argued that such a system
will truly support the discovery of new insights. Related work investigating the
nature of creativity (see [2] among others) describes similar requirements for
creative discoveries, based on broad but at the same time context dependent
more focused exploration of associations as the underlying backbone.

In this paper we outline an approach to realize such a system using a network-
based model to continuously integrate and update heterogeneous information
repositories and at the same time allow for explorative access to navigate both
semantic and evidential links. Before describing our prototypical system in more
detail we review existing network-based systems for knowledge or information
modeling. We conclude the paper by discussing open issues and challenges.

2 State of the Art: Network-Based Information Access

Different network-based models have been applied to Information Retrieval, such
as artificial neural networks, probabilistic inference networks, Hopfield or knowl-
edge networks [3]. The first two are mainly used to match documents to queries
and to find relevant documents related to a certain query. Documents and index
terms, which are the most discriminative terms, are represented as vertices in
these networks. Edges can be created to connect documents citing each other,
documents with their index terms, as well as cooccurring index terms. Hopfield
and knowledge networks are additionally used for automatic thesaurus creation
and consultation [4]. In this case only vertices of index terms cooccurring in doc-
uments or sentences are connected via edges. Another connectionist approach,
Adaptive Information Retrieval (AIR), creates additional vertices for each doc-
ument author and connects them by their author co-author relationships [56].
The majority of these approaches use weighted networks. In these networks a
weight is assigned to each edge, which depends on the underlying network model
as well as the computation and interpretation of the relation. In probabilistic
inference networks the weights represent probabilities of terms occurring in doc-
uments being relevant to a certain query [3U7]. Whereas the weights of knowledge
or Hopfield networks as discussed in [4] represent the relatedness of cooccurring
terms. Usually the weights of these approaches are only computed once and not
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changed afterwards. In contrast to these approaches, Belew enables each user of
an AIR model to adapt the weights according to their relevance feedback [5].
After initialization of the weights where the edges between documents and terms
are weighted with the term’s inverse document frequency, a user can send queries
to the network. The user then rates the resulting nodes, representing terms, doc-
uments or authors, as relevant or irrelevant. This relevance feedback is passed to
the network again in order to adjust the edge weight and process another query.
This kind of iterative process is continued until the result fits the users needs.
One essential disadvantage of such an adaptive system is that it adapts to the
user’s opinion of which documents are more relevant than others related to a
certain query. This means that the network will, over time, be strongly biased
by the opinion of the majority of the users.

In a number of other domains, networks have been applied to combine, rep-
resent, integrate and analyze information, such as bioinformatics and life sci-
ence, with a strong emphasis on the extraction of pharmacological targets [§],
protein functions [9], gene-gene [10], gene-protein [I1] or protein-protein inter-
actions [12/13] from different biological databases and biomedical literature [14].
To mine texts and find this kind of interaction Blaschke et al. [12] proposed to
parse the sentences into grammatical units. Patterns or regular expressions have
been used as well to extract genes, proteins and their relations in texts [T0/13].

Once the units of information and their relations are found, they can be
represented in a network. Additional algorithms can be used to cluster and
analyze these networks in order to identify meaningful subnetworks (commu-
nities) [I5JI3]. The analysis of network structures also reveals new insights into
complex processes such as regulator strategies in yeast cells [16]. Additionally
the edges can be evaluated and their quality can be specified based on several
features like edge reliability, relevance and rarity [17]. Note that also the increas-
ingly popular social networks fall into this category. In general much work has
been done when it comes to methods for network analysis [I§].

2.1 Adaptive and Explorative Approaches

To visually analyze graphs, different layout algorithms such as the force-directed
Fruchterman-Reingold algorithm [19] have been developed. But large networks
with several million vertices and many more edges cannot be visualized com-
pletely in a reasonable manner. Therefore the visualization has to be focused on
a subgraph or at least summarized to match the current user’s interest or give
an overview. Various visualization techniques have been developed to address
this problem. Examples are the generalized Fisheye views [20], the splitting of
a network into several smaller semantical distinct regions [21] or the interactive
navigation through different levels of abstractions [22].

Another way to analyze large networks is to extract subgraphs that contain
most of the relevant information. One way to do this is to query a graph. On the
one hand queries can be generated by manually drawing a sub-graph or by using
a particular query language, i.e. GenoLink [23]. The results of such queries are
represented as sub-graphs which themselves could be the starting point of further
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analyses. On the other hand Spreading Activation techniques are very common
techniques to explore networks and handle queries [24]. In general the idea of
activity spreading is based on assumed mechanisms of human cognitive mem-
ory operations, originated from psychological studies [25]. These techniques are
adopted to many different areas such as Cognitive Science, Databases, Artificial
Intelligence, Psychology, Biology and Information Retrieval. The basic activity
spreading technique is quite simple. First, one or more vertices, representing the
query terms, are activated. The initial activation is distributed (spread) over
the outgoing edges and activates in subsequent iterations the adjacent vertices.
This iterative process will continue until a certain termination condition, such
as a maximum number of activated nodes or iterations or a minimum edge or
vertex weight is reached. The activation itself can also be weighted and can de-
crease over time or when propagating over certain edges. Furthermore different
activation functions can be used for the vertices [24]. In [4] the networks are
explored by usage of a branch-and-bound search and a Hopfield net activation.
Due to the restriction that a Hopfield activation algorithm only guarantees to
converge if the graph’s adjacency matrix is symmetric, meaning that the graph
is undirected, this technique is only applicable for certain kinds of networks.
Other approaches cope with the complexity by clustering or pruning the graph
based on their topology [26] or based on additional information such as a given
ontology [27].

2.2 Combining Heterogeneous Information Repositories

The integration of heterogeneous data sources facilitates insights across different
domains. Such insights are important especially in complex application areas
such as life sciences, which deal with different kinds of data, e.g. gene expression
experiments, gene ontologies, scientific literature, expert notes, etc. During the
last few years several approaches have been developed that attempt to tackle this
problem. The authors of [28] classified these systems into three general classes:
navigational integration, mediator-based integration and warehouse integration.

Navigational integration approaches like SRS [29], Entrez [30] and LinkDB [20]
aim to integrate heterogeneous data by providing links between units of infor-
mation derived from different sources. Links can be created based on database
entries as well as on the similarity of the units of information, or manually by
experts [20]. Most of the applications consist of one or more indexed flat files
containing the relations between the different concepts.

The second category is the mediator-based integration systems such as Discov-
eryLink [31], BioMediator [32], Kleisli [33] and its derivatives like TAMBIS [34]
or K2 [35]. These systems act as a mediator, which maps the schema of different
data sources onto a unified schema. Each query is converted and split up into
a set of sub-queries, which are than redirected to the wrapper of the integrated
data source. Finally the results of the sub-queries are combined to a single result
and returned by the mediator.

Warehouse approaches like GUS [35], Atlas [36], BIOZON [37] and BNDB [3§]
are similar to the mediator-based approach since they also provide a unified
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schema for all data sources. But instead of creating a sub-query for each data
source the data itself is loaded into the unified schema.

Navigational integration and mediator-based approaches do not integrate all
the detailed data of a concept. The amount and complexity to handle additional
data is much smaller in comparison to systems that integrate the detailed infor-
mation of a concept like the warehouse approach. The advantage of this kind of
light integration is the ability to keep the detailed information up to date since
it is stored in the external sources itself. The drawback of such an integration
is the dependency on all the integrated systems with respect to reliability and
performance. In contrast, the warehouse approach also integrates all the detailed
information from the distributed repositories. The data can be preprocessed and
enriched with additional information such as similarity measures or user anno-
tations. The local storage of all data leads to a better performance and system
reliability. However the huge amount of data itself and continued maintenance
to detect changes and inconsitencies are the major drawback of such systems.

In summary, warehouse and mediator-based approaches provide the user with
a unified, mostly relational schema. This allows professional users the ability to
use powerful query languages like SQL to perform complex joins and queries.
The unification leads mostly to a complex data model including link tables to
combine the different data sources. Navigational approaches only maintain link
information between concepts and provide simple point and click interfaces vi-
sualizing links between them. These interfaces are also manageable by semi pro-
fessional users but restricted in their query capabilities like the lack of complex
joins. A common goal of all the mentioned integration approaches is the com-
bination of equal or similar concepts from different data sources. An obvious
approach to link these concepts is the usage of a flexible graph structure. An
example of integrating high confidence biological data is PathSys [39]. PathSys is
a graph-based data warehouse, which is used to analyze relations between genes
and proteins. To predict protein-protein interactions several approaches adopted
Bayesian Networks to model the mostly noisy or uncorrelated evidences of bio-
logical experiments [40J4T].

3 BisoNets: Bisociative Information Networks

As we have suggested above, simply finding classical associations is not sufficient
to detect interesting connections across different information repositories and
contexts. Existing systems either tend to be to application focussed or restricted
to only a few type of information sources or types. However, in order to support
creative discoveries across domains we cannot assume that we know from the be-
ginning which information repositories will need to be combined in which way.

In 1964 Arthur Koestler introduced the term bisociation [42] to indicate the
“..joining of unrelated, often conflicting information in a new way...”. Using
this terminology we use the term Bisociative Information Networks, or short
BisoNets to denote a type of information network addressing the above concerns,
fusing the following requirements:
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— Heterogeneous Information: BisoNets integrate information from various
information repositories, representing both semantically solid knowledge
(such as from an ontology or a human annotated semantic net) and im-
precise and/or unreliable knowledge such as derived from automatic analy-
sis methods (e.g. results from text mining or association rule analyses) or
other experimental results (e.g. correlations derived from protein expression
experiments).

— Merging Evidence and Facts: BisoNets provide a unifying mechanism to
combine these different types of information and assign and maintain edge
weights and annotations in order to allow the mixing of links with different
degrees of certainty.

— Continuous Update: BisoNets can be refined online and continuously inte-
grate updated or new information.

— Exploration/Navigation: Finally, in order to allow access to the resulting in-
formation structure, BisoNets provide explorative navigation methods, which
show summarizations of (sub-) networks, and allow the changing of focus and
quick zooming operations.

There is strong evidence that such a complex system of loosely, not necessar-
ily semantically coupled information granules exhibits surprisingly sophisticated
features. In [43] Hecht-Nielsen describes a network which generates grammati-
cally correct and semantically meaningful sentences purely based on links created
from word co-occurrence without any additional syntactical or semantical anal-
ysis. In addition, [2] discusses requirements for creativity, supporting this type
of domain bridging bisociations.

3.1 First Steps: A BisoNet Prototype

In order to evaluate the concept of BisoNets, we have implemented a first proto-
type and so far have mainly applied it to life science related data. However, the
toolkit is not restricted to this type of data. The BisoNet prototype creates one
vertex for each arbitrary unit of information, i.e. a gene or protein name, a spe-
cific molecule, an index term or a document, and other types of named entities.
Relations between vertices are represented by edges. Vertices are identified by
their unique name and edges by the vertices they connect. In order to model not
only facts but also more or less precise pieces of evidence, edges are weighted to
reflect the degree of certainty and specificity of the relation.

Due to the uniqueness of a vertex name, a vertex can be ambiguous and
represent different units of information, i.e. a vertex can represent a term ex-
tracted from a document and a gene or protein name derived from a certain
database. For example a vertex could represent the animal “jaguar” or the make
of car. To distinguish the different kinds of meanings, an annotation can be ap-
plied to vertices and edges. An annotation specifies the origin and the type of
the information unit. A vertex representing different units of information will
contain different annotations: one annotation for each meaning. Edges with dif-
ferent annotations represent relations derived from different data sources. Each
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annotation of an edge contains its own weight in order to specify the evidence
of the relation according to the data sources it was derived from.

The structure of the knowledge network is rather lightweight, that is it simply
consists of vertices and edges, but contains no detailed information of the vertices
or edges itself. In order to access this valuable, more detailed information as well,
so-called data agents have been implemented. For each annotation, representing a
particular kind of information of a certain data source, a data agent is available,
which can be used to access the corresponding data source and extract the
detailed information for a particular vertex or edge annotation.

To analyze and explore the network in order to find new and hopefully use-
ful information, potentially uninteresting information has to be filtered. The
prototype provides several filtering methods. One method allows particular an-
notation types of vertices and edges to be hidden, such as terms, species, or
chemical compounds to focus on a specific context. Another one filters edges
by their weight to filter out all relations below a certain degree of evidence. To
extract information related to a particular issue, an activity spreading algorithm
has been implemented, similar to the branch-and-bound algorithm of [4], which
is able to extract subgraphs consisting of the most relevant vertices related to a
specified set of initially activated vertices.

We implemented the BisoNet prototype within the modular information min-
ing platform KNIME [44] due to the large set of data preprocessing and analysis
methods available already. Each procedure and algorithm dealing with the net-
work was implemented as a module or KNIME node respectively. This allows
them to be used and combined individually and networks can be created, an-
alyzed and explored in a flexible manner. Figure [I] shows an example KNIME
workflow in which a network was created consisting of PubMed [45] abstracts as
text data, gene subgroup information derived from gene expression data, gene-
gene interaction data from Genetwork [46] and Gene Ontology [47] information.
One by one all data sources are integrated into the network and at the end of the
pipeline various filters can be applied to concentrate on a particular subgraph.

To visualize the network we used Cytoscape [48] an open source software
platform for graph visualization. Note that this graph visualization toolkit does
not offer sophisticated means to navigate the underlying BisoNet.

To create the complete network PubMed abstracts, related to the drug Plavix,
treating thrombotic events, were analyzed and all content bearing index terms,
gene and compound names were extracted and inserted into the network as
vertices. Co-occurring terms above a certain frequency are connected by an edge.
In addition gene-gene interaction data of Genetwork was integrated and, by
applying different filters such as gene annotation filter or edge weight filter, the
subgraph shown in Figure [ can be extracted. The graph consists of 27 vertices
representing gene names and 33 edges representing gene-gene interactions. The
green vertices stem from the Genetwork data, the brown vertices from PubMed
text data. In the subgraph illustrated in Figure [2] the four genes derived from
text data connect and supplement the gene subgraphs of the Genetwork data
nicely. Note how connections between subgraphs based on one data source are
connected by information derived from a second source.
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Fig.1. A KNIME workflow which creates a network consisting of text and gene data.
See text for details.

3.2 Open Issues and Challenges

The BisoNet prototype as described above is a first attempt at implementing the
concepts listed in Section [[l Many open issues and challenges are still awaiting
solutions and usable realizations. Within the EU Project “BISON” many of
these challenges will be tackled over the coming years, focussing among others
on issues related to:

— Scalability: addressing problems related to the increasing size of the resulting
networks demanding new approaches for the storage, access, and subgraph
operations on distributed representations of very large networks,

— Weight and Network Aggregation: that is, issues related to information
sources of vastly different context and levels of certainty but also presum-
ably simple problems of different versions of the same information repository,
which also requires dealing with outdated information.

— Graph Abstraction: relating to methods that are especially crucial for prob-
lems related to exploration and navigation. In order to support zoom in and
out operations, we need sophisticated methods for graph summarization and
abstraction allowing for the offering, creation, and formalization of different
views along different dimensions and at different levels of granularity on
(sub) graphs.

— Disambiguation: that is, the differentiation of named entities with different
meaning will also be critical to avoid nonsensical paths. Some of this will man-
ifest automatically by supporting links of different domains but some means
of at least semi automatic detection of ambiguous terms will be needed.

Without doubt, many other issues will be encountered along the way and soon
cognitive issues will also become increasingly important, i.e., developing interfaces
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Fig. 2. A gene subgraph extracted from a network. See text for details.

that are adopted to the way humans think and work and therefore truly support
human creativity instead of asking the user to adopt to the way the system has
been designed.

4 Summary

In this paper we have outlined a new approach to support associative information
access, enabling the user to find links across different information repositories
and contexts. The underlying network combines pieces of information of vari-
ous degrees of precision and reliability and allows for the exploration of both
connections and original information fragments. We believe these types of biso-
ciative information networks are a promising basis for the interactive exploration
of loosely connected, semi- or unstructured information repositories, ultimately
leading to fully fledged Discovery Support Systems.

Acknowledgements. We would like to thank the members of the European Frame-
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refine the concept of BisoNets.
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