Integrating Symmetry, Dominance, and
Bound-and-Bound in a Multiple Knapsack
Solver

Alex S. Fukunaga

Global Edge Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan
fukunaga@is.titech.ac. jp,

Abstract. The multiple knapsack problem (MKP) is a classical com-
binatorial optimization problem. A recent algorithm for some classes
of the MKP is bin-completion, a bin-oriented, branch-and-bound algo-
rithm. In this paper, we propose path-symmetry and path-dominance,
which are instances of the symmetry detection by dominance detection
approach for pruning symmetric nodes in the MKP branch-and-bound
search space. In addition, we integrate the “bound-and-bound” upper
bound validation technique used in MKP solvers from the OR literature.
We show experimentally that our new MKP solver, which integrates sym-
metry techniques from constraint programming and bound-and-bound
techniques from operations research, significantly outperforms previous
solvers on hard instances.

1 Introduction

Consider m containers (bins) with capacities ¢y, ..., ¢, and a set of n items,
where each item has a weight wy, ..., w, and profit p1, ..., p,. Packing the items
in the containers to maximize the total profit of the items, such that the sum
of the item weights in each container does not exceed the container’s capacity,
and each item is assigned to at most one container is the 0-1 Multiple Knapsack
Problem, or MKP.

For example, suppose we have two bins with capacities ¢; = 10,¢co = 7, and
four items with weights 9,7,6,1 and profits 3,3,7,5. The optimal solution to this
MKP instance is to assign items 1 and 4 to bin 1, and item 3 to bin 2, giving us
a total profit of 15. Thus, the MKP is a natural generalization of the classical
0-1 Knapsack Problem to multiple containers.

Let the binary decision variable z;; be 1 if item j is placed in container ¢,
and 0 otherwise. Then the 0-1 MKP can be formulated as the integer program
below, where constraint 2 encodes the capacity constraint for each container,
and constraint 3 ensures that each item is assigned to at most one container.

m n

maximize Z Z DjTij (1)

i=1 j=1
n
subject to: ijxij < ¢, i=1,...m (2)
j=1
m
inj S 1, j = 1, N (3)
i=1
T € {0,].} Vi, j. (4)

The MKP has numerous applications, including task allocation among au-
tonomous agents, continuous double-call auctions [7], multiprocessor scheduling
[9], vehicle/container loading [1], and the assignment of files to storage devices
in order to maximize the number of files stored in the fastest storage devices
[9]. A special case of the MKP where the profits of the items are equal to their
weights, i.e., p; = w; for all j is the Multiple Subset-Sum Problem (MSSP).

The MKP (including the special case of the MSSP) is strongly NP-complete.'
Thus, state-of-the-art algorithms for finding optimal solutions are based on
branch-and-bound. Previous work has shown that for problems where the ratio
of items to bins is relatively small (i.e., n/m < 4), the state-of-the-art algorithm
is bin-completion, a bin-oriented branch-and-bound algorithm [6].

The search space explored by bin-completion has many symmetric states.
Previous work introduced some techniques for exploiting the symmetry and
demonstrated their utility. In this paper, we further investigate methods for
exploiting symmetries in the MKP bin-completion algorithm. We propose new
techniques that result in significant improvements over the previous state of
the art. These techniques are instances of the general symmetry breaking via
dominance detection (SBDD) approach [2; 3].

A technique which is responsible for much of the power of previous branch-
and-bound MKP solvers in the OR literature is “bound-and-bound” [10; 12,
which seeks to prune nodes by heuristically seeking to validate the (optimistic)
upper bound on the total profit at each search node. We integrated this technique
into our extended bin-completion based MKP solver.

The paper is organized as follows. We start by reviewing the bin completion
algorithm (Section 2). Section 3 defines the basic framework we use for sym-
metry detection and breaking, and reviews previous algorithms for exploiting
symmetry in the MKP. We then introduce new, generalized symmetry detection
techniques which are more powerful than the previous techniques. We discuss
methods for combining various symmetry mechanisms, and compare these meth-
ods with related work on symmetry detection and breaking and in the constraint
programming literature. We describe the bound-and-bound technique and our

! In contrast, the single-container 0-1 Knapsack problem is weakly NP-complete, and
can be solved in pseudopolynomial time using dynamic programming.

1 search_.MKP (bins, items, sumProfit)

2 if bins==() or items ==

3 if sumProfit > bestProfit then bestProfit = sumProfit; return
4 ri = reduce(bins,items) /* Pisinger’s R2 reduction */

5 if ri #

6 search_MKP (bins, items \ ri, sumProfit)

7 return

8 upperBound = compute_upper_bound(items,bins)

9 if (sumProfit + upperB < bestProfit

10 return /* upper-bound based pruning using SMKP bound */

11 if (validate_upper_bound (upperBound))

12 return /* bound-and-bound */

13 bin = choose_bin(bins)

14 undominatedAssignments = generate_undominated (items,capacity(bin))
156 foreach A € sort_assignments(undominatedAssignments)

16 if not(symmetric(A4))

17 assign A to bin

18 search- MKP (bins \ bin, items \ A, sumProfit+) . ,p;)

Fig.1. Bin-completion-based algorithm for the MKP. The top-level call is
search MKP(bins,items,0).

integration of bound-and-bound into bin-completion in Section 4. In Section 5,
we experimentally evaluate various combinations of symmetry mechanisms, and
conclude with a discussion of results and directions for future work.

2 Bin-Completion Algorithm for the MKP

Bin-completion is a branch-and-bound algorithm for finding optimal solutions
to multi-container assignment problems including the MKP and bin packing
problems [6]. We briefly describe this algorithm. For simplicity of exposi-
tion, in the examples below, we assume (unless stated otherwise)
multiple-subsets sum problem (MSSP) instances, where Vj,p;, = w;.
Thus, whenever possible in the description below, we simply refer to
an item by its weight.

A bin assignment B; = (itemyq, ..., itemy,) is a set of all of the items that are
assigned to a given bin ¢, 1 <4 < m. Thus, a valid solution to a MKP instance
consists of a set of bin assignments, where each item appears in exactly one bin
assignment. A bin assignment is feasible with respect to a given bin j if the
sum of its weights does not exceed the capacity of the bin, ¢;. Otherwise, the bin
assignment is infeasible. We say that a bin assignment S is mazimal with respect
to bin ¢ if S is feasible, and adding any other remaining items would make it
infeasible.

The bin-completion algorithm searches a tree where each node at depth d,
1 < d < m, represents a maximal, feasible bin assignment. The bin-completion

algorithm for the MKP is shown in Figure 1, where each call to search MKP
corresponds to a node in the branch-and-bound search tree (e.g., Figure 2).

Nodes are pruned according to an upper bound which is based on a relax-
ation of the problem by Martello and Toth [11] (Line 8). Pisinger’s R2 reduction
procedure [12] is applied at each node (Line 4) in order to try to reduce the prob-
lem by eliminating some items for consideration. The choose_bin function (Line
13) selects the bin b with least remaining capacity. The generate_undominated
function generates the set of all maximal, feasible assignments for b, with the
additional constraint that these assignments are not dominated by any other as-
signment according to a dominance criterion. Given two feasible bin assignments
Fy and Fs, Fy dominates Fy if the value of the optimal solution which can be ob-
tained by assigning F} to a bin is no worse than the value of the optimal solution
that can be obtained by assigning F5 to the same bin. Bin-completion prunes
feasible assignments which are dominated according to the following MKP dom-
inance criterion [6], which is based on the Martello-Toth dominance criterion for
bin packing [11].

Proposition 1 (MKP Dominance Criterion). Let A and B be two assign-
ments that are feasible with respect to capacity c. A dominates B if B can be
partitioned into i subsets B, ..., B; such that each subset By is mapped one-to-
one to (but not necessarily onto) ay, an element of A, and for all k <1, (1) the
weight of ay is greater than or equal to the sum of the item weights of the items
in By, and (2) the profit of item ay is greater than or equal to the sum of the
profits of the items in By.

The undominated bin assignments are sorted (Line 20) in order of non-
decreasing cardinality, and ties are broken in order of non-increasing profit. The
symmetric function (Line 21) applies one of the symmetry detection strategies
described in this paper, and validate_upper_bound implements the bound-and-
bound strategy described in Section 4. For example, given a bin with capacity
10 and items 9,8,7,3,2, the undominated, feasible bin assignments are (9),(8,2),
and (7,3). It is possible for there to be a very large number of undominated
bin assignments generated by generate_undominated, but this problem can be
avoided by processing these in smaller batches, and the only thing we lose is part
of the benefits of the value ordering (sort_assignments). This is called hybrid
incremental branching, and details are in [6]. Figure 2 shows part of an example
bin-completion search tree.

3 Exploiting Symmetry

To describe our symmetry breaking mechanisms, which are instances of the
general SBDD approach [2; 3], we first introduce some notation and define the
notion of a nogood, which is central to all of our symmetry exploitation methods.

Let B? denote a bin assignment which assigns the elements of set B to a bin
at depth d. Thus, (10,8,2)" and (10, 7,3)* denote two possible bin assignments
for a bin at depth 1.

(83,12,5) {83;455)

(42,41,11) £42;40-1} (414011}
\
(40)

Fig. 2. Bin-completion search tree for a MKP instance with capacity 100 and items
with weights {83,42,41,40,12,11,5} (Vi,p; = w;). Each node represents a maximal,
feasible bin assignment Bin assignments shown with a strikethrough, e.g., (83,11,5),
are pruned because they are dominated according to the criterion in Proposition 1.

Definition 1 (Nogood). Let X% be some node in the bin-completion search tree
at depth d. Let EY, ..., B4~ be ancestors of X at depths 1, ...,d—1, respectively.
For each such ancestor E;, we say that every sibling of E* to the left of E* in
the depth-first bin-completion search tree is a nogood with respect to X¢.

In Figure 3, (8,2)! is a nogood with respect to the descendants of (7, 4)*. Since
bin-completion is a depth-first branch-and-bound algorithm, a nogood denotes
a bin assignment (node) whose descendants have been exhaustively searched in
the current search tree. The union of all current nogoods is a concise description
of the entire portion of the search tree which has been searched so far. This is
similar to the use of the term “nogood” in [4].

3.1 Path-Symmetry

Consider the search tree shown in Figure 3. Assume that the capacities for
bins 1-4 are 11,11,12, and 10, respectively. Assume that we have already ex-
haustively searched the subtree under (8,2)%, and we have generated the node
(7,4)1,(10)2, (8,3)3, (6,2, 2)*. By rearranging the items in bins 1-4, we can obtain
a new set of bin assignments: (8,2)!,(7,3)2,(10,2)3, (6,4)*. This is a symmetric
rearrangement, as the optimal solution under the first set of bin assignments is
the same as the optimal solution under the latter set of assignments. Thus, we
can prune the node at (6,2,2)%.

More generally: Given a bin-completion search tree where we are considering
a bin assignment for depth d, we define the current path from depth g to depth
d as the union of bins g,g + 1,....d. The current path items are the union of all
items in the current path. For example, in Figure 3, if we are at node (6,2,2)%,
the current path from depth 1 to 4 is the set of bins 1, 2, 3, and 4, and the
current path items are 7,4, 10,8, 3,6, 2, 2.

Definition 2 (Path-Symmetry). Let N9 be a nogood with respect to a can-
didate bin assignment B¢, and let P be the current path items from depth g to

Fig. 3. The bin assignment (6,2,2)* can be pruned by Path-Symmetry. (¢c; = 11,c2 =
11, ¢35 = 12, ¢4 = 10).

d. we say that there is a path-symmetry with respect to nogood N9 if two condi-
tions hold: (1) every item in N9 is a member of P, and (2) it is possible to (a)
assign the items from the current path items corresponding to the items of NY
(Items(N9) C P) to bin g , and (b) assign the remaining items (P\ Items(NY))
to bins g+ 1, ...,d such that all bins g, ...,d are feasible.

If there is a path-symmetry between B? and some nogood N9 as defined
above, B% can be pruned. The correctness follows directly from the definition of
nogoods.

Checking the first condition of Definition 2 is straightforward. However,
checking the second condition efficiently is not as straightforward, because it
is essentially the decision version of a bin packing problem,? where we attempt
to pack the items in P\ Items(NY) into bins with capacities cg41,...,cq. We
describe several approaches:

In the first approach, we try to directly solve this bin packing problem using a
simple backtracking algorithm (BT). The bin packing problem, like the MKP, is
strongly NP-complete, and in the worst case, BT will take time which is O(n™),
where n is the number of items and m is the number of bins. It is possible to avoid
backtracking and use a standard bin packing heuristic such as first-fit decreasing
(FFD), which has a polynomial complexity. Thus our second approach uses FFD
to pack the items P\ Items(NY) into bins g+1, ..., d. The drawback of heuristics
such as FFD is that it is not guaranteed to find a packing of the items into the
bins even if one exists. However the symmetry check is still admissible — path-
symmetry using a FFD check to test condition (2) may sometimes fail to prune
a node that a BT check would have pruned, but will never prune a node that a
BT check will not prune.

Another way to approximate the full check for condition (2) for path-symmetry
is to limit the set of items that can be swapped among the bins. That is, instead
of repacking all of the items P \ Items(N?) into bins g + 1, ...,d, we can “lock”
some of the items into their current bins and only consider packing the unlocked
items. We consider a limited packing problem (as opposed to the full packing

2 In the decision version of bin packing, we are given m bins and n items, and the
problem is to determine whether all n items can be packed into m bins such that
the capacity constraints on all of the bins are not violated.

problem without locked items) where we (a) assign the items from the current
path items corresponding to the items of N9(Items(N9) C P) to bin g, and
(b) pack the items P\ Items(NY) into bins g + 1, ...,d, but in contrast to the
full packing problem, we lock all of the items in P\ Items(NY) except for the
items in bin g. In Fig. 3, the unlocked items would be the 7 and 4 from bin 1.
The limited packing problem is to pack the 7 and 4 into three bins: bin #2 with
remaining capacity 1 (the 10 is locked), bin #3 with remaining capacity 9 (the
8 is moved to bin #1, the original capacity is ¢3 = 12, and there is a 3 which is
locked, so the remaining capacity is 12-3=9), and bin #4 with remaining capac-
ity 2 (one of items with weight 2 has moved to bin 1, but the remaining 6 and 2
are locked). In this case, the packing fails, so limited packing is insufficient, but
a full packing (where all current path items were unlocked) would have enabled
path symmetry detection. The choice of BT vs. FFD, and the choice of full vs.
limited packing are orthogonal choices. Thus, full packing using BT will give us
the full pruning power of path-symmetry (albeit at highest cost per node), while
limited packing using FFD gives us a weaker (but cheaper) pruning test.

A more restricted version of this test was previously considered in [6]: Given
a bin assignment B for the bin at depth d, we can prune B¢ if there is a nogood
N9 with respect to B? such that (1) B? includes all the items in N9, and (2)
if we swap the items in N9 from B¢ with the items that are currently assigned
to the bin at depth g, both resulting bin assignments are feasible. We call this
strategy 2-swap-path-symmetry, because it only considers symmetries that can
be detected by swapping items between two particular bins.

3.2 Path-Dominance

Path-dominance is a generalization of path-symmetry. Consider the search tree
shown in Figure 4 for an instance where the bin capacities for bins 1-3 are 11,
12, and 13, respectively. Assume that we have already exhaustively searched the
subtree under (8,2)!, and we have generated the current path in the search tree,
(7,4)1,(5,6)2,(9,2)%. By rearranging the items in bins 1-3, we can obtain a new
set of bin assignments: (7,2)!, (5,6)2, (9,4)3. This is a symmetric rearrangement,
since the optimal solution under the first sequence of bin assignments must be
the same as the optimal solution the latter sequence of assignments. Thus, we
can prune the node (9,2)3, since (8,2)! dominates (7,2)!. More generally:

O
PN
(8,2)" (7,4)"
| (5,6)°

\
IR

Fig. 4. The bin assignment (9,2)* can be pruned by Path-Dominance (¢; = 11,¢c2 =
12, C3 = 13)

Definition 3 (Path-Dominance). Let N9 be a nogood with respect to candi-
date bin assignment B, and let P be the current path items from depth g to
d. We say that there is a path-dominance symmetry with respect to nogood NY
established at depth g if there exists some s C P such two conditions hold: (1)
s is dominated by N9 according to the MKP dominance criterion and (2) it is
possible to (a) assign s to bin g, and (b) assign the remaining items (P \ s) to
bins g+ 1,...,d such that all bins g, ...,d are feasible.

If there is a path-dominance symmetry between B¢ and some nogood N9 as
defined above, B? can be pruned. This follows from the definition nogoods and
Proposition 1.

Our current implementation of path-dominance works as follows. We enumer-
ate subsets of the current path items such that each such subset s is dominated
by N9 and is maximal, i.e., there is no other item which can be packed into
the N9. For each such s, we test whether condition (2) of the path-dominance
symmetry definition (Definition 3 is satisfied. If so, then a path-dominance has
been detected, so the current node can be pruned. The test for condition (2) is
the same as the corresponding test for path-symmetry in the previous section.
Thus, the same four implementations of the check are possible: (a) full packing
with BT, (b) full packing with FFD, (c) limited packing with BT, and (d) lim-
ited packing with FFD. In the worst case, this check is executed for each subset
s that satisfies condition (1) of Definition 3, so checking for path-dominance can
be quite expensive.

The following, highly restricted form of Path-Dominance was proposed by
Fukunaga and Korf [6]. Given a bin assignment B? for depth d, we can prune
B? if there is a nogood N9 with respect to B? such that (1) N9 dominates B
according to the MKP dominance criterion (Proposition 1), and (2) The items
in B¢ can be swapped with the current items in bin g, such that the resulting
bin assignments are both feasible. In other words, this is a restricted Path-
Dominance test where all bins are frozen except for the bin at depth d. We call
this strategy 2-swap-path-dominance.

3.3 Combining Symmetry Breaking Strategies

We have defined a spectrum of symmetry-breaking techniques above, ranging
from the weakest, 2-swap-path-symmetry, to the strongest, full path-dominance
with BT. Path-dominance, using the full packing with backtracking implemen-
tation, clearly subsumes all of the other criteria. For example, every node which
can be pruned by path symmetry will also be pruned by path-dominance (but
not vice versa). However, there is a trade-off between the amount of pruning
enabled by a symmetry relation and the amount of overhead incurred at each
node in order to detect the symmetry. To alleviate this trade-off, we combine the
strategies by chaining a set of tests so that the cheapest, least powerful symme-
try is applied first. If this prunes the node, then the cost of applying the more
powerful (but costly) symmetries is not incurred. However, if the node is not
pruned, then we apply another, more powerful symmetry, and so on.

A preliminary study presented at a workshop reported results on 11 different
configurations of symmetry-checking tests [5]. While we have found that path-
symmetry (including 2-swap-path-symmetry) and 2-swap-path-dominance are
relatively efficient and often offer a favorable trade-off between search reduction
and increased cost per node, we have not yet found a way to reduce the cost of the
more powerful variants (full/limited path dominance using either backtracking
or FFD) sufficiently to justify their use. The specific configurations used this
paper are described in Section 5.

3.4 Relationship to Previous Work on Symmetry Detection

Our MKP symmetry breaking mechanisms are domain-specific instances of the
symmetry breaking via dominance detection (SBDD) approach [2; 3]. A signif-
icant difference is that in addition to detecting equivalences to previously ex-
plored subtrees (2-swap-path-symmetry and path-symmetry), our 2-swap-path-
dominance and path-dominance algorithms also detect partial solutions which
are dominated by previously explored subtrees (according to Proposition 1).

Our work is also similar to the pruning technique proposed by Focacci and
Shaw [4] for constraint programming, which was applied to the TSP with time
windows. Both methods attempt to prune the search by proving that the cur-
rent node at depth j, which represents a partial j-variable (bin®) solution z, is
dominated by some previously explored i-variable (bin) partial solution (nogood
bin assignment) g, where i < j.

The main difference between our method and Focacci and Shaw’s method is
the approach used to test for dominance. Focacci and Shaw’s method extends ¢
to a j-variable partial solution ¢’ which dominates x. They apply a local search
procedure to find the extension ¢’. In contrast, our methods start with a partial,
Jj-bin solution z and try to transform it to a partial solution 2’ such that Z;, the
subset of x’ including the first ¢ bins, is dominated by the ¢-bin partial solution
q. We do this by transforming (via item swaps) the contents of bins ¢,i + 1, ..., j
in z to derive a feasible partial solution z’ such that Z; is dominated by g.

4 Bound and Bound

A powerful technique for solving the MKP is bound-and-bound, which was orig-
inally implemented in Martello and Toth’s MTM solver for the MKP [10]. In
standard branch-and-bound, an upper bound U is computed at each node in
the search tree. If U < L, L, where L is a lower bound, e.g., the best (highest)
objective function score found so far by branch-and-bound, then exploring the
node further is futile, so the node can be pruned. On the other hand, if U > L,
then standard branch-and-bound does not prune the node. Bound-and-bound
extends this by applying some heuristic technique to attempt to wvalidate the
upper bound: When U > L, bound-and-bound attempts to prove that the up-
per bound U can be achieved somehow in the current subtree — if so, then we

3 Our analogues of CP variables and values are bins and bin assignments, respectively.

have found the value of the optimal subsolution under the current node and can
backtrack.

The most powerful implementation of this idea is in Pisinger’s Mulknap solver
[12]. Mulknap is an item-oriented branch-and-bound algorithm. The items are
ordered according to non-increasing efficiency (ratio of profit to weight), so that
the next item selected by the variable-ordering heuristic for the item-oriented
branch-and-bound is the item with highest efficiency that was assigned to at
least one container by a greedy bound-and-bound procedure (see below). The
branches assign the selected item to each of the containers, in order of non-
decreasing remaining capacity.

At each node, an upper bound is computed using a relaxation of the MKP
called the surrogate relaxed MKP (SMKP), which is obtained by combining all
of the remaining m containers in the MKP into a single container with aggregate
capacity C' = Z:il ¢;, resulting in the single-container, 0-1 knapsack problem:
where the items are the remaining items and the knapsack has the capacity of
the aggregate container. The SMKP, which is currently the most effective upper
bound for the MKP [8], can be solved by applying any algorithm for optimally
solving the 0-1 Knapsack problem.

At each node, Mulknap attempts to validate the SMKP upper bound by
showing that there exists a partition of the SMKP 0-1 Knapsack solution into
the remaining empty spaces in the m bins of the original MKP instance. This
is done by solving a series of m subset-sum problems which allocate the items
from the SMKP solution to each bin, minimizing the unused capacity in each bin
(without exceeding capacity). If this partition is successful then the SMKP upper
bound can be achieved by partitioning the SMKP solution into the remaining
spaces in the bins, so we have validated the upper bound possible under the
current branch-and-bound node (and thus, we can backtrack).

Bound-and-bound can be extremely powerful for solving the MKP. In fact, for
many random benchmarks with a relatively large ratio of items to bins (n/m >
5), bound-and-bound can often validate the SMKP upper bound at the root
node of the search tree, which means that the instance is solved at the root node
without requiring any branch-and-bound search.

We implemented Pisinger’s bound-and-bound mechanism into our bin-completion
solver: at each node, we attempt to validate the SMKP upper bound by partition-
ing the SMKP solution into the remaining bins (recall that in bin-completion,
at depth b, m — b bins are empty). Our implementation of the SMKP bound is
a straightforward, primal branch-and-bound. Our implementation of the split-
ting procedure uses a standard branch-and-bound procedure using the max-
cardinality bound [8].

5 Experimental Results

We compared the following bin-completion based MKP solver configurations:

— PureBC: bin completion with no symmetry checking and no bound-and-
bound.

— 2-Dom: Apply 2-swap-path-symmetry first, and if the node is not pruned,
then try applying 2-swap-path-dominance. This corresponds to the “Bin-
completion with nogood dominance pruning” algorithm reported in [6].

— PathSym: First, try 2-swap-path-symmetry, then try 2-swap-path-dominance,
and finally, apply path-symmetry, using the limited packing with FFD im-
plementation described above.

— 2-Dom-BB: Same as 2-Dom, with bound-and-bound.

— PathSym-BB: Same as PathSym, with bound-and-bound.

All of our algorithms were implemented in Common Lisp and compiled using
the CMUCL compiler version 19d. In addition, we also compared our algorithms
with Pisinger’s Mulknap algorithm (using Pisinger’s C implementation, compiled
using gcc version 4.12 with the -03 option.

We evaluated the various solver configurations using the following four stan-
dard classes of problems from the MKP literature.

— uncorrelated instances, where the profits p; and weights w; are uniformly
distributed in [min, max].

— weakly correlated instances, where the w; are uniformly distributed in [min,max]
and the p; are randomly distributed in [w; — (max —min)/10,w; + (max —
min)/10] such that p; > 1,

— strongly correlated instances, where the w; are uniformly distributed in [min,max]
and p; = w; + (max —min)/10, and

— multiple subset-sum instances, where the w; are uniformly distributed in
[min, maz] and p; = w;.

In our experiments, min = 1, max = 1000. The first m — 1 bin capacities ¢;
were uniformly distributed in [0.4 >77_, w;/m, 0.63°7_; w;/m] for 1 < i < m.
The last capacity c,, is chosen as ¢,, = 0.5 37 w; — 31" " ¢; to ensure that
the sum of the capacities is half of the total weight sum. Degenerate instances
were discarded as in Pisinger’s experiments [12].

We used instances where the ratio of items to bins (n/m) ranged from 2
to 10. This is because for n/m > 10, Mulknap frequently finds a solution at
the root node by succeeding in validating the SMKP upper bound with the
subset-sum based bound-and-bound. For example, we generated 1000 instances
each of the uncorrelated, weakly-correlated, strongly-correlated, and multiple
subset-sum instances with 10 bins and 100 items, where [min, max] = [1,1000].
Mulknap solved all 4000 instances at the root node (i.e., without search) in less
than 0.01 seconds per instance (see [12] for related results). On the other hand,
for n/m <5, the bound-and-bound at the root node usually fails, and Mulknap
is forced to branch. It is therefore the instances with smaller n/m ratios that are
in some sense the most difficult random MKP instances that can be generated
using the model described above, so we focus on these problems.

The results are shown in Table 1. All experiments were run on a 2.4 GHz Intel
Core2 Duo. Each experiment was run on 20 instances per (# bins, # items) pair
(all configurations were run on the same instances), so a total of 480 instances

were used. The fail column indicates the number of instances (out of 20) that
were not solved within the time limit (300 seconds/instance). The time and nodes
show average time spent and nodes searched on the successful runs, excluding
the failed runs. Thus, in the experiments where there were timeouts, the fail
column is the most significant result.

There are several clear trends in the results. First, symmetry-based pruning is
most effective for low n/m, and becomes less effective for high n/m. For n/m < 5,
the variants that use some form of symmetry (2-Dom, 2-Dom-BB,PathSym,
PathSym-BB) clearly search significantly less nodes than PureBC, and using
less runtime. The only exception was for uncorrelated 12-bin, 48-item instances.
For n/m > 5, the savings in nodes searched is insufficient to offset the cost of
symmetry-based pruning. The % of nodes pruned due to symmetry techniques is
highest for less correlated instances. This is because the dominance criterion is
most powerful when item weights and profits are highly correlated, which means
that most candidate bin assignments are pruned by the dominance criterion
during generate_dominated (Fig 2, line 14), and are never considered.

Second, bound-and-bound becomes more effective as n/m increases, and
the overhead associated with bound-and-bound decreases as n/m increases. For
n/m = 2 (30-bin, 60-item instances), the overhead of bound-and-bound is suf-
ficiently large enough that there is a significant performance degradation in
2-Dom-BB and PathSym-BB compared to 2-Dom and PathSym, respectively.
However, for larger values of n/m, the relative overhead of bound-and-bound
becomes less significant, and for n/m > 5, bound-and-bound is significantly
enhancing the performance of the bin-completion variants.

The search behavior of Mulknap and bin-completion variants with bound and
bound (2-Dom-BB and PathSym-BB) are similar when n/m > 5. In principle,
when Mulknap can solve a problem at the root node without search, the bin-
completion variants should also solve the same problem at the root node. Below
the root node, the search behaviors of Mulknap and bin-completion with bound-
and-bound can diverge, because Mulknap branches on individual items, using
a variable ordering based on decreasing item efficiency (p/w ratio), while bin-
completion is branching on undominated bin assignments, where the variable
ordering is based on minimal cardinality, using profit as a tie-breaker.

The performance differences between Mulknap and our 2-Dom-BB/PathSym-
BB variants on the strongly-correlated and multiple subset-sum instances for 10
bins/60 items, and 10 bins/100 items can be explained by a differences in the
implementation of the 0-1 Knapsack solver used to compute the SMKP (lower
bound) solution. There are cases where there exist multiple optimal solutions to
the SMKP 0-1 Knapsack instance, all with the same total profit, but with dif-
fering total weight (such cases more common for multiple-subset sum instances
and strongly correlated instances). Mulknap implements a specialized 0-1 Knap-
sack solver which is biased to find solutions with the smallest weight sum (which
makes it more likely that the solution is splittable by the bound-and-bound sub-
set sum solver) Our current 0-1 Knapsack solver did not implement this bias, and
as a consequence, missed opportunities to successfully apply bound-and-bound.

Thus, Mulknap performed significantly better than 2-Dom-BB and PathSym-BB
for the strongly-correlated and multiple subset-sum instances for n/m > 5, even
though in principle (with a better implementation of the SMKP 0-1 Knapsack
solver), the performances should have been identical, as both algorithms could
have solved all of these instances at the root node.

To highlight the performance differences between the various symmetry prun-
ing techniques, we describe some experiments with smaller problem instances,
where all bin-completion based configurations were more likely to find a solution
within the time limit. For uncorrelated instances with 10 bins, 30 items, PureBC
solves all instances in an average of 9.13 seconds and 1,662,504 nodes. In compar-
ison, 2-Dom solves all instances in 0.57 seconds and 47,193 nodes, and PathSym
solves all instances in 0.28 seconds and 9,432 nodes. Thus, 2-Dom and PathSym
are searching 2 and 3 orders of magnitudes fewer nodes than PureBC, respec-
tively. Finally, we consider another configuration, PathDom, which first applies
the same sequence of symmetry tests as PathSym, and finally applies the full
path-dominance test using backtracking — thus, PathDom applies our most pow-
erful pruning criterion and searches the fewest number of nodes. PathDom solves
all of these instances in 0.78 seconds and 5031 nodes. Thus, exploiting the most
powerful dominance criterion can yield almost another factor of 2 reduction in
nodes searched for these instances, but the additional cost per node results in an
overall 3x slowdown. We have not found any configuration using path dominance
(other than the highly restricted 2-Dom case) where the search reduction was
sufficient to offset the additional cost per node.

Overall, PathSym significantly reduced the size of the branch-and-bound tree
compared to 2-Dom, the previous state of the art [6] algorithm for MKP prob-
lems with low n/m ratios. The results in Table 1 show that exploiting symmetry
is a very effective technique for hard MKP instances with low n/m ratio. Fur-
thermore, integrating bound-and-bound was shown to significantly improve per-
formance on instances with higher n/m ratios, while modestly penalizing perfor-
mance on instances with lower n/m ratios. Thus, the PathSym-BB configuration,
which successfully integrates bin-completion, symmetry-based pruning (a combi-
nation of 2-swap-path-symmetry, 2-swap-path-dominance and path-symmetry),
and Pisinger’s bound-and-bound technique, can be considered a new, state-of-
the-art algorithm for instances for low n/m ratios.

6 Conclusions

This paper presented an algorithm for the multiple knapsack problem which
integrates techniques from constraint programming (symmetry-based pruning),
operations research (bound-and-bound, as well as the SMKP upper bound and
other techniques borrowed from Mulknap and earlier MKP solvers from the
OR literature), and the Al literature (the bin-completion search space [6]). We
proposed two new, symmetry breaking mechanisms (path symmetry and path
dominance) which are generalizations of previously studied strategies (2-swap-
path-symmetry and 2-swap-path-dominance). We showed that integrating path-

symmetry resulted in a new solver which significantly outperformed the previous
state of the art, 2-swap dominance based bin-completion solver reported in [6].
We further showed that integrating bound-and-bound could significantly im-
prove the performance on problems with higher n/m ratios.

There are several directions for future work. Although path-dominance is
our most powerful symmetry relation, the current implementation is not com-
petitive with path symmetry due to the large overhead incurred at each node.
We are currently investigating improved implementations and approximate de-
tection strategies to make path-dominance more viable. Likewise, our current
implementation of bound-and-bound uses naive branch-and-bound algorithms
for the SMKP upper bound and subset sum computation for bound validation.
As discussed in Section 5, integration with more sophisticated algorithms is
likely to result in significant performance improvements. Finally, the symmetry
detection techniques described in this paper are not limited to the MKP. For
example, it is straightforward to apply the symmetry techniques to improve the
search efficiency of any of the bin-completion based solvers for bin packing, bin
covering, and min-cost covering problems described in [6].

References

1. S. Eilon and N. Christofides. The loading problem. Management Science,
17(5):259-268, 1971.

2. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Proceedings
of the International Conference on Constraint Programming, pages 93—107, 2001.

3. F. Focacci and M. Milano. Global cut framework for removing symmetries. In
Proceedings of the International Conference on Constraint Programming, pages
77-92, 2001.

4. F. Focacci and P. Shaw. Pruning sub-optimal search branches using local search.
In Proc. CPAIOR, pages 181-189, 2002.

5. A. Fukunaga. Exploiting symmetry in multiple knapsack problems. In Proc. CP-07
Workshop on symmetry and constraint satisfaction problems, 2007.

6. A. Fukunaga and R. Korf. Bin-completion algorithms for multicontainer pack-
ing, knapsack, and covering problems. Journal of Artificial Intelligence Research,
28:393-429, 2007.

7. J.R. Kalagnanam, A.J. Davenport, and H.S. Lee. Computational aspects of clear-
ing continuous call double auctions with assignment constraints and indivisible
demand. Electronic Commerce Research, 1:221-238, 2001.

8. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag,
2004.

9. M. Labbé, G. Laporte, and S. Martello. Upper bounds and algorithms for the max-
imum cardinality bin packing problem. European Journal of Operational Research,
149:490-498, 2003.

10. S. Martello and P. Toth. A bound and bound algorithm for the zero-one multiple
knapsack problem. Discrete Applied Mathematics, 3:275-288, 1981.

11. S. Martello and P. Toth. Knapsack problems: algorithms and computer implemen-
tations. John Wiley & Sons, 1990.

12. D. Pisinger. An exact algorithm for large multiple knapsack problems. Furopean
Journal of Operational Research, 114:528-541, 1999.

Uncorrelated Instances
30 bins, 60 items 15 bins, 45 items 12 bins, 48 items 15 bins, 75 items 10 bins, 60 items [[10 bins, 100 items
fail| time| nodes||fail| time nodes||fail| time nodesl||fail time nodes||fail| time| nodes||[fail| time| nodes
Mulknap|| 20 n/a n/all 20[n/a n/all 10| 42.95| 1202516(| 13 0.01 3|[o 1.84| 41271|| 0|< 0.01 1
PureBC|| 20 n/a n/al| 14|125.38{17593990|| 3|38.69|4135959| 3| 41.61 754025|| 0| 21.30| 415663|| 20 n/a n/a
2-Dom|| 10| 91.49(|4180505|| 10| 62.20| 3725747|| 3| 61.29| 1930296|| 4| 72.29 600277|[0| 53.34| 414249(| 20 n/a n/a
2-Dom-BB|| 12|79.987|2384741|| 10| 74.36| 3723605|| 3| 62.84| 1893539|| 2 6.65 38421 0| 1.04 7981|| 0|< 0.01 1
PathSym|| 3]40.30(752990|| 8|31.44| 908677| 3| 48.36| 572037| 4| 78.07 556327| 0| 56.63| 395254(| 20 n/a n/a
PathSym-BB|| 4| 37.16| 549704|| 8| 36.28| 907531 3| 48.89| 555786|| 2| 6.50 35907| 0| 1.11 7553|| 0]|< 0.01 1
‘Weakly Correlated Instances
30 bins, 60 items 15 bins, 45 items 12 bins, 48 items 15 bins, 75 items 10 bins, 60 items [[10 bins, 100 items
fail| time| nodes||fail| time nodes||fail| time nodesl||fail time nodes||fail| time| nodes||fail| time| nodes
Mulknap|| 20| n/a n/all 20| n/a n/al| 20| n/a n/al| 20 n/a n/all 11/116.11[2011539(| 0]< 0.01 1
PureBC|| 20 n/a n/al| 13|110.76| 5008825 5| 83.08| 4596503|| 19|278.44|10554776 1| 46.50| 770159|| 20 n/a n/a
2-Dom|| 6| 70.26{1628331|| 9| 65.27| 2043285|| 4| 79.95| 2337020|| 20 n/a n/al| 2| 59.96| 650387|| 20 n/a n/a
2-Dom-BB 7| 72.14{1418034 9| 71.29| 2043123 4| 83.14| 2335930|| 20 n/a n/a 1| 37.08| 546095 0/< 0.01 69
PathSym 1|52.31|822188 6(57.67|1387753 4|43.36| 799555|| 19| 297.59 2388087 2| 56.86| 367994|| 20 n/a n/a
PathSym-BB 1| 52.58| 614972|| 6| 62.53| 1387625|| 4| 45.12| 798571 19| 297.13| 2349921 1| 33.38(276420|| 0(< 0.01 69
Strongly Correlated Instances
30 bins, 60 items 15 bins, 45 items 12 bins, 48 items 15 bins, 75 items 10 bins, 60 items ||10 bins, 100 items
fail| time| nodes||fail| time nodes||fail| time nodes||fail time nodes||fail| time| nodes||fail|] time| nodes
Mulknap|| 20 n/a n/al| 20 n/a n/al| 3| 97.50| 962223| 0] 14.28 137495|] 0]< 0.01 1|| 0({< 0.01 1
PureBC|| 17/129.07(2918108 5| 62.61| 1026434 2| 31.39| 609882 1| 39.52 219995 1| 45.65| 251584|| 20 n/a n/a
2-Dom|| 1| 31.01| 440718|| 3| 36.93] 676154|| 0| 48.23| 660830|| 1| 59.52 219858|[1| 69.74| 251495|| 20 n/a n/a
2-Dom-BB 1| 39.23| 440718|| 3| 41.29| 676014|| 1| 37.09| 540183|| O 4.61 17560|| 0| 0.59 2850|| 3]|< 0.01 1
PathSym 0]/ 11.65(143886 1| 46.26| 798791 0(29.23| 321255 1| 62.41 218049 1| 71.51| 249179|| 20 n/a n/a
PathSym-BB 0| 15.20| 143886 2| 36.13| 537265 0| 30.37| 318512 0 4.68 17543 0 0.61 2846 3/< 0.01 1
Multiple Subset-Sum Instances
30 bins, 60 items 15 bins, 45 items 12 bins, 48 items 15 bins, 75 items 10 bins, 60 items ||10 bins, 100 items
fail| time| nodes||fail| time nodes||fail| time nodes||fail time nodes||fail| time| nodes||fail|] time| nodes
Mulknap|| 20 n/a n/al| 14[111.11] 783653|| 2| 25.52| 168455| 0| 0.01 2|l 0] o0.01 1|| 0({< 0.01 1
PureBC|| 16(122.46|2715571|| 4| 34.54| 989428 0| 4.20| 106243| O 7.51 18050|| 0| 14.11| 24830|| 15| 0.54 10
2-Dom|| 1| 9.40| 225208|| 2| 20.41| 532674|| 0| 3.13 64775 0 8.91 17993|| 0| 16.60| 24803|| 15| 0.54 10
2-Dom-BB 1| 11.48| 225208 2| 21.67| 532671 0| 3.13 64764 0 5.83 17993 0 6.19| 24339|| 14 0.36 8
PathSym 0| 5.51/106551 1| 27.92| 565196 0| 2.82 45671 0 8.82 17902 0| 16.81 24668|| 15 0.55 10
PathSym-BB|| 0| 6.88] 106551 1| 29.91| 565193|| 0| 2.85 45660(] 0O 5.76 17902|| 0| 6.27| 24213|| 14| 0.36 8

Table 1. Comparison on random instances for 2 < n/m < 10. Item weights were in [1,1000]. The fail column indicates the number of
instances (out of 20) that were not solved within the time limit (300 seconds/instance). The time and nodes show average runtimes and
nodes searched on the successful runs, excluding the failed runs.

