
A Brief History of Provably-Secure

Public-Key Encryption

Alexander W. Dent

Royal Holloway, University of London
Egham, Surrey, TW20 0EX, U.K.

a.dent@rhul.ac.uk

Abstract. Public-key encryption schemes are a useful and interesting
field of cryptographic study. The ultimate goal for the cryptographer in
the field of public-key encryption would be the production of a very ef-
ficient encryption scheme with a proof of security in a strong security
model using a weak and reasonable computational assumption. This ul-
timate goal has yet to be reached. In this invited paper, we survey the
major results that have been achieved in the quest to find such a scheme.

1 Introduction

The most popular field of study within public-key cryptography is that of public-
key encryption, and the ultimate goal of public-key encryption is the production
of a simple and efficient encryption scheme that is provably secure in a strong
security model under a weak and reasonable computational assumption. The
cryptographic community has had a lot of successes in this area, but these suc-
cesses tend to fall into two categories: the production of very efficient encryption
schemes with security proofs in idealised models, and the production of less-
efficient encryption schemes with full proofs of security in strong models. The
ultimate prize has yet to be claimed.

However, we are getting closer to that important break-through. Schemes
with full security proofs are getting more efficient and the efficient schemes are
getting stronger security guarantees. This paper aims to briefly discuss some of
the history behind the production of standard-model-secure encryption schemes
and to give a personal interpretation of some of the major results.

The first attempt to prove the security of a public-key encryption scheme was
by Rabin [27] in 1979, who described an encryption scheme for which recovering
the message was as intractable as factoring an RSA modulus. Later, Goldwasser
and Micali [21] described a scheme which they could prove hid all information
about the plaintext. However, it wasn’t until the early 1990s that researchers
began to establish reliable and easy to use formal models for the security of
an encryption scheme and that the cryptographic community began to think
about constructing practical and efficient provably-secure public-key encryption
schemes.

1.1 Notation

We will use standard notation. For a natural number k ∈ N, we let {0, 1}k denote
the set of k-bit strings and {0, 1}∗ denote the set of bit strings of finite length.
We let 1k denote a string of k ones.

We let ← denote assignment; hence, y ← x denotes the assignment to y of
the value x. For a set S, we let x

$← S denote the assignment to x of a uniformly
random element of S. If A is a randomised algorithm, then y

$← A(x) denotes
the assignment to y of the output of A when run on input x with a fresh set of
random coins. If we wish to execute A using a particular set of random coins R,
then we write y ← A(x; R), and if A is deterministic, then we write y ← A(x).

1.2 The IND-CCA2 Security Model

A public-key encryption scheme is formally defined as a triple of probabilistic,
polynomial-time algorithms (G, E ,D). The key generation algorithm G takes as
input a security parameter 1k and outputs a public/private key pair (pk , sk). The
public key implicitly defines a message space M and a ciphertext space C. The
encryption algorithm takes as input the public key pk and a message m ∈ M,
and outputs a ciphertext C ∈ C. The decryption algorithm takes as input the
private key sk and a ciphertext C ∈ C, and outputs either a message m ∈ M
or the error symbol ⊥. We demand that the encryption scheme is sound in the
sense that if C

$← E(pk , m), then m ← D(sk , C), for all keys (pk , sk) $← G(1k)
and m ∈ M.

If we are going to prove that an encryption scheme is secure, then we need
to have some formal notion of confidentiality. The commonly accepted “correct”
definition is that of indistinguishability under adaptive chosen ciphertext attack
(IND-CCA2) was proposed by Rackoff and Simon [28]. It built on the weaker
notion of IND-CCA1 security proposed by Naor and Yung [26].

Definition 1. An attacker A against the IND-CCA2 security of an encryption
scheme (G, E ,D) is a pair of probabilistic polynomial-time algorithms (A1,A2).
The success of the attacker is defined via the IND-CCA2 game:

(pk , sk) $← G(1k)
(m0, m1, state) $← AD

1 (pk)
b

$← {0, 1}
C∗ $← E(pk , mb)
b′ $← AD

2 (C∗, state)

The attacker may query a decryption oracle with a ciphertext C at any point
during its execution, with the exception that A2 may not query the decryption
oracle on C∗. The decryption oracle returns m ← D(sk , C). The attacker wins
the game if b = b′. An attacker’s advantage is defined to be

Adv IND

A (k) = |Pr[b = b′]− 1/2| . (1)

We require that a “reasonable” attacker’s advantage is “small”. This can
either be phrased by saying that every polynomial-time attacker must have neg-
ligible advantage under the assumption that it is hard to solve some underlying
problem (asymptotic security) or by relating the advantage ε of an attacker that
runs in time t to the success probability ε′ that an algorithm that runs in time
t′ has in breaking some underlying hard problem (concrete security). Much is
often made of the difference in these two approaches, but in practice they are
very similar – they both require that the proof demonstrate a tight reduction
from the encryption scheme to the underlying problem. This issue is discussed
in more detail in a previous paper [16].

It is sometimes convenient to work with a slightly different definition for
advantage. If the IND-CCA2 game encrypts a message defined by the bit b and
the attacker outputs the bit b′, then

Adv IND*

A (k) = |Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| . (2)

It can easily be shown that

Adv IND*

A (k) = 2 · Adv IND

A (k) . (3)

Hence, it is sufficient to bound Adv IND*

A in order to prove security.
A scheme that is secure against attackers that can only make decryption

oracle queries before receiving the challenge ciphertext C∗ is said to be IND-
CCA1 secure. A scheme that is secure against attackers that do not make any
decryption oracle queries at all is said to be IND-CPA or passively secure.

2 The Random Oracle Methodology

No paper on the history of secure encryption schemes would be complete with-
out a mention of the random oracle methodology. In the early 1990s, after the
development of the IND-CCA2 security model, researchers turned to the random
oracle methodology [4] in order to provide proofs of security for practical public
key encryption schemes. The intuition is simple: secure hash functions would
share many properties with random functions. Hence, it made sense to model a
secure hash function as a completely random function in a security analysis.

This greatly simplifies the process of proving the security of a cryptographic
scheme. By modelling the hash function as a random function, we know that
the hash function will output completely random and independently generated
values on different inputs. Knowledge of the hash values for several different
inputs gives absolutely no information about the hash value for any other input
and therefore the only way that an attacker can compute the hash value for a
given input is to query the hash function oracle on that input. This means that
the attacker’s behaviour is no longer completely black-box – we may now observe
the attacker’s behaviour during the attack process (in some limited way). We
may even construct the responses that the hash function oracle gives in ways
that help prove the security of the cryptosystem (subject to the restriction that
they appear to the attacker to be chosen at random).

Of course, schemes proven secure using the random oracle methodology are
not necessarily secure when the hash function is instantiated with a given fixed
hash function. There is always the possibility that the particular hash function
will interact badly with the mathematics of the encryption scheme, and that
the resulting system will be insecure. It was, however, hoped that the number of
hash functions that “interacted badly” would be small and that a scheme proven
secure using the random oracle methodology would be secure when the random
oracle was replaced with almost any hash function.

This turned out not to be true. In an amazing paper by Canetti, Goldreich
and Halevi [11], it was shown that it was possible to construct an encryption
scheme that was provably secure using the random oracle methodology, but was
insecure when the random oracle was instantiated with any hash function. The
paper notes that in the standard model (i.e. when we are not using the random
oracle methodology) the attacker has an extra piece of information not available
to the attacker in the random oracle model: the attacker has a description of
the hash function. The paper gives a scheme for which an attacker can use
this description like a password – the attacker submits the description of the
hash function to the decryption oracle as a ciphertext and the decryption oracle
helpfully returns the private key of the encryption scheme.

It is clear that the encryption scheme of Canetti, Goldreich and Halevi is
completely artificial – no real encryption scheme would make use of a decryption
algorithm that would output the private key if it were given a ciphertext of a
particular (checkable) form. However, it does act as a proof of concept: it is
possible to construct a scheme that is secure in the random oracle model, but
insecure in the standard model. We therefore cannot completely trust schemes
that are only proven secure in the random oracle model. A lot of effort has been
expended by cryptographers attempting to find a non-artificial scheme which is
secure in the random oracle model, but insecure in practice, but so far no such
scheme has been found.

Personally, I still think the random oracle model is a useful tool in cryp-
tography. I believe that it provides trustworthy security guarantees for the vast
majority of practical cryptosystems. Furthermore, I don’t think I know of a sin-
gle industrial company or standardisation body that would reject an efficient
cryptosystem because it “only” had a proof of security in the random oracle
model.

3 Double-and-Add Schemes

We now turn our attention to schemes that can be proven secure in the stan-
dard model. The approaches to constructing encryption schemes secure in the
standard model tend to fall several categories. The first approach is to use a
“double-and-add” technique, in which a message is encrypted twice (using two
weak encryption schemes) and a checksum value is added to the ciphertext.

3.1 The NIZK Schemes

The first attempt to prove the security of a scheme against chosen ciphertext
attacks was given by Naor and Yung [26]. Their approach was to encrypt a
message twice using two independent IND-CPA secure encryption schemes, and
then to provide a non-interactive zero-knowledge (NIZK) proof that the two
ciphertexts were encryptions of the same message. The Naor-Yung result only
produced an encryption scheme that was IND-CCA1 secure. Their approach
was extended by Sahai [29] to cover IND-CCA2 attacks by using a slightly more
powerful NIZK proof system.

It is not going to be possible, due to space constraints, to fully explain the
technical details of this scheme. However, we will give an overview of the scheme.
Suppose (G, E ,D) is an IND-CPA secure encryption scheme. The Sahai encryp-
tion scheme works as follows:

– Key generation. Generate two independent key pairs (pk1, sk1)
$← G(1k)

and (pk2, sk2)
$← G(1k), and a random string σ (for use by the NIZK proof).

The public key is pk = (pk1, pk2, σ) and the private key is sk = (sk1, sk2).
– Encryption. To encrypt a message m, compute C1

$← E(pk1, m) and C2
$←

E(pk2, m), and give a NIZK proof π that C1 and C2 are encryptions of the
same message (using the random string σ). The ciphertext is (C1, C2, π).

– Decryption. To decrypt a message, first check the proof π. If the proof fails,
then output ⊥. Otherwise, output m← D(sk1, C1).

Of course, as the NIZK proof π proves that C1 and C2 are the encryption of
the same message, we could have equivalently computed m← D(sk2, C2) in the
decryption algorithm.

The key to understanding the security of this scheme is in understanding the
security properties of the NIZK proof system. We require two properties from
the NIZK proof system:

– Zero knowledge. It should be possible to choose the random string σ in
such a way that the NIZK proof system has a trapdoor τ that allows an
entity in possession of the trapdoor to produce false proofs – i.e. it should be
possible to “prove” that any pair of ciphertexts (C1, C2) are the encryption
of the same message using the trapdoor τ , even if (C1, C2) are encryptions
of different messages. Furthermore, it should be impossible for the attacker
(who only knows the string σ and not the trapdoor τ) to be able to distin-
guish false proofs from real ones.

– Simulation Sound. It should be impossible for the attacker to produce a
proof π that two ciphertexts (C1, C2) are encryptions of the same message
unless the ciphertexts actually are the encryptions of the same message.
Furthermore, this property should hold even if the attacker is given a false
proof π which is computed using the trapdoor τ .

The ideas behind the proof become very simple to understand if one considers
bounding Adv IND*

A rather than Adv IND

A . In the IND* security model, we observe the

pk1
pk1pk1 pk2

pk2pk2

m0m0m0 m1m1m1

C∗
1C∗

1C∗
1 C∗

2C∗
2C∗

2

EEEEEE

Game 1 Game 2 Game 3

Fig. 1. The games used in security proof of the Sahai construction (with the NIZK
proof omitted).

difference in the attacker’s behaviour when the challenge encryption C∗ is an
encryption of m0 and when the challenge encryption C∗ is an encryption of
m1. Recall that this C∗ is of the form (C∗

1 , C∗
2 , π∗) where C∗

i
$← E(pk i, mb).

First, since the NIZK proof system is zero knowledge, we may assume that the
challenger has chosen a random string with a trapdoor, and that the NIZK
proof π∗ is produced using the trapdoor τ , rather than by using the normal
proof algorithm.

We use a simple game-hopping argument (as illustrated in Figure 1). Let
Game 1 be the game in which the challenge ciphertext C∗ is computed as an
encryption of m0. In other words,

C∗
1

$← E(pk1, m0) C∗
2

$← E(pk2, m0)

and π∗ is a proof that (C∗
1 , C∗

2) are encryptions of the same message. Let Game
2 be the game in which the challenge ciphertext C∗ is computed as

C∗
1

$← E(pk1, m0) C∗
2

$← E(pk2, m1)

and π∗ is a false proof that (C∗
1 , C∗

2) are encryptions of the same message com-
puted using the trapdoor τ . We claim that any attacker that can distinguish
between Game 1 and Game 2 can also break the IND-CPA security of the second
encryption scheme. The reduction makes use of the fact that we may decrypt a
valid ciphertext using the secret key for the first encryption scheme – this allows
us to simulate the decryption oracle.

Similarly, let Game 3 be the game in which the challenge ciphertext C∗ is
computed as

C∗
1

$← E(pk1, m1) C∗
2

$← E(pk2, m1)

and π∗ is a proof that (C∗
1 , C∗

2) are encryptions of the same message. If the
attacker can distinguish between Game 2 and Game 3, then the attacker can
break the IND-CPA security of the first scheme. This time the reduction makes
use of the fact that we may decrypt a valid ciphertext using the secret key for
the second encryption scheme.

The beauty of this construction is that it allows us to prove that secure public-
key encryption schemes exist assuming only the existence of trapdoor one-way
permutations. Sahai [29] notes that passively secure encryption schemes exist
under the assumption that trapdoor one-way functions exist [20] and builds
suitable NIZK proof systems using the results of Feige, Lapidot and Shamir [19]
and Bellare and Yung [6]. This is a wonderful theoretical result, but, due to
the theoretical nature of the NIZK proof system used in the construction, the
construction is not practical.

3.2 The Cramer-Shoup Encryption Scheme

The first practical public-key encryption scheme that was proven secure in the
standard model was the Cramer-Shoup scheme [13]. Although not explicitly
presented as an extension of the Sahai construction, it can be thought of as
building on these ideas. Suppose G is a cyclic group of prime order p that is
generated by g and that Hash : G3 → Zp is a (target collision resistant) hash
function. The Cramer-Shoup encryption scheme can be written as1:

G(1k)
ĝ

$← G

x1, x2, y1, y2, z
$← Zp

h← gz

e← gx1 ĝx2

f ← gy1 ĝy2

pk ← (g, ĝ, h, e, f)
sk ← (x1, x2, y1, y2, z)

E(pk , m)
r

$← Zp

a← gr

â← ĝr

c← hrm
v ← Hash(a, â, c)
d← erf rv

Output (a, â, c, d)

D(sk , C)
Parse C as (a, â, c, d)
v ← Hash(a, â, c)
If d �= ax1+y1v âx2+y2v

Output ⊥
m← c/az

Output m

This scheme is proven secure under the assumption that the DDH problem is
hard to solve in G and the hash function is target collision resistant.

On first glance, this scheme does not appear to have much in common with
Sahai’s double-and-add scheme. However, consider a variant of the ElGamal
encryption scheme [18] in the group G generated by an element h:

G(1k)
z

$← Z∗
p

g ← h1/z

pk ← g
sk ← z

E(pk , m)
r

$← Zp

a← gr

c← hrm
Output (a, c)

D(sk , C)
Parse C as (a, c)
m← c/az

Output m

This scheme is known to be IND-CPA secure under the DDH assumption. In
order to use this scheme with Sahai’s construction, we would need to encrypt
the same message twice using separate random values for each encryption. How-
ever, Bellare, Boldyreva and Staddon [1] show that the ElGamal scheme remains
secure when it is used to encrypt the same message under multiple public keys
even if the same random value r is used in all the encryptions. Hence, we may
1 Technically, this is the CS1a scheme.

think of (a, â, c) as a double encryption of the same message under two separate
public keys.

To complete the analogy, we must show that d acts in a manner similar to the
NIZK proof π in the Sahai construction. Therefore, d would have to have prop-
erties similar to simulation soundness and zero knowledge. In the Cramer-Shoup
scheme (a, â, c) is a valid double encryption of the same message providing that
there exists a value r such that a = gr and â = ĝr – i.e. providing that (g, ĝ, a, â)
form a DDH triple. An examination of the security proof for the Cramer-Shoup
scheme shows that a large portion of that proof is devoted to showing that we
can reject ciphertexts submitted to the decryption oracle for which (g, ĝ, a, â) is
not a DDH triple. This is analogous to simulation soundness. A further exami-
nation of the proof shows that it constructs the challenge ciphertext as a ← gr

and â ← gr′
for r �= r′. The “proof” d is falsely constructed from (a, â) us-

ing knowledge of (x1, x2, y1, y2). This is clearly analogous to the zero knowledge
property.

We note that the analogy is not entirely correct. In order to verify the cor-
rectness of the “proof” d, it is necessary to know the secret values (x1, x2, y1, y2).
In the analogy, this would be the equivalent to requiring the trapdoor τ to verify
the NIZK proof and Sahai’s construction does not appear to work if the trapdoor
is required to verify proofs. However, the similarities between the Cramer-Shoup
encryption scheme and the Sahai construction are striking. Other variants of
the Cramer-Shoup scheme, such as the Kurosawa-Desmedt scheme [24], can be
viewed similarly, albeit with more complex analyses.

4 Signatures and Identities

The security of the “double-and-add” schemes of the preceding section can be
proven because there are two equivalent ways in which a ciphertext can be
decrypted. Therefore, if part of the security proof prevents us from using one
decryption method, then we may still decrypt ciphertexts correctly using the
other decryption method. In this section, we look at a technique which handles
decryption in another way.

4.1 The Canetti-Halevi-Katz transform

The elegant technique we will look at was proposed by Canetti, Halevi and Katz
[12] and converts a passively secure identity-based encryption scheme into a fully
secure public-key encryption scheme using a one-time signature scheme. We will
examine a more generalised version proposed by MacKenzie, Reiter and Yang
[25] and Kiltz [23] based on the concept of tag-based encryption.

A tag-based encryption scheme is an encryption scheme in which the en-
cryption and decryption algorithm take an extra input called a tag. In order
for decryption to work, the tag used at encryption must also be presented at
decryption. In other words, a tag-based encryption scheme is a triple of algo-
rithms (G, E ,D) where G has the same syntax as in a traditional public-key

encryption algorithm. The encryption algorithm takes as input a public key pk ,
a message m ∈ M, and a tag t ∈ {0, 1}∗, and outputs a ciphertext C ∈ C. The
decryption algorithm takes as input a private key sk , a ciphertext C ∈ C, and
a tag t ∈ {0, 1}∗, and outputs either a message m ∈ M or the error symbol
⊥. We require that if C

$← E(pk , m, t), then m ← D(sk , C, t), for all key-pairs
(pk , sk) $← G(1k), messages m ∈ M and tags t ∈ {0, 1}∗.
Definition 2. An attacker A against the selective-tag weak chosen-ciphertext
attacks of a tag-based encryption scheme (G, E ,D) is a triple of probabilistic
polynomial-time algorithms (A0,A1,A2). The success of the attacker is defined
via the following game:

(t∗, state) $← A0(1k)
(pk , sk) $← G(1k)
(m0, m1, state) $← AD

1 (pk , state)
b

$← {0, 1}
C∗ $← E(pk , mb, t

∗)
b′ $← AD

2 (C∗, state)

The attacker may query a decryption orale with any ciphertext C and any tag
t �= t∗. The decryption oracle m ← D(sk , C, t). The attacker wins the game if
b = b′. The attacker’s advantage is defined to be

Adv Tag

A (k) = |Pr[b = b′]− 1/2| . (4)

This notion of security basically states that the ability to decrypt ciphertexts
using one tag does not help an attacker decrypt ciphertexts using another tag.

A tag-based encryption scheme can be constructed from a selective-identity
IND-ID-CPA secure identity based encryption scheme, where the identity in the
identity-based encryption scheme plays the same role as the tag in a tag-based
encryption scheme. Since an identity-based encryption scheme allows the at-
tacker to derive a private key for any identity not equal to the challenge identity,
the attacker can decrypt any ciphertext for any identity except the challenge
identity.

The CHK transform converts a selective-tag weak chosen-ciphertext secure
tag-based encryption scheme into an IND-CCA2 secure public-key encryption
scheme via a one-time signature scheme. A one-time signature scheme is a triple
of probabilistic, polynomial-time algorithms (Gen ,Sign,Verify). The Gen algo-
rithm takes as input the security parameter 1k and outputs a public/private key
pair (vrk , snk). The signing algorithm Sign takes as input a private signing key
snk and a message m, and outputs a signature σ. The verification algorithm
Verify takes as input a public verification key vrk , a message m and a signature
σ, and outputs either true or false. The verification algorithm should verify all
signature created using the signing algorithm. Furthermore, the attacker should
not be able to forge a new signature on any message after having seen a single
message/signature pair.

The complete public-key encryption scheme (G′, E ′,D′) is as follows:

G′(1k)
(pk , sk) $← G(1k)
Output (pk , sk)

E ′(pk , m)
(vrk , snk)

$← Gen(1k)
t← vrk
c

$← E(pk , m, t)
σ

$← Sign(snk , c)
Output (c, vrk , σ)

D′(sk , C)
Parse C as (c, vrk , σ)
If Verify(vrk , c, σ) �= true

Output ⊥
t← vrk
m← D(sk , c, t)
Output m

The principle behind the security proof for this elegant construction couldn’t be
simpler. Suppose the challenge ciphertext is (c∗, vrk∗, σ∗) and consider a cipher-
text (c, vrk , σ) submitted to a decryption oracle. We reduce the security of the
public-key encryption scheme to the security of the tag-based encryption scheme.
We know that the tag-based encryption scheme is passively secure; hence, it suf-
fices to explain how we handle decryption oracle queries. If vrk �= vrk∗ then we
may request the decryption of c using the decryption oracle for the tag-based
encryption scheme. If vrk = vrk∗ then either the signature σ is invalid or the
attacker has broken the unforgeability of the one-time signature scheme. Hence,
with overwhelming probability, we may return ⊥ as the decryption oracle’s re-
sponse.

There are a number of other schemes that prove their security using simi-
lar principles [9, 10]. In many ways, it is ironic that it was the development of
standard-model-secure identity-based encryption schemes (a harder primitive to
construct) that produced the next chapter in the development of public-key en-
cryption schemes. However, these schemes are similar to the “double-and-add”
schemes in that they convert a passively secure scheme into a fully secure scheme
using a cryptographic checksum. This two-stage process is never going to be as
efficient as other constructions might be.

4.2 The Dolev-Dwork-Naor Scheme

The first IND-CCA2 secure public-key encryption scheme was proposed by Dolev,
Dwork and Naor [17] in 1991. For many years, this complex and elegant scheme
remained the only IND-CCA2 public-key encryption scheme proven secure in the
standard model. It is ironic that the easiest way to understand this early scheme
is via the “double-and-add” schemes and “signature-and-identity” schemes that
we have discussed. Essentially, the authors use a Naor-Yung technique to con-
struct a tag-based encryption scheme and then apply a CHK transform. This,
of course, is particularly impressive since the concept of a tag-based encryption
scheme was more than a decade away.

The Dolev-Dwork-Naor (DDN) scheme makes use of a passively secure en-
cryption scheme (G, E ,D) and a NIZK proof system to prove that � ciphertexts
all contain encryptions of the same message. It also makes use of a one-time
signature scheme (Gen ,Sign,Verify) which produces �-bit verification keys. It
runs as follows:

– Key Generation. Generate 2� independent key-pairs (pk t
j , sk

t
j)

$← G(1k)
for 1 ≤ j ≤ � and t ∈ {0, 1}, and a random string s (for use with the NIZK

proof). The public key consists of (pk0
1, pk

1
1, . . . , pk

0
� , pk

1
� , s) and the private

key is (sk0
1, sk

1
1, . . . , sk

0
� , sk

1
�).

– Encryption. To encrypt a message m, generate a one-time signature key-
pair (vrk , snk) $← Gen(1k) and parse vrk as bits t1 . . . t�. Parse the message
as bits m1 . . . mn. For each message bit mi compute � encryptions cij

$←
E(pk tj

j , mi) and a proof πi that each of these ciphertexts encrypts the same
message bit. At this stage, the ciphertext consists of n sets of encryptions
ci ← (ci1, . . . , ci�) and n proofs πi. Let c← ((c1, π1), . . . , (cn, πn)). Compute
the signature σ

$← Sign(snk , c). The ciphertext is (c, vrk , σ).
– Decryption. To decrypt a ciphertext (c, vrk , σ), first verify that the signa-

ture is correct and return ⊥ if the signature is invalid. Then check each
proof πi is correct and return ⊥ if any proof is invalid. Lastly, if both
checks are correct, then parse vrk as bits t1 . . . t�, compute the message bits
mi ← D(sk t1

1 , ci1) and return m← m1 . . . mn.

This can easily be seen to be the result of applying the CHK transform to
the following tag-based encryption scheme:

– Key Generation. Generate 2� independent key-pairs (pk t
j , sk

t
j)

$← G(1k)
for 1 ≤ j ≤ � and t ∈ {0, 1}, and a random string s (for use with the NIZK
proof). The public key consists of (pk0

1, pk
1
1, . . . , pk

0
� , pk

1
� , s) and the private

key is (sk0
1, sk

1
1, . . . , sk

0
� , sk

1
�).

– Encryption. To encrypt a message m using a tag t, parse t as bits t1 . . . t�.
Parse the message as bits m1 . . . mn. For each message bit mi compute �

encryptions cij
$← E(pk tj

j , mi) and a proof πi that each of these ciphertexts
encrypts the same message bit. Let ci ← (ci1, . . . , ci�) and return the cipher-
text c← ((c1, π1), . . . , (cn, πn)).

– Decryption. To decrypt a ciphertext c = ((c1, π1), . . . , (cn, πn)) using a tag
t, first check each proof πi is correct and return ⊥ if any proof is invalid. If
each proof is correct, then parse t as bits t1 . . . t�, compute the message bits
mi ← D(sk t1

1 , ci1) and return m← m1 . . . mn.

This scheme can be seen to be selective-tag weakly chosen ciphertext secure by
observing that as the attacker in the tag-based encryption security model has
to output the challenge tag t∗ at the beginning of the game, we can arrange for
� “real” instances of the public-key encryption scheme to be used to encrypt all
messages using the challenge tag t∗. The private key corresponding to these keys
are unknown. However, we may generate the � remaining “false” public/private
key pairs ourselves. The challenge ciphertext is computed using the “real” public
keys and so the value of the challenge message is unknown. However, we may
still answer decryption oracle queries. If the attacker submits a ciphertext c =
(c1, π1), . . . , (cn, πn)) and tag t �= t∗ to the decryption oracle, then we may
be sure that each ciphertext component ci contains � encryptions of the same
message bit. Furthermore, since t �= t∗, we must have that one ciphertext cij

was computed using a “false” public key, for which we know the corresponding
private key. Hence, we may recover the message bit by decrypting this component

and so answer the decryption oracle query correctly. This demonstrates that the
security of the tag-based encryption scheme can be reduced to the security of
the underlying passively-secure encryption scheme.

Of course, this scheme is highly inefficient. The use of Naor-Yung “double-
and-add” technique means that we have to encrypt every message bit multiple
times, and use an arbitrary NIZK proof system. Furthermore, the use of the
CHK transform implies the need for an inexpensive signing operation. Hence,
this scheme can only be considered to be of theoretical interest.

5 Extracting Plaintext Awareness

Plaintext awareness is a simple idea with a complicated explanation. An en-
cryption scheme is plaintext aware if it is impossible for a user to create a valid
ciphertext without knowing the underlying message. This effectively makes a
decryption oracle useless to the attacker – any valid ciphertext he submits to
the decryption oracle will return a message that he already knows. If he submits
a ciphertext to the decryption oracle for which he does not know the underlying
message, then the decryption oracle will return ⊥. This leads to the central theo-
rem of plaintext awareness: that a scheme that is IND-CPA secure and plaintext
aware is IND-CCA2 secure.

The difficulty with this idea is formalising what it means to say that a user
“knows” an underlying message. The first attempt to produce a formal definition
for plaintext awareness was given in the random oracle model [2, 5] but had the
disadvantage that it could only be realised in the random oracle model. It took
several years before a definition compatible with the standard model was found.

5.1 Plaintext Awareness via Key Registration

The first attempt to provide a standard-model definition of plaintext awareness
was given by Herzog, Liskov and Micali [22]. In their model, if a sender wishes
to send a message to a receiver, then both the sender and the receiver must
have a public key. Furthermore, the sender must register their public key with
some trusted registration authority in a process that includes a zero-knowledge
proof of knowledge for the private key. Now, whenever the sender wants to send
a message, it forms two ciphertexts – an encryption of the message using the
receiver’s public key and an encryption of the message using the sender’s own
public key – and provides a NIZK proof that the ciphertexts are the encryption of
the same message. The receiver decrypts the ciphertext by checking the validity
of the NIZK proof and decrypting the component that was encrypted using their
public key.

The plaintext awareness of the scheme can be easily shown: since the NIZK
proves that the encryptions are identical, we know that both ciphertexts are
the encryption of the same message. Furthermore, since the sender has proven
knowledge of the private key, we know that the sender can decrypt the compo-
nent of the ciphertext encrypted using the sender’s public key and recover the
message. Hence, we can conclude that the sender “knows” the message.

This is an interesting idea, and clearly related to the security of the Sahai
construction, but it is never really been adopted to prove the security of practical
schemes. The requirement that the sender must have a registered public key
creates the need for a huge public-key infrastructure which is unlikely to exist
in practice. Furthermore, the scheme still makes use of arbitrary zero-knowledge
proofs of knowledge and NIZK proof systems, which are impractical.

5.2 Using Extractors

In 2004, Bellare and Palacio [3] introduced a new standard-model definition for
plaintext awareness. Their definition has several advantages over the definition of
Herzog, Liskov and Micali. In particular, Bellare and Palacio’s definition doesn’t
require a sender to register a key. It is also compatible with earlier definitions in
the random oracle model, in the sense that a scheme proven plaintext aware using
the random-oracle-based definition of plaintext awareness is also plaintext aware
using the standard-model-based definition of plaintext awareness (although the
proof of this fact uses the random oracle model).

The Bellare and Palacio definition of plaintext awareness uses a definition of
“knowledge” that is similar to the definition used in zero knowledge. An attacker
A is deemed to “know” a value x if it is possible to alterA to give a new algorithm
A∗ that outputs x.

Let (pk , sk) be a randomly generated key pair for a public-key encryption
scheme (G, E ,D). We consider an attacker A that takes as input a public key
pk and a set of random coins R, and interacts with an “oracle” to which it
can submit ciphertexts. The form of the oracle depends upon the game that
the attacker is playing. In the Real game, the oracle is instantiated using the
decryption algorithm D(sk , ·). In the Fake game, the oracle is instantiated by
an algorithm A∗ which we call the plaintext extractor. This plaintext extractor
A∗ is a stateful, probabilistic, polynomial-time algorithm that depends upon A
and initially takes as input the public key pk and the random coins R used
by A. Since A∗ has all the inputs of A, one can think of A∗ as observing A’s
behaviour as it creates ciphertexts. If the attacker A submits a ciphertext C
to the plaintext extractor A∗, then it is A∗’s task to determine the underlying
message from A’s behaviour.

It would be nice if we were done here, but we also need to consider the pos-
sibility that the attacker A can obtain some ciphertexts for which he does not
know the underlying message. In the real world, this corresponds to the idea
that the attacker might be able to observe ciphertexts created by other people.
In the IND security model, this allows for the fact that the attacker is given
the challenge ciphertext C∗ (for which he does not know the underlying encryp-
tion). This possibility is allowed for in the security model for plaintext awareness
by giving the attacker access to an encryption oracle that, when queried with
some auxiliary information aux , generates a message m

$← P(aux) (using some
arbitrary, stateful, probabilistic polynomial-time algorithm P) and returns the
ciphertext C

$← E(pk , m). We are forced to give C to the plaintext extractor A∗

pk

pk

pk

sk

AA

A∗D(·) E(P(·))E(P(·))

mm

C

CCCC

R

R

R
xx

auxaux

Real Game Fake Game

Fig. 2. The Real and Fake games for plaintext awareness

so that it may continue to observe A’s behaviour. We forbid A from asking for
the decryption of C. We show the differences between the Real and Fake game
graphically in Fig. 2.

We say that a scheme is plaintext aware if, for any attacker A, there exists
a plaintext extractor A∗ such that, for any plaintext creating algorithm P , the
output x of A in the Real game is indistinguishable from the output x of A in
the Fake game.

Bellare and Palacio [3] prove that any scheme that is IND-CPA secure and
plaintext aware in this model is necessarily IND-CCA2 secure. In an extraordi-
nary paper, Teranishi and Ogata [30] prove that a scheme that is one-way and
plaintext aware in this model is necessarily IND-CCA2 secure. There are weaker
models for plaintext awareness that are similar to this model, and their relation-
ships to the full security model have been well explored by Bellare and Palacio
[3] and by Birkett and Dent [8].

The first scheme that was proven fully plaintext aware in the standard model
was the Cramer-Shoup encryption scheme [15]. This proof relies heavily on the
Diffie-Hellman Knowledge assumption first introduced by Damg̊ard [14]. This
assumption is meant to capture the intuition that the only way the attacker
can compute a Diffie-Hellman tuple (g, h, gr, hr) from the pair (g, h) is by gen-
erating r and computing (gr, hr) directly. The definition states that for every
attacker A that outputs (gr, hr), there exists an algorithm A∗ that can output
r given the random coins of A. This is known as an extractor assumption, as
the algorithm A∗ extracts the random value r by observing the execution of A.
Birkett and Dent [7] have shown that other schemes with a similar structures to
the Cramer-Shoup [13] and Kurosawa-Desmedt [24] schemes are plaintext aware
under similar extractor assumptions.

This highlights the most significant problem with the plaintext awareness
approach to proving security: no-one has yet managed to prove the plaintext
awareness of an encryption scheme without the use of an extractor assumption.
These extractor assumption are poor things on which to base the security of an
encryption scheme as it is very difficult to gain any evidence about whether the

assumption is true or not. It can be as difficult to prove the assumption is false
as it is to prove the assumption is true.

6 Conclusion

The cryptographic community have come a long way in proving the security
of public-key encryption schemes. However, the ultimate prize is still yet to
be claimed: a proof of security for an ultra-efficient encryption scheme in the
standard model. The approaches we have discussed in this paper do make signif-
icant advantages in improving the efficiency of schemes with full security proofs.
However, none of the approaches seem likely to break the final efficiency bar-
rier. Both the “double-and-add” schemes and the identity-based schemes require
separate encryption and checksum operations. Hence, the resulting encryption
schemes require two “expensive” calculations. On the other hand, the plaintext
awareness approach relies on extractor-based assumptions, which do not engen-
der confidence in the security of the scheme, and still do not seem to be able to
prove the security of a scheme that uses less than two “expensive” calculations.
It seems as if a new technique has to be developed before this barrier can be
broken.

Acknowledgements I’d like to thank Prof. Serge Vaudenay and Prof. Ab-
delhak Azhari for extending the invitation to me to give an invited talk at
Africacrypt 2008, and I would like to stress that this paper has not been refereed
by a peer review process. Thus, any mistakes or inaccuracies in the paper should
be considered mine alone and no blame should be attached to the programme
committee or any external reviewers. I’d also like to thank James Birkett, Gaven
Watson and Jonathan Katz for their comments on the paper.

References

1. M. Bellare, A. Boldyreva, and J. Staddon. Multi-recipient encryption schemes:
Security notions and randomness re-use. In Y. G. Desmedt, editor, Public Key
Cryptography – PKC 2003, volume 2567 of Lecture Notes in Computer Science,
pages 85–99. Springer-Verlag, 2003.

2. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, Advances
in Cryptology – Crypto ’98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998.

3. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In P. J. Lee, editor, Advances in Cryptology – Asiacrypt 2004,
volume 3329 of Lecture Notes in Computer Science, pages 48–62. Springer-Verlag,
2004.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proc. of the First ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

5. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Alfredo De Santis,
editor, Advances in Cryptology – Eurocrypt ’94, volume 950 of Lecture Notes in
Computer Science, pages 92–111. Springer-Verlag, 1994.

6. M. Bellare and M. Yung. Certifying permutations: Non-interactive zero-knowledge
based on any trapdoor permutation. Journal of Cryptology, 9(1):149–166, 1996.

7. J. Birkett and A. W. Dent. The generalised Cramer-Shoup and Kurosawa-Desmedt
schemes are plaintext aware. Unpublished Manuscript, 2008.

8. J. Birkett and A. W. Dent. Relations among notions of plaintext awareness. In
R. Cramer, editor, Public Key Cryptography – PKC 2008, volume 4939 of Lecture
Notes in Computer Science, pages 47–64. Springer-Verlag, 2008.

9. D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built
using identity-based encryption. In A. Menezes, editor, Topics in Cryptology -
CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 87–103.
Springer-Verlag, 2005.

10. X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-
based techniques. In Proc. of the 12th ACM Conference on Computer and Com-
munications Security, pages 320–329, 2005.

11. R. Canetti, O. Goldreich, and S. Halvei. The random oracle model, revisited. In
Proceedings of the 30th Annual ACM Symposium on the Theory of Computing,
pages 209–218, 1998.

12. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In C. Cachin and J. Camenisch, editors, Advances in Cryptology –
Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science, pages 207–
222. Springer-Verlag, 2004.

13. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2004.

14. I. B. Damg̊ard. Towards practical public key systems secure against chosen ci-
phertext attacks. In J. Feigenbaum, editor, Advances in Cryptology – Crypto ’91,
volume 576 of Lecture Notes in Computer Science, pages 445–456. Springer-Verlag,
1991.

15. A. W. Dent. The Cramer-Shoup encryption scheme is plaintext aware in the stan-
dard model. In S. Vaudenay, editor, Advances in Cryptology – Eurocrypt 2006, vol-
ume 4004 of Lecture Notes in Computer Science, pages 289–307. Springer-Verlag,
2006.

16. A. W. Dent. Fundamental problems in provable security and cryptography. Phil.
Trans. R. Soc. A, 364(1849):3215–3230, Dec 2006.

17. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Proc. 23rd
Symposium on the Theory of Computing – STOC 1991, pages 542–552. ACM, 1991.

18. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

19. U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SAIM Journal on Computing, 29(1):1–28, 1999.

20. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
Proc. 21st Symposium on Theory of Computer Science – STOC 1989, pages 25–32.
ACM, 1989.

21. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Science, 28:270–299, 1984.

22. J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In
D. Boneh, editor, Advances in Cryptology – Crypto 2003, volume 2729 of Lecture
Notes in Computer Science, pages 548–564. Springer-Verlag, 2003.

23. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and
T. Rabin, editors, Theory of Cryptography – TCC 2006, volume 3876 of Lecture
Notes in Computer Science, pages 581–600. Springer-Verlag, 2006.

24. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In
M. Franklin, editor, Advances in Cryptology – Crypto 2004, volume 3152 of Lecture
Notes in Computer Science, pages 426–442. Springer-Verlag, 2004.

25. P. MacKenzie, M. K. Reiter, and K. Yang. Alternatives to non-malleability: Defini-
tions, constructions and applications. In M. Naor, editor, Theory of Cryptography
– TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 171–190.
Springer-Verlag, 2004.

26. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proc. 22nd Symposium on the Theory of Computing – STOC
1990, pages 427–437. ACM, 1990.

27. M. O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer
Science, 1979.

28. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor, Advances in Cryptology
– Crypto ’91, volume 576 of Lecture Notes in Computer Science, pages 434–444.
Springer-Verlag, 1991.

29. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proc. 40th Annual Symposium on Foundations of Computer
Science – FOCS ’99, pages 543–553. IEEE Computer Society, 1999.

30. I. Teranishi and W. Ogata. Relationship between standard model plaintext aware-
ness and message hiding. In X. Lai and K. Chen, editors, Advances in Cryptology –
Asiacrypt 2006, volume 4284 of Lecture Notes in Computer Science, pages 226–240.
Springer-Verlag, 2006.

