
Filtering Atmost1 on Pairs of Set Variables

Willem-Jan van Hoeve1 and Ashish Sabharwal2?

1 Tepper School of Business, Carnegie Mellon University
2 Department of Computer Science, Cornell University

1 Introduction

Many combinatorial problems, such as bin packing, set covering, and combina-
torial design, can be conveniently expressed using set variables and constraints
over these variables [3]. In constraint programming such problems can be mod-
eled directly in their natural form by means of set variables. This offers a great
potential in exploiting the structure captured by set variables during the solution
process, for example to break problem symmetry or to improve domain filtering.

We present an efficient filtering algorithm, establishing bounds consistency,
for the atmost1 constraint on pairs of set variables with fixed cardinality. Com-
putational results on social golfer benchmark problems demonstrate that with
this additional filtering, these problems can be solved up to 50 times faster.

2 Domain Filtering for Set Constraints

A set variable is a variable whose domain values are sets. As the number of
possible values of a set variable can be enormous (the size of a power set, in
the worst case), one usually represents the domain of a set variable S by an
interval [L(S), U(S)], where L(S) and U(S) are a ‘lower’ and ‘upper’ bound on
the values that S can take. In addition, a lower bound l(S) and upper bound
u(S) on the cardinality of S are maintained. A natural (and widely adopted)
representation for the domain of set variables is based on the subset ordering of
the domain. That is, the lower bound L(S) represents all mandatory elements,
while the upper bound U(S) represents all possible elements, i.e., D(S) = {s |
L(S) ⊆ s ⊆ U(S), l(S) ≤ |S| ≤ u(S)}. We refer to this representation as the
subset+cardinality representation. It is applied in CP solvers such as ILOG
Solver, Eclipse, and Gecode.

For constraints involving set variables, the filtering task is to increase the
lower bounds and decrease the upper bounds of the domains such that we achieve
bounds consistency, which should formally be called subset+cardinality-bounds
consistency in our case:

Definition 1. Let S1, . . . , Sn be set variables. A constraint C(S1, . . . , Sn) is
called subset+cardinality-bounds consistent if for all i = 1, . . . , n, L(Si) and

? This research was partly supported by the Intelligent Information Systems Institute,
Cornell University under AFOSR Grant FA-9550-04-1-0151.

U(Si) are the intersection and the union, respectively, of all values in D(Si)
that can be assigned to Si in a solution to C, while in addition l(Si) and u(Si)
are equal to the minimum and maximum cardinality over these values, respec-
tively.

When a filtering algorithm for set constraints does not necessarily establish
bounds consistency, we call it a partial filtering algorithm.

The Atmost1 Constraint on Pairs of Set Variables

The atmost1 constraint was introduced by Sadler and Gervet [5] and specifies,
for a collection of n set variables with given cardinalities, that each pair of
variables overlaps in at most one element. Filtering the atmost1 constraint to
bounds consistency is NP-hard [1]. Therefore, Sadler and Gervet [5] give in on
bounds consistency and present a partial filtering algorithm. In this work, we
given in on the number of variables instead, and consider the atmost1 constraint
involving two set variables only, which we will refer to as the pair-atmost1
constraint. Formally, pair-atmost1(S1, S2, c1, c2) = {(s1, s2) | s1 ∈ D(S1), s2 ∈
D(S2), |s1| = c1, |s2| = c2, |s1 ∩ s2| ≤ 1}, where S1 and S2 are set variables and
c1, c2 ≥ 1 are integers representing the cardinalities of S1 and S2, respectively.

A natural way of implementing the pair-atmost1 constraint is to use the
following decomposition of pair-atmost1(S1, S2, c1, c2) into three constraints:
|S1| = c1, |S2| = c2, |S1 ∩ S2| ≤ 1. We will refer to this as the decomposition
for pair-atmost1. Unfortunately, filtering these constraints separately does not
establish bounds consistency on the pair-atmost1 constraint, as illustrated by
the following example:

Example 1. Let D(S1) = [{1, 2} , {1, 2, 3, 5, 6}], D(S2) = [{3} , {1, 2, 3, 4}], and
c1 = c2 = 3. Establishing bounds consistency on pair-atmost1(S1, S2, c1, c2)
leads to D(S1) = [{1, 2} , {1, 2, 5, 6}], D(S2) = [{3, 4} , {1, 2, 3, 4}]. This will not
be achieved by the decomposition.

3 The Bounds Consistency Filtering Algorithm

We next present the filtering algorithm that establishes bounds consistency on
the pair-atmost1 constraint, which we call BC-FilterPairAtmost1 (shown
as Algorithm 1).

First, we partition each of D(S1) and D(S2) into six disjoint sets. For this
purpose we define L1= L(S1) and P1= U(S1) \ L(S1), i.e., L1 represents the
lower bound, and P1 the possible values, for S1. We define L2 and P2 similarly
for D(S2). Using these shorthands, we define the partition of D(S1) into L1only
= L1 \ U(S2), L1L2 = L1 ∩ L2, L1P2 = L1 ∩ P2, P1L2 = P1 ∩ L2, P1P2
= P1∩P2, and P1only = P1\U(S2). D(S2) is similarly partitioned into L2only,
L2L1, L2P1, P2L1, P2P1, and P2only. Note that L1L2 = L2L1, P1L2 = L2P1,
and P2L1 = L1P2. For these three pairs, we explicitly maintain only one set per
pair, namely, L1L2, P1L2, and P2L1, respectively. (While P1P2 = P2P1 as well,
we still need to maintain both of these sets.)

BC-FilterPairAtmost1(S1, S2, c1, c2)
begin

Scan L(S1), U(S1), L(S2), and U(S2) to compute the cardinality of each of the 9 sets:
L1only, L2only, L1L2, P1only, P2only, P1L2, P2L1, P1P2, P2P1

Initialize the ‘can-have’ and ‘not-necessary’ flags of each of the 9 sets to False

if |L1L2| > 1 then Fail
if |L1L2| = 1 then

Perform BC-Case0(c1 − 1, c2 − 1, nil)
Perform BC-UpdateDomains
Return

// |L1L2| = 0
Perform BC-Case0(c1, c2, nil) // no shared element
for each s ∈ { P1L2, P2L1, P1P2, P2P1 } do

// possible solution has a shared element from s
if BC-Case0(c1 − 1, c2 − 1, s) then s.can-have ← True

Perform BC-UpdateDomains
end

sub BC-Case0(c1, c2, s)
begin

k1 ← c1 − (|L1only| + |L1L2| + |P2L1|); if s = P2L1 then k1++
k2 ← c2 − (|L2only| + |L1L2| + |P1L2|); if s = P1L2 then k2++
slack1 ← (|P1only| + |P1P2|)− k1
slack2 ← (|P2only| + |P2P1|)− k2
slack3 ← (|P1only| + |P2only| + |P1P2|)− (k1 + k2)

if (slack1 ≥ 0) and (slack2 ≥ 0) and (slack3 ≥ 0) then
// solution exists
P1only.can-have ← True; P2only.can-have ← True
P1L2.not-necessary ← True; P2L1.not-necessary ← True
if slack1 > 0 then

P2P1.can-have ← True; P1P2.not-necessary ← True
if slack3 > 0 then P1only.not-necessary ← True

if slack2 > 0 then
P1P2.can-have ← True; P2P1.not-necessary ← True
if slack3 > 0 then P2only.not-necessary ← True

return True;

else
return False;

end

sub BC-UpdateDomains
begin

for each s ∈ { P1L2, P2L1, P1P2, P2P1 } do
if s.can-have = False or s.not-necessary = False then

for all y ∈ s computed by re-scanning L(S1), U(S1), L(S2), U(S2) do
if s.can-have = False then Remove y from U(Si) for corresponding i
if s.not-necessary = False then Add y to L(Si) for corresponding i

end

Algorithm 1: Bounds consistency domain filtering for pair-atmost1.

Example 2. For the scenario of Example 1, we have L1 = {1, 2}, P1 = {3, 5, 6},
L2 = {3}, and P2 = {1, 2, 4}. The 9 sets in this case are: L1only = ∅, L2only
= ∅, L1L2 = ∅, P1only = {5, 6}, P2only = {4}, P1L2 = {3}, P2L1 = {1, 2},
P1P2 = ∅, and P2P1 = ∅.

For each of the 9 sets, we maintain two Boolean flags: The “can-have” flag
and the “not-necessary” flag, that are all initialized to False. Some of them will
be set to True during the course of the algorithm when we find a solution. If
at the end, for a set s, s.can-have is still False, we remove s from the upper

bound of the corresponding domain. If s.not-necessary is still False, we add s
to the lower bound.

We find a solution by comparing the cardinalities of the 9 sets. In our base
case (BC-Case0), we assume that the variables already have one element in
common. For S1 we need k1 = c1−|L(S1)|− 1 additional values (or one more, if
the common element was in L(S1)). Similarly, we need k2 more values for S2. If
we can meet the demand (verified by nonnegativity of slack1, slack2, and slack3
Algorithm 1), there exists a solution, and we update the flags for our 9 sets.

When we are not in the base case, i.e., L1L2 = 0, there are two possibilities.
First, there could be a solution in which there is no common element. For this
we run the base case, as is. Second, there will be a shared element, originating
from P1L2, P2L1, P1P2, or P2P1. For each of these possibilities, we ‘remove’
the shared element from S1 and S2, which brings us in the base case again.

Theorem 1. Algorithm 1 establishes bounds consistency on the pair-atmost1
constraint.

Theorem 1 can be proved by a careful case analysis. The time complexity of
BC-FilterPairAtmost1 is dominated entirely by the creation of the 9 sets
during search, which takes O(n) time where n is the integer domain size. The
rest of the algorithm has only a constant number of calls to BC-Case0 and one
call to BC-UpdateDomains. BC-UpdateDomains takes time O(n + k log n),
where k is the number of elements removed from an upper bound or added to a
lower bound, assuming standard set operations used for maintaining these upper
and lower bounds take time O(log n). We can tighten this analysis by amortizing
over an entire path in the search tree from the root to any leaf, such that the
total filtering complexity is O(n log n), while updating the flags takes total time
O(n), for the path.

4 Experimental Results

We evaluated the performance of the pair-atmost1 constraint on the well-known
social golfer problem (problem prob010 in CSPLib). The problem golf-g-s-w
asks for a partition of n golfers into g groups, each of size s, for w weeks, such
that no two golfers are in the same group more than once throughout the whole
schedule. We apply the following standard model, using set variables Sij to
represent the set of golfers of week i and group j:

partition(Si1, . . . , Sig, {1, . . . , n}), 1 ≤ i ≤ w
pair-atmost1(Sij , Skl, s, s), 1 ≤ i < k ≤ w, 1 ≤ j ≤ g, 1 ≤ l ≤ g
|Sij | = s, 1 ≤ i ≤ w, 1 ≤ j ≤ g
Sij ∈ [∅, {1, . . . , n}], 1 ≤ i ≤ w, 1 ≤ j ≤ g.

To speed up the computation, we also applied a redundant global cardinality
constraint [4] on integer variables xij representing the group in which golfer j
plays in week i. Our search strategy is a smallest-domain-first on these variables.

Decomposition BC-FilterPairAtmost1

Problem (partial filtering) (bounds consistency)

time (s) backtracks time (s) backtracks

golf-6-5-5 2106.7 10,986,224 75.5 239,966

golf-6-5-4 1517.7 10,930,370 39.7 197,837

golf-6-5-3 1060.5 10,930,016 29.6 197,607

golf-6-5-2 635.5 10,879,368 17.2 171,664

golf-8-4-4 226.7 1,555,561 157.7 738,393

golf-10-3-10 128.1 150,911 67.2 78,976

golf-10-3-9 86.0 150,452 52.4 78,613

golf-10-3-6 21.3 110,429 17.3 57,364

golf-10-4-5 51.3 310,110 4.5 22,044

golf-10-4-4 42.5 310,109 4.0 22,043

golf-7-4-4 22.5 184,641 4.4 27,877

Table 1. Computational results on a number of social golfer instances.

Finally, to account for some symmetry-breaking, we partly instantiate some of
the set variables before starting the search, following Fahle et al. [2]. We note
that our filtering algorithm can be applied to any model, including those with
more advanced symmetry-breaking techniques.

We implemented our model in ILOG Solver 6.3, and all experiments run
on a 3.8 GHz Intel Xeon machine with 2 GB memory running Linux 2.6.9-
22.ELsmp. We evaluated the performance of the decomposition implementation
of pair-atmost1 (achieving partial filtering) with our filtering algorithm BC-
FilterPairAtmost1 (achieving bounds consistency) on a number of instances,
as reported in Table 1. The results demonstrate that using the bounds consis-
tency algorithm, one can solve these instances up to 50 times faster, with a
similar reduction in the number of search tree backtracks.

References

[1] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. Disjoint, partition and intersection
constraints for set and multiset variables. In CP’04, volume 3258 of LNCS, pages
138–152, 2004.

[2] T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In CP’01, volume
2239 of LNCS, pages 93–107, 2001.

[3] C. Gervet. Constraints over structured domains. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint Programming. Elsevier, 2006.

[4] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In
AAAI’96, volume 1, pages 209–215, 1996.

[5] A. Sadler and C. Gervet. Global reasoning on sets. In Proc. of Workshop on
Modelling and Problem Formulation (FORMUL’01), 2001.

