
Precise Interval Analysis vs. Parity Games

Thomas Gawlitza1 and Helmut Seidl1

TU München, Institut für Informatik, I2
85748 München, Germany

{gawlitza, seidl}@in.tum.de

Abstract. In [?], a practical algorithm for precise interval analysis is provided
for which, however, no non-trivial upper complexity bound is known. Here, we
present a lower bound by showing that precise interval analysis is at least as hard
as computing the sets of winning positions in parity games. Our lower-bound
proof relies on an encoding of parity games into systems of particular integer
equations. Moreover, we present a simplification of the algorithm for integer
systems from [?]. For the given encoding of parity games, the new algorithm
provides another algorithm for parity games which is almost as efficient as the
discrete strategy improvement algorithm by Vöge and Jurdziński [?].

1 Introduction

Interval analysis as introduced by Cousot and Cousot [?,?] tries to determine at compile-
time for each variable x and program point v in a program an as tight interval as possible
which is guaranteed to contain all values of x when reaching program point v. This
problem is of fundamental importance for program optimizations such as safe removal
of array bound checks as well as the certification of absence of arithmetic overflows.
The problem with interval analysis, though, is that the lattice of all intervals has infinite
ascending chains implying that acceleration techniques are needed to enforce fixpoint
iteration to terminate. One such acceleration technique is the widening and narrowing
approach of Cousot and Cousot [?,?] which, however, results in algorithms which may
fail to return the least solution of the given system of equations extracted from the
program.

Recently, the problem of interval analysis has attracted new attention. In [?] Su and
Wagner identified a class of polynomial solvable range constraints for interval analy-
sis which can be solved precisely. This class admits full addition. Multiplication and
intersection are restricted in such a way that at least one of the arguments must be a
constant interval. Leroux and Sutre [?] extend this result by providing an acceleration-
based algorithm for solving interval constraints with full multiplication and restricted
intersection in cubic time precisely. In [?], Gaubert et al. suggest strategy iteration as
an alternative method for computing solutions of interval equations with full intersec-
tions. Their method still fails to return the least solution in some cases. Computing the
least solution to the interval equations introduced for interval analysis will be called
precise interval analysis in the sequel. In [?], we reduce precise interval analysis to
solving systems of integer equations for which we propose another variant of strategy
iteration which is guaranteed to return the least solution. The practical efficiency of any

algorithm based on strategy iteration depends on the number of strategies encountered
during the iteration. Although we never have observed more than a linear number of
strategies, no non-trivial upper bound to this number is known. Thus, one might think
of other methods to obtain not only a practical, but also provably polynomial algo-
rithm for precise interval analysis. Here we show that, if such an algorithm exists, it
also solves a long standing open problem, namely, to compute the winning regions of a
parity game in polynomial time.

This lower-bound proof uses a reduction similar to the reductions of parity games
to mean payoff games and discounted payoff games [?,?]. A different class of interval
constraints is considered in [?] where Bordeaux et al. prove that computing the least
fixpoint is NP-hard. This strong lower bound, however, relies on the explicit use of
a square-root operator and thus cannot easily be carried over to our class where only
linear operations on intervals are allowed.

Our encoding of parity games does not only give a lower-bound argument for pre-
cise interval analysis, but also allows to use methods for integer systems to solve parity
games. As our second contribution, we therefore present a new version of the algorithm
from [?] for integer systems which is significantly simpler. Similar to the algorithm in
[?], the new algorithm is based on strategy iteration. The original algorithm, however,
relies on an instrumentation of the underlying lattice to guide strategy improvement.
This extra overhead is now avoided. Via our encoding, the new method for integer sys-
tems also provides a very simple algorithm for parity games. Compared to the discrete
strategy improvement algorithm of Vöge [?,?], the valuations to determine the next
strategy needed by our algorithm are just mappings from positions to integers.

The paper is organized as follows. In section 2, we introduce basic notions and
the concepts of parity games and systems of integer equations. In section ??, we show
how one can reduce the computation of the winning regions and the winning strate-
gies for a parity game to the computation of the least solution of systems of particu-
lar integer equations. In section ??, we show how computing least solutions of these
integer equations can be reduced to precise interval analysis — thus completing the
lower-bound proof for interval analysis. In section ??, we present the novel strategy
iteration algorithm for solving systems of integer equations. Moreover, we organize the
strategy iteration in such a way that, for simple integer equations, i.e., for equations
with addition of constants only, the number of maxima with constants no longer affects
the asymptotic complexity. Since the systems obtained from our reduction from parity
games are simple, the reduction together with the new algorithm for integer equations
provides another strategy iteration algorithm for parity games. Each improvement step
of this algorithm requires at most quadratically many operations on integers of length
O(d · log n) where n is the number of positions and d is the maximal rank of the parity
game.

2 Notation and Basic Concepts

As usual, N and Z denote the set of natural numbers excluding 0 and the set of integers,
respectively. We write N0 for N∪{0}. Given a relationR ⊆ A×B and a subsetA′ ⊆ A
we write A′R for the set {b ∈ B | ∃a ∈ A′ : (a, b) ∈ R}. Our complexity results will

be stated w.r.t. a uniform cost measure where we count memory accesses and arithmetic
operations for O(1).

Parity Games. A parity game is a tuple G = (V∨, V∧, E, r). V∨ and V∧ are disjoint
finite sets of positions owned by the ∨-player and the ∧-player, respectively. We will
always write V for the set V∨ ∪ V∧. The set E ⊆ V 2 is a finite set of possible moves
with {v}E 6= ∅ for every position v ∈ V , i.e., there is no sink. Finally, r : V → N0 is
the rank function which assigns a rank r(v) to every position v.

A play over G is an infinite word w = v1v2 · · · with (vi, vi+1) ∈ E for i ∈ N. Let
m(w) := max{r(v) | v ∈ V occurs infinitely often in w}. The play w is won by the
∨-player (resp. ∧-player) iff m(w) is odd (resp. even). A position v ∈ V is called ∨-
winning (resp. ∧-winning) iff the ∨-player (resp. ∧-player) can enforce that every play
starting at v is won by the ∨-player (resp. ∧-player). The set of all ∨-winning (resp.
∧-winning) positions is called the ∨-winning region (resp. ∧-winning region).

A mapping σ∨ : V∨ → V with σ∨(v) ∈ {v}E for every v ∈ V∨ is called a
positional ∨-strategy. Dually, a mapping σ∧ : V∧ → V with σ∧(v) ∈ {v}E for every
v ∈ V∧ is called a positional ∧-strategy. A play w is consistent with the positional
∨-strategy σ∨ iff σ∨(v∨) = v for every finite prefix w′v∨v of w with v∨ ∈ V∨. Dually,
a play w is consistent with the positional ∧-strategy σ∧ iff σ∧(v∧) = v for every finite
prefixw′v∧v ofw with v∧ ∈ V∧. It is well-known that positional strategies are sufficient
(memoryless determinacy) [?]. This means: there exists a positional ∨-strategy σ∨ such
that every play w which starts at a ∨-winning position and which is consistent with σ∨
is won by the ∨-player. Such a positional ∨-strategy is called winning. Dually, there
exists a positional ∧-strategy σ∧ (called winning) such that every play w which starts at
a ∧-winning position and which is consistent with σ∧ is won by the ∧-player.

Given a positional ∨-strategy σ∨ (resp. ∧-strategy σ∧) we write G(σ∨) (resp.
G(σ∧)) for the parity game (V∨, V∧, (E ∩ V∧ × V)∪ σ∨, r) (resp. (V∨, V∧, (E ∩ V∨ ×
V) ∪ σ∧, r)) 1. Thus, the parity game G(σ∨) (resp. G(σ∧)) is obtained from G by re-
moving all moves which cannot be used in any play which is consistent with σ∨ (resp.
σ∧). A ∨-strategy σ∨ (resp. ∧-strategy σ∧) is winning iff every play w in G(σ∨) (resp.
G(σ∧)) which starts from a ∨-winning position (resp. ∧-winning position) is won by
the ∨-player (resp. ∧-player).

Systems of Integer Equations. We briefly introduce systems of integer equations (cf.
[?]). Let Z denote the complete lattice Z∪{−∞,∞} equipped with the natural ordering.
We extend the operations addition + : Z×Z→ Z and multiplication · : Z×Z→ Z to
the operands −∞ and∞:

x+ (−∞) = −∞ for all x ∈ Z x+∞ = ∞ for all x > −∞
0 · x = 0 for all x > −∞ x · (−∞) = −∞ for all x > 0
x · ∞ = ∞ for all x > 0 x · (−∞) = ∞ for all x < 0
x · ∞ = −∞ for all x < 0

A system E of integer equations is a sequence of equations xi = ei for i = 1, . . . , n,
where the variables xi on the left-hand sides are pairwise distinct and the right-hand

1 Here a mapping f : A→ B is considered as the relation {(a, f(a)) | a ∈ A}.

sides ei are expressions e built up from constants and variables by means of addition,
multiplication with constants as well as minimum (“∧”) and maximum (“∨”):

e ::= a | x | e1 + e2 | b · e1 | e1 ∧ e2 | e1 ∨ e2

where e1, e2 are expressions, x is a variable, a, b ∈ Z, b ≥ 1. We assume that b· has
the highest operator precedence followed by +, ∧ and ∨ which has the lowest operator
precedence. We write |E| for the number of subexpressions occurring in right-hand
sides of E . Thus, |E| is independent of the sizes of numbers occurring in E . We denote
the set of variables of E by XE . We drop the subscript whenever E is clear from the
context. The system E is called disjunctive, if it does not contain ∧-expressions, and
it is called conjunctive, if it does not contain ∨-expressions. A system without ∨- and
∧-expressions is called basic. If E denotes the system xi = ei, i = 1, . . . , n, then, for
a, b ∈ Z with a ≤ b, E|[a,b] denotes the system xi = (ei ∧ b) ∨ a, i = 1, . . . , n.

Under a variable assignment µ, i.e., a function which maps variables from X to
values from Z, an expression e evaluates to a value JeKµ ∈ Z:

JaKµ = a JxKµ = µ(x) Je1 + e2Kµ = Je1Kµ+ Je2Kµ
Jb · eKµ = b · JeKµ Je1 ∨ e2Kµ = Je1Kµ ∨ Je2Kµ Je1 ∧ e2Kµ = Je1Kµ ∧ Je2Kµ

where e, e1, e2 are expressions, x is a variable, a, b ∈ Z, b ≥ 1. Together with the
point-wise ordering the set of variable assignments X → Z forms a complete lattice.
A solution of E is a variable assignment µ which satisfies all equations of a system
E , i.e. µ(xi) = JeiKµ for all i. A variable assignment µ with µ(xi) ≤ JeiKµ (resp.
µ(xi) ≥ JeiKµ) is called a pre-solution (resp. post-solution) of E . Since every right-hand
side ei induces a monotonic function JeiK, Knaster-Tarski’s fixpoint Theorem implies
that every system E of integer equations has a least solution µ∗, i.e., µ∗ ≤ µ for every
solution µ of E . The least solution µ∗ is the greatest lower bound of all post-solutions.
We refer to computing the least solution of a system E as solving the system E .

We will also define strategies for systems of integer equations. Let M(E) denote
the set of all ∨-expressions occurring in E . Moreover, let Mc(E) ⊆ M(E) denote the
set of ∨-expression e ∨ e′ occurring in E where at least one of the arguments e, e′ is
constant, i.e. it does not contain any variable. Let Mnc(E) := M(E) \Mc(E). A ∨-
strategy π for E is a function mapping every expression e1 ∨ e2 in M(E) to one of
the subexpressions e1, e2. For an expression e we write eπ for the expression obtained
from e by recursively replacing every ∨-expression with the respective subexpression
selected by the ∨-strategy π, i.e.:

aπ = a xπ = x (e1 + e2)π = e1π + e2π
(b · e)π = b · eπ (e1 ∨ e2)π = (π(e1 ∨ e2))π (e1 ∧ e2)π = e1π ∧ e2π

where e, e1, e2 are expressions, x is a variable, a, b ∈ Z, b ≥ 1. Assuming that E is the
system xi = ei, i = 1, . . . , n, we write E(π) for the system xi = eiπ, i = 1, . . . , n.
The definitions for ∧-strategies are dual.

Systems of simple integer equations are of a particular interest. We call an expres-
sion e simple iff it is of the following form:

e ::= c | x | e+ a | e1 ∨ e2 | e1 ∧ e2

where e, e1, e2 are simple expressions, x is a variable, a ∈ Z, c ∈ Z. I.e., at least
one argument of every +-expression is a constant. An integer equation x = e is called
simple iff e is simple.

We define the relation→ between expressions of E by e→ e′ iff e′ is an immediate
subexpression of e or e is a variable and e′ is the right-hand side of e, i.e., e = e′ is
an equation of E . A sequence p = e1, . . . , ek of expressions occurring in E is called a
path in E iff ei → ei+1 for i = 1, . . . , k− 1. The path is called simple iff no expression
occurs twice in it. The path e1, . . . , ek is called a cycle iff ek → e1. The weight w(p)
of a path p = e1, . . . , ek is the sum

∑k
i=1 w(ei) where w(e) equals a if e ≡ e′ + a

for some expression e′ and a ∈ Z, and w(e) equals 0 otherwise. We call a system E of
simple integer equations non-zero iff w(c) 6= 0 for every simple cycle c in E .

Example 1. Consider the following systems of simple integer equations:

E1 = x1 =x2 + 2, x2 =x1 + (−1) E2 = x1 =x2 + 2 ∨ x2 + 1, x2 =x1 + (−1)

The system E1 is non-zero, because the only simple cycle in E1 (up to cyclic permuta-
tions) is x1,x2 + 2,x2,x1 + (−1) which has weight 1. The system E2 is not non-zero,
because the simple cycle x1,x2 + 1,x2,x1 + (−1) has weight 0. ut

A variable assignment µ with −∞ < µ(x) <∞, x ∈ X is called finite. We have:

Lemma 1. Every non-zero system E of simple equations has at most one finite solution.

Proof. Note that, if we rewrite an expression in E using distributivity, then the resulting
system is still non-zero. Let Xrhs

E denote the set of variables occurring in right-hand
sides of E . We proceed by induction on |Xrhs

E |. If |Xrhs
E | = 0, then the statement is

fulfilled, since there is exactly one solution.
Let |Xrhs

E | > 0 and x ∈ Xrhs
E . Consider the equation x = e. We consider the case

where e contains the variable x. Because of distributivity, we can w.l.o.g. assume that
x = e is of the form x = ((x + c) ∧ e1) ∨ e2. where e1 and e2 are such that no ∨
occurs within a ∧-expression and no ∧-expression occurs within a +-expression. We
say that such an expression is in disjunctive normal form. Since E is non-zero, we know
that c 6= 0. We only consider the case that c > 0. The other case is similar. First of all,
observe that, for every finite variable assignment µ, the following holds:

µ(x) = J((x + c) ∧ e1) ∨ e2Kµ implies µ(x) = Je1 ∨ e2Kµ. (1)

Let µ1 and µ2 be finite solutions of E . Let E ′ denote the system of simple equations
obtained from E by replacing the equation x = e with the equation x = e1 ∨ e2. The
system E ′ is non-zero. (1) implies that µ1 and µ2 are finite solutions of E ′. Since we
can repeat this step, we can w.l.o.g. assume that the variable x does not occur within
e1 ∨ e2. We now replace every occurrence of x in right-hand sides of E ′ by e1 ∨ e2 and
obtain a system E ′′. This system is again non-zero and µ1 and µ2 are finite solutions of
E ′′. Thus, since |Xrhs

E′′ | = |Xrhs
E | − 1, the induction hypotheses implies µ1 = µ2. ut

3 From Parity Games to Systems of Integer Equations

In this section we reduce computing winning regions and winning strategies for parity
games to solving systems of integer equations. Thus, the latter computational problem
is as least as hard as solving parity games. It is an intriguing open problem to determine
the precise complexity of parity games. What is known is that this problem is in UP ∩
co−UP [?]. A first subexponential algorithm has been presented in [?]. Whether or
not, however, parity games can be solved in polynomial time, is still unknown.

Let us fix a parity game G = (V∨, V∧, E, r). Let n := |V | be the number of posi-
tions, d := max r(V) = max {r(v) | v ∈ V } the maximal rank and m := nd+1. In
order to compute the winning regions, we consider the system EG of integer equations
which we define subsequently. From the least solution µ∗ of EG|[−m,m] we will deduce
the winning regions as well as winning strategies for both players. For every position
v ∈ V we introduce a fresh variable xv , i.e., XEG

:= {xv | v ∈ V }. Let

δr = −(−n)r.

Observe that δr is less than 0 whenever r is even and greater than 0 whenever r is odd.
Moreover, δr is chosen such that (n − 1)|δr′ | < |δr| whenever r′ < r. This important
property ensures that, for k ≤ n, the sum δr1 + · · · + δrk

is greater than 0 iff the most
relevant rank within {r1, . . . , rk} is odd. We construct EG as follows. For every position
v ∈ V∨ we add the equation

xv = (xv1 ∨ · · · ∨ xvk
) + δr(v)

where {v}E = {v1, . . . , vk}. For every position v ∈ V∧ we add the equation

xv = (xv1 ∧ · · · ∧ xvk
) + δr(v)

where {v}E = {v1, . . . , vk}. We illustrate this reduction by an example.

(a) The parity game G of example ?? (b) Affine program PC of example ??
Fig. 1.

Example 2. Consider the parity game G = (V∨, V∧, E, r) (from [?]) where

– V∨ = {a, b, c, d} and V∧ = {e, f, g, h}
– E = {(a, f), (a, e), (b, e), (c, g), (c, h), (d, g), (d, h), (e, a), (e, d), (f, a),

(f, b), (f, c), (g, b), (g, c), (h, c)}

– r(b) = r(c) = 0, r(a) = r(f) = r(h) = 1, r(d) = r(e) = 2, r(g) = 3

which is illustrated in figure ?? (a). The system EG|[−m,m] is given as

xa = (xe ∨ xf) + 8 ∧m ∨ −m xb = xe + (−1) ∧m ∨ −m
xc = (xg ∨ xh) + (−1) ∧m ∨ −m xd = (xg ∨ xh) + (−64) ∧m ∨ −m
xe = (xa ∧ xd) + (−64) ∧m ∨ −m xf = (xa ∧ xb ∧ xc) + 8 ∧m ∨ −m
xg = (xb ∧ xc) + 512 ∧m ∨ −m xh = xc + 8 ∧m ∨ −m

where m = 4096. ut

We summarize statements about EG and EG|[−m,m] in the following Lemma:

Lemma 2. 1. |XEG
| = |XEG|[−m,m]

| = n;
2. |M(EG)| = |E∩V∨×V |− |V∨| and |M(EG|[−m,m])| = |E∩V∨×V |− |V∨|+n;
3. The size of occurring numbers is bounded by (d+ 1) log2 n;
4. The systems EG and EG|[−m,m] of simple equations are non-zero.

Proof. We only prove the fourth statement. Since there exists a one-to-one mapping f
from the set of simple cycles in EG|[−m,m] onto the set of simple cycles in EG with
w(c) = w(f(c)) for every simple cycle c in EG|[−m,m], we only have to show that EG
is non-zero. W.l.o.g., let

c = x1, e1 + δr(v1), . . . , x2, e2 + δr(v2), . . . , xk, ek + δr(vk)

be a simple cycle in EG where x1, . . . ,xk are the only expressions in the sequence
c which are variables. Thus k ≤ n. Let J := {j ∈ {1, . . . , k} | |δr(vj)| =
maxi=1,...,k |δr(vi)|}. Let r denote the only rank in the set r({vj | j ∈ J}). Note
that k − |J | ≤ n− 1 and |δr| > (n− 1)|δr−1|. We get:

|w(c)| = |
∑k
i=1 δr(vi)| = |

∑
i∈J δr(vi) +

∑
i∈{1,...,k}\J δr(vi)|

= | |J |δr +
∑
i∈{1,...,k}\J δr(vi)| ≥ |δr| −

∑
i∈{1,...,k}\J |δr(vi)|

≥ |δr| − (k − |J |)|δr−1| ≥ |δr| − (n− 1)|δr−1| > 0

It follows w(c) 6= 0. ut

Thus, by Lemma 1 and ??, EG|[−m,m] has exactly one solution which is finite.

Example 3. The unique solution µ∗ of EG|[−4096,4096] in example ?? is given by
µ∗(xa) = −4080, µ∗(xb) = −4096, µ∗(xc) = 4095, µ∗(xd) = 4032,
µ∗(xe) = −4096, µ∗(xf) = −4088, µ∗(xg) = −3584, µ∗(xh) = 4096. ut

The next Lemma states that we can reassemble the unique solution of EG|[−m,m] by a
∨-strategy for EG. This is simlar to the memoryless determinacy of parity games.

Lemma 3. Let µ∗ denote the unique finite solution of EG|[−m,m]. There exists a ∨-
strategy (resp. ∧-strategy) π for EG such that µ∗ is the unique solution of EG(π)|[−m,m].
Moreover, π can be computed from µ∗ in time O(|EG|).

Proof. We only prove the ∨-strategy case. Let π be the ∨-strategy defined by

π(e1 ∨ e2) =
{
e1 if Je1Kµ∗ ≥ Je2Kµ∗
e2 if Je1Kµ∗ < Je2Kµ∗

for every expression e1∨e2 occurring in EG. The system EG(π)|[−m,m] is non-zero and
µ∗ is a solution of EG(π)|[−m,m]. Thus, Lemma 1 implies that µ∗ is the only solution
of EG(π)|[−m,m]. The complexity statement follows from the fact that the ∨-strategy π
can be computed by evaluating each right-hand side once. ut

Before going further we consider the special case that no player has a choice.

Lemma 4. Let G = (V∨, V∧, E, r) be a parity game where only one move is possible
for every position, i.e., |{v}E| = 1 for every v ∈ V∨ ∪ V∧. Let µ∗ be the unique finite
solution of EG|[−m,m]. Then µ∗(xv) > 0 iff v is a ∨-winning position.

Proof. Since the winning regions partition the set of positions, we only have to show
that µ∗(xv) > 0 for every ∨-winning position v. Let v be a ∨-winning position. Let

w = v′1 · · · · · v′k′ · (v1 · · · · · vk)ω

denote the only game which can be played on G starting at v. We can assume that
v′1, . . . , v

′
k′ , v1, . . . , vk are pair-wise distinct. Then k + k′ ≤ n and k ≥ 1. Since w is

won by the ∨-player, the highest rank h which occurs in r(v1), . . . , r(vk) is odd. Thus
δh > 0. Let j be the smallest j ∈ {1, . . . , k} with r(vj) = h. The system EG|[−m,m]

contains the equations

xvi
= xv(i+1) mod k

+ δr(vi) ∧m ∨ −m, i = 1, . . . , k.

Thus, since
∑k
i=1 δr(vi) ≥ δh − (k − 1)|δh−1| > 0, it follows that µ∗(xvj

) = m.

Since
∑k′

i=1 δr(v′i) +
∑j−1
i=1 δr(vi) ≤ (n − 1)|δd| = (n − 1)nd < nd+1 = m, we get

µ∗(xv′1) > 0. ut

We establish a one-to-one correspondence between positional strategies for G and
strategies for EG. For a positional ∨-strategy σ∨ (resp. ∧-strategy σ∧) for G, we write
π(σ∨) (resp. π(σ∧)) for the ∨-strategy (resp. ∧-strategy) for EG which corresponds to
σ∨ (resp. σ∧). More precisely, the ∨-strategy π(σ∨) is defined by

π(σ∨)(xv1 ∨ · · · ∨ xvk
) = xvj

for {v}E = {v1, . . . , vk} and σ∨(v) = vj .

The ∧-strategy π(σ∧) is defined analogously. Since the mapping π is one-to-one, the
inverse π−1 exists which maps strategies for EG to positional strategies for G. By con-
struction, EG(σ) = EG(π(σ)) and thus EG(σ)|[−m,m] = EG(π(σ))|[−m,m] for every
∨-strategy (resp. ∧-strategy) σ for G.

Let µ∗ denote the unique solution of EG|[−m,m]. By Lemma ?? we can compute a
∨-strategy π∨ for EG such that µ∗ is the unique solution of EG(π∨)|[−m,m]. The next
Lemma in particular states that π−1(π∨) is a ∨-winning strategy for G.

Lemma 5. Let G = (V∨, V∧, E, r) be a parity game. Let µ∗ be the unique solution of
EG|[−m,m]. Then µ∗(xv) > 0 (resp. µ∗(xv) ≤ 0) iff v is a ∨-winning (resp. ∧-winning)
position. Moreover, winning strategies for both players can be computed from µ∗ in time
O(|E|). More precisely, if π∨ (resp. π∧) is a ∨-strategy (resp. ∧-strategy) for EG such
that µ∗ is the unique solution of EG(π∨)|[−m,m] (resp. EG(π∧)|[−m,m]), then π−1(π∨)
(resp. π−1(π∧)) is ∨-winning (resp. ∧-winning).

Proof. We only show the statement for the ∨-player. The statement for the ∧-player
can be shown dually. Let W denote the ∨-winning region in G. Let Σ∨ (resp. Σ∧)
denote the set of ∨-strategies (resp. ∧-strategies) for G. Given some σ∨ ∈ Σ∨ and
some σ∧ ∈ Σ∧, we writeWσ∨ (resp.Wσ∨σ∧) for the ∨-winning region inG(σ∨) (resp.
G(σ∨)(σ∧)). Let Π∨ (resp. Π∧) denote the set of ∨-strategies (resp. ∧-strategies) for
EG. Given some π∨ ∈ Π∨ and some π∧ ∈ Π∧, we write µπ∨ (resp. µπ∨π∧) for the
unique solution of EG(π∨)|[−m,m] (resp. EG(π∨)(π∧)|[−m,m]). Lemma ?? implies

Wσ∨σ∧ = {v ∈ V | µπ(σ∨)π(σ∧)(xv) > 0} for all σ∨ ∈ Σ∨ and all σ∧ ∈ Σ∧. (2)

Let us fix some σ∨ ∈ Σ∨. Lemma ?? implies that there exists some π∧ ∈ Π∧ such
that µπ(σ∨)π∧ = µπ(σ∨). Let σ′∧ ∈ Σ∧. We have µπ(σ∨)π(σ′∧) ≥ µπ(σ∨) = µπ(σ∨)π∧ .
Thus (??) implies Wσ∨σ′∧ ⊇ Wσ∨π−1(π∧). Since σ′∧ was chosen arbitrarily, we have
Wσ∨ = Wσ∨π−1(π∧). Since σ∨ was also chosen arbitrarily, (??) implies

Wσ∨ = {v ∈ V | µπ(σ∨)(xv) > 0} for all σ∨ ∈ Σ∨. (3)

Lemma ?? implies that there exists some π∨ ∈ Π∨ such that µπ∨ = µ∗. Let σ′∨ ∈ Σ∨.
We have µπ(σ′∨) ≤ µ∗ = µπ∨ . Thus (??) implies Wσ′∨ ⊆ Wπ−1(π∨). Since σ′∨ was
chosen arbitrarily, we have W = Wπ−1(π∨) which means that π−1(π∨) is a ∨-winning
strategy in G. Using (??) we get W = {v ∈ V | µ∗(xv) > 0}. The complexity
statement is obvious. ut

Example 4. Consider again example ?? and example ??. Positions c, d and h are ∨-
winning positions, since µ∗(xc), µ∗(xd), µ∗(xh) > 0. Conversely, a, b, e, f, g are ∧-
winning positions, since µ∗(xa), µ∗(xb), µ∗(xe), µ∗(xf), µ∗(xg) < 0. A ∨-strategy
π∨ for EG such that µ∗ is the unique solution of EG(π∨)|[−m,m] is given by

π∨(xe ∨ xf) = xf π∨(xg ∨ xh) = xh.

Thus σ := π−1(π∨), given by σ(a) = f, σ(c) = h, σ(d) = h is ∨-winning. ut

Thus we get the main result for this section as a corollary of Lemma ??.

Theorem 1. The problem of computing winning regions for parity games is P-time
reducible to solving systems of integer equations. ut

4 From Systems of Integer Equations to Interval Analysis

We now reduce solving systems of integer equations to precise interval analysis for
affine programs (cf. e.g. [?]). Let I denote the set of closed intervals in Z, i.e.,

I = {∅} ∪ {[a, b] ⊆ Z | a, b ∈ Z and∞ > a ≤ b > −∞}.

Let B := {I1 × · · · × In | Ii ∈ I, i = 1, . . . , n} ⊆ 2Zn

. (B,⊆) is a complete lattice.
Elements from B are called boxes. We define α : 2Zn → B by

α(X) =
⋂
B∈B,B⊇X B ∈ B, X ⊆ Zn.

The box α(X) is the smallest box which is a super-set of X .
Subsequently we discuss affine programs. Let us fix a set XP = {x1, . . . ,xn} of

program variables.Then a state in the concrete semantics which assigns values to the
variables is conveniently modeled by a vector x = (x1, . . . , xn) ∈ Zn; xi is the value
assigned to variable xi. Note that we distinguish variables and their values by using a
different font. In this paper, we only consider statements of the following forms:

(1) xj := a+
∑n
i=1 ai · xi (2) a+

∑n
i=1 ai · xi ≥ 0

where a, a1, . . . , an ∈ Z. We use an abstract fixpoint semantics which associates a box
B = I1 × · · · × In ∈ B to each program point. Each statement s ∈ Stmt induces a
transformation [[s]] : B → B, given by

Jxj := a+
∑n
i=1 ai · xiKB = α({(x1, . . . , xj−1, a+

∑n
i=1 ai · xi, xj+1, . . . , xn)

| (x1, . . . , xn) ∈ B})

Ja+
∑n
i=1 ai · xi ≥ 0KB = α({(x1, . . . , xn) ∈ B | a+

∑n
i=1 ai · xi ≥ 0})

where B ∈ B. We emphasize that JsK is the best abstract transformer w.r.t. the natural
concrete semantics (cf. [?]). The branching of an affine program is non-deterministic.
Formally, an affine program is given by a control flow graph P = (N,T, st) that con-
sists of a setN of program points, a set T ⊆ N×Stmt×N of (control flow) edges and a
special start point st ∈ N . Then, the abstract fixpoint semantics V of P is characterized
as the least solution of the following system of constraints:

(1) V[st] ⊇ Zn (2) V[v] ⊇ [[s]](V[u]) for each (u, s, v) ∈ T

where the variables V[v], v ∈ N take values in B. We denote the components of the
abstract fixpoint semantics V by V [v] for v ∈ N . We emphasize that we focus on
precise interval analysis which means that it is not sufficient to compute a small solution
of the above constraint system. We in fact want to compute the least solution.

Assume that E denotes a system of integer equations. In place of E we consider a
system C of integer constraints where each constraint is of one of the following forms

(1) x ≥ c (2) x ≥ a+
∑k
i=1 ai · xi (3) x ≥ x1 ∧ x2

where c ∈ Z \ {−∞}, a, a1, . . . , ak > 0, x,x1,x2 are variables. This can be done
w.o.l.g. since, for every system E of integer equations, we can compute a system C of
integer constraints of the above form whose least solution gives us the least solution
of E in linear time. Furthermore, we assume w.l.o.g. that, for every variable x, there
exists exactly one constraint of the form (1). This can be done w.o.l.g., since we can
identify the set of variables x with µ∗(x) = −∞ in time O(n · |E|). We can remove
these variables and obtain a system whose least solution maps every variable to a value

strictly greater than −∞. Additionally, we can compute a lower bound cx ∈ Z for
each variable x, i.e. µ∗(x) ≥ cx, in time O(n · |E|) by performing n lock-step fixpoint
computation steps.

We construct the affine program PC = (N,T, st) as follows. Let {x1, . . . ,xn}
denote the set of variables used in C. We choose

N := {st, u1, . . . , un} ∪ {vk1,k2 | xj ≥ xk1 ∧ xk2 is a constraint of C}

as the set of program points and identify st with u0. We construct the set T of control-
flow edges as follows. For every constraint xj ≥ c of C we add the control-flow edge

(uj−1, c− xj ≥ 0, uj).

For every constraint xj ≥ a+
∑
i ai · xki

of C we add the control-flow edge

(un,xj := a+
∑
i ai · xki

, un).

For every constraint xj ≥ xk1 ∧ xk2 of C we add the control-flow edges

(un,xj := xk1 , vk1,k2) and (vk1,k2 ,xk2 − xj ≥ 0, un).

Then we can obtain the least solution of C from the abstract fixpoint semantics V of P :

Lemma 6. Let µ∗ denote the least solution of C and (I1, . . . , In) := V [un]. Then, for
every i = 1, . . . , n, µ∗(xi) equals the upper bound of the interval Ii. ut

Example 5. Consider the following system E of integer constraints:

x1 = 0 ∨ x3 + 1 x2 = 10 x3 = x1 ∧ x2

By performing 3 rounds of lock-step fixpoint iteration we get that the value of the
variable x3 is as least 0. Thus, in place of E , we consider the following system C of
integer constraints. E and C have the same least solution.

x1 ≥ 0 x1 ≥ x3 + 1 x2 ≥ 10 x3 ≥ 0 x3 ≥ x1 ∧ x2

The least solution µ∗ of E is given by µ∗(x1) = 11, µ∗(x2) = 10, µ∗(x3) = 10. Figure
?? (b) shows the corresponding affine program PC . Let V denote the abstract fixpoint
semantics of PC . Then V [u3] = [−∞, 11]× [−∞, 10]× [−∞, 10]. ut

Combining Theorem ?? and Lemma ?? we get our lower bound result:

Theorem 2. The problem of computing winning regions of parity games is P-time re-
ducible to precise interval analysis for affine programs. ut

5 Solving Integer Equations

In this section we present a simplified method for computing least solutions of systems
of integer equations. As the algorithm in [?], our new algorithm essentially iterates

over suitable ∨-strategies where, for each attained strategy, we determine the greatest
solution of the corresponding conjunctive system. Our key contribution is to show that
this idea also works, if instrumentation of the underlying lattice as in [?] is abandoned.

Assume that µ∗ denotes the least solution of the system E of integer equations.
A ∨-strategy improvement operator P∨ is a function which maps a pair (π, µ) to an
improved ∨-strategy π′ := P∨(π, µ), where π is a ∨-strategy for E and µ ≤ µ∗ is a
pre-solution of E and the following holds:

π′ 6= π whenever µ < µ∗ and π′(e1 ∨ e2) ∈

{e1, π(e1 ∨ e2))} if Je1Kµ > Je2Kµ
{e2, π(e1 ∨ e2))} if Je1Kµ < Je2Kµ
{π(e1 ∨ e2)} if Je1Kµ = Je2Kµ

If not further specified P∨ means any ∨-strategy improvement operator. We define the
∨-strategy improvement operator P eager

∨ by

P eager
∨ (π, µ)(e1 ∨ e2) =

 e1 if Je1Kµ > Je2Kµ
e2 if Je1Kµ < Je2Kµ
π(e1 ∨ e2) if Je1Kµ = Je2Kµ

where π is a ∨-strategy for E and µ ≤ µ∗ is a pre-solution of E . This is basically the
∨-strategy improvement operator used in [?].

Assume that E is a system of basic integer equations. We define the set D(E) of
derived constraints as the smallest set of constraints of the form x ≤ e such that (1)
x ≤ e ∈ D(E) whenever x = e is an equation of E ; and (2) x ≤ e′′ ∈ D(E) whenever
x ≤ e, x′ ≤ e′ ∈ D(E) and e′′ is obtained from e by replacing x′ with e′. For
a system E of conjunctive equations we define the set D(E) of derived constraints by
D(E) :=

⋃
π is a ∧-strategy for E D(E(π)). Let E be a system of conjunctive equations.

For every x ≤ e ∈ D(E) and every pre-solution µ of E we have JxKµ ≤ JeKµ. A pre-
solution µ of E is called (E-)feasible iff (1) e = −∞ whenever x = e is an equation of
E with JeKρ = −∞; and (2) JxKµ = JeKµ implies JxKµ =∞ for all derived constraints
x ≤ e ∈ D(E) where x occurs in e.

Example 6 (feasibility). There exists no feasible pre-solution of the system x1 = x1 ∧
10. Every variable assignment which maps x1 to values between 1 and 10 is a feasible
pre-solution of the system x1 = 2 · x1 ∧ 10. ut
Lemma 7. 1. Let E be a conjunctive system of integer equations and µ be a feasible

pre-solution of E . Every pre-solution µ′ ≥ µ of E is feasible.
2. Let E be a system of integer equations, π a ∨-strategy for E , µ a feasible pre-

solution of E(π) and π′ := P∨(π, µ). Then µ is a feasible pre-solution of E(π′). ut
Let E be the system x1 = e1, . . . ,xn = en and µ∗ the least solution of E . Our strategy
improvement algorithm is given as algorithm ??. It starts with a ∨-strategy π for E and
feasible pre-solution µ ≤ µ∗ of E(π).
Algorithm 1 Computing Least Solutions of Systems of Integer Equations
π ← π; µ← µ;
while (µ is not a solution of E) {

π ← P eager
∨ (π, µ); µ← least solution of E(π) that is greater than or equal to µ;

}
return µ;

By induction one can show that algorithm ?? returns the least solution µ∗ of E whenever
it terminates (cf. [?]). In order to obtain an upper bound to the number of iterations, we
first show that every system of conjunctive equations has at most one feasible solution.

Lemma 8. Assume that the greatest solution µ∗ of the system E of conjunctive equa-
tions is feasible. Then µ∗ is the only feasible solution of E .

Proof. Assume that E denotes the system xi = ei, i = 1, . . . , n. We first prove the
statement for a system E of basic equations. Let X(E) denote the set of variables occur-
ring in right-hand sides of E . Let µ be a feasible solution of E . We show by induction
on |X(E)| that µ = µ∗. This is obviously fulfilled, if |X(E)| = 0. Thus, consider an
equation xi = ei of E where xi occurs in a right-hand side ej of E .

Assume that ei does not contain xi. We obtain a system E ′ from E by replacing all
occurrences of xi in right-hand sides with ei. Since D(E ′) ⊆ D(E), µ, µ∗ are feasible
solutions of E ′. Since |X(E ′)| = |X(E)| − 1, the induction hypothesis implies µ = µ∗.

Assume now that ei contains xi. Since xi ≤ ei ∈ D(E) and µ, µ∗ are feasible
solutions we get JxiKµ = JxiKµ∗ = ∞. Thus µ, µ∗ are solutions of the system E ′
obtained from E by replacing the equation xi = ei with xi =∞ and then replacing all
occurrences of the variable xi in right-hand sides with∞. Since D(E ′) ⊆ D(E), µ, µ∗
are feasible solutions of E ′. Since |X(E ′)| = |X(E)| − 1, the induction hypothesis
implies µ = µ∗. Thus the statement holds for systems of basic equations.

Now assume that E is a system of conjunctive equations. In order to derive a con-
tradiction, assume that µ < µ∗ is a feasible solution of E . Then µ is a feasible solution
of E(π) for some ∧-strategy π. Thus µ is the greatest solution of E(π). The greatest
solution of E(π) is greater than or equal to µ∗. Thus, µ ≥ µ∗ — contradiction. ut

Consider algorithm ??. Let πj be the ∨-strategy π after the execution of the first state-
ment in the j-th iteration. Let µj be the variable assignment µ at this point and µ′j the
variable assignment µ after the j-th iteration. The sequence (µ′j) is strictly increasing
until the least solution is reached. Lemma ?? implies that, for every j, µj and µ′j is a
feasible pre-solution of E(πj). Thus, Lemma ?? implies that µ′j is the greatest solution
of E(πj). This has two important consequences. The first consequence is that, since
E(πj) is a system of conjunctive equations, the greatest solution µ′j can be computed in
timeO(|XE | · |E|) using Bellman-Ford’s algorithm (cf. [?]). The second consequence is
that every strategy πj is considered at most once. Otherwise, there exist j′ > j such that
πj′ = πj implying that µ′j′ = µ′j which is a contradiction to the fact that (µ′j) is strictly
increasing. Thus, the number of iterations is bounded by the number of ∨-strategies.

In order to give a precise characterization of the run-time, letΠ(m) denote the max-
imal number of updates of strategies necessary for a system with m ∨-subexpressions.
Thereby we assume that π and µ are given. Π(m) is trivially bounded by 2m.

Until now we have assumed that we have a ∨-strategy π and a feasible pre-solution
µ ≤ µ∗ of E(π) at hand. In order to lift this restriction, we consider E∨−∞ in place of
E which we define to be the system x1 = e1 ∨ −∞, . . . ,xn = en ∨ −∞. Then we
can choose π to be the ∨-strategy which maps every top-level ∨-expression ei ∨ −∞
of E∨−∞ to −∞. Accordingly, we choose µ to be the variable assignment which maps
every variable to −∞. Then µ ≤ µ∗ is a feasible solution of E∨−∞(π).

We now show that the number of updates of strategies necessary for computing the
least solution of E∨−∞ is n+Π(m) although |M(E∨−∞)| = m+ n. We have:

Lemma 9. µ′n(xi) = −∞ iff µ∗(xi) = −∞ for i = 1, . . . , n. ut

Let i ∈ {1, . . . , n}. Lemma ?? implies µ∗(xi) ≥ µ′j(xi) = −∞ for all j ≥ n iff
µ′n(xi) = −∞ Since µ′j is a feasible solution of E(πj), we get πj(ei∨−∞) = πn(ei∨
−∞) for all j ≥ n. Thus, after n iterations we can consider the following iterations
as iterations for the system obtained by replacing every right-hand side ei ∨ −∞ with
πn(ei ∨ −∞). This system has m ∨-expressions. Thus, the number of iterations is
bounded by n+Π(m). Summarizing, we have:

Theorem 3. The least solution of a system E of integer equations can be computed in
time O(|XE | · |E| ·Π(|M(E)|)). ut

In contrast to the algorithm presented in [?], our new algorithm no longer relies on an
instrumentation of the underlying lattice. For systems of simple integer equations we
can improve on the number of iteration, if we use a different improvement operator.

Assume now that E is a system of simple integer equations. We now also consider
partial ∨-strategies π, i.e., the domain dom(π) of a partial ∨-strategy π is a subset of
M(E). Then we set

(e ∨ e′)π =
{

(π(e ∨ e′))π if e ∨ e′ ∈ dom(π)
eπ ∨ e′π if e ∨ e′ /∈ dom(π).

Let M ⊆M(E). We define the ∨-strategy improvement operator PM∨ by

PM∨ (π, µ) =
{
P eager
∨ (π, µ)|M ∪ π|M(E)\M if P eager

∨ (π, µ)|M 6= π|M
P eager
∨ (π, µ) if P eager

∨ (π, µ)|M = π|M .

Intuitively, PM∨ first tries to improve at ∨-expressions from M . Only if such an im-
provement is not possible, ∨-expressions from M(E) \M are considered.

Assume that E is a system of conjunctive simple equations. All derived constraints
inD(E) can be rewritten to the form x ≤ y+a or x ≤ cwhere x, y are variables, a ∈ Z
and c ∈ Z. We call E feasible iff a > 0 for all derived constraints x ≤ x + a ∈ D(E)
and x ≤ −∞ ∈ D(E) implies that x = −∞ is an equation of E . The greatest solution
µ′ of a feasible system E of simple conjunctive equations is feasible.

Assume now that E denotes a system of simple integer equations with least solution
µ∗. A ∨-strategy π for E is called feasible iff E(π) is feasible. Similar to Lemma ??
it can be shown that algorithm ?? considers feasible strategies, only. For systems of
simple equations we have the following property:

Lemma 10. Let E be the system x1 = e1, . . . ,xn = en of simple integer equations
and µ a solution of E . Assume that π is a feasible ∨-strategy with eiπ = −∞ whenever
µ(xi) = −∞ for i = 1, . . . , n. Let µπ be the greatest solution of E(π). Then µπ ≤ µ.

Proof. Note that µπ is a feasible solution of E(π) and µ is a post-solution of E(π).
Let µ(0) := µ and, for j ∈ N, let µ(j+1) be defined by µ(j+1)(xi) = JeiπKµ(j). Then
µ′ :=

∧
j∈N0

µ(j) ≤ µ is a solution of E(π) and, since a > 0 for all derived constraints
x ≤ x + a ∈ D(E(π)), µ′(xi) = −∞ implies µ(xi) = −∞ which implies eiπ = −∞
for i = 1, . . . , n. Thus, µ′ is a feasible solution of E(π). Since, by Lemma ??, µπ = µ′,
we get µ′ ≤ µ. ut

Consider the sequences (µj), (µ′j) and (πj) which we obtain from algorithm ?? using
the ∨-strategy improvement operator PM∨ . We show that there do not exist indexes
j < k with j ≥ n such that πk|M(E)\M = πj |M(E)\M 6= πj+1|M(E)\M (∗). In order to
derive a contradiction, assume the opposite. By the definition of PM∨ , µ′j is a solution
of E ′ := E(πj |M(E)\M). Furthermore, µ′k is the greatest solution of the feasible system
E(πk) = E(πk|M(E)\M)(πk|M) = E(πj |M(E)\M)(πk|M) = E ′(πk|M). Since k > j ≥
n, we have eiπk = −∞ whenever µ′j(xi) = −∞. Thus we can apply Lemma ?? which
implies that µ′k ≤ µ′j . This contradicts the fact that (µ′j) is strictly ascending.

We use the ∨-improvement operator P
Mc(E)
∨ , i.e., M = Mc(E). The ∨-

improvement operator PMc(E)
∨ first tries to improve at expressions e ∨ e′ ∈ Mc(E)

and only if this is not possible it tries to improve at expressions e ∨ e′ ∈ Mnc(E).
For M ⊆ M(E), we call j an update index on M iff πj+1|M 6= πj |M . Assume that
e ∨ e′ ∈Mc(E) where w.l.o.g. e′ is a constant expression. Then, since µj is ascending,
if there is a k such that πk(e ∨ e′) = e, then πj(e ∨ e′) = e for all j ≥ k. Thus, there
are at most |Mc(E)| update indexes on Mc(E) (∗∗).

Let ji denote the sequence of update indexes on Mnc(E). By (∗), these are at most
2|Mnc(E)|. Between two update on Mnc(E) there must be updates on Mc(E). By (∗∗)
the overall number of updates onMc(E) is bounded by |Mc(E)|, i.e.,

∑
i ji+1−ji−1 ≤

|Mc(E)|. Thus, the number of strategies is bounded by 2|Mnc(E)|+ |Mc(E)|. We denote
the maximal number of updates of strategies on Mnc(E) necessary for solving a simple
system E by Πs(|Mnc(E)|). We obtain:

Theorem 4. The least solution of a system E of simple integer equations can be com-
puted in time O(|XE | · |E| · (Πs(|Mnc(E)|) + |Mc(E)|)). ut

The practical run-time of our algorithm is quite comparable to the discrete strat-
egy improvement algorithm by Vöge and Jurdziński [?]. The number Πs(|Mnc(E)|))
corresponds to the number of strategy improvements for the parity game. For each
improvement-step, we needO(n · |EG|[−m,m]|) operations where arithmetic operations
are on numbers of size O(d · log n). The improvement-step of the discrete strategy
improvement algorithm by Vöge and Jurdziński [?] uses also O(n · |EG|[−m,m]|) oper-
ations — but arithmetic operations are just on numbers of size O(log n).

6 Conclusion

By encoding parity games into integer equations, we have provided a lower complexity
bound for precise interval analysis of affine programs. Additionally, we provided a sim-
plified version of the algorithm in [?] for solving integer equations. As in the algorithm
of [?] for rational equations, the new version for integers avoids the instrumentation
of the underlying lattice. The restriction to integers, on the other hand also allowed to
improve on the complicated treatment of conjunctive systems in [?] for rationals.

The methods which we have presented here, can be applied to simplify the algo-
rithm for interval equations from [?] where also multiplication of arbitrary interval ex-
pressions is allowed. By modifying the strategy improvement operator, we also have
obtained an algoithm for simple integer equations where for the complexity estima-
tion only non-constant maxima must be taken into account. By our encoding of parity

games into integer systems, we thus obtain a simple but efficient strategy improvement
algorithm for computing winning regions and winning strategies of parity games.

References

1. L. Bordeaux, Y. Hamadi, and M. Y. Vardi. An Analysis of Slow Convergence in Interval
Propagation. In 13th Int. Conf. on Principles and Practice of Constraint Programming (CP),
volume 4741 of LNCS, pages 790–797. Springer, 2007.

2. A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A Policy Iteration Algorithm
for Computing Fixed Points in Static Analysis of Programs. In Computer Aided Verification,
17th Int. Conf. (CAV), pages 462–475. LNCS 3576, Springer Verlag, 2005.

3. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs. In
Second Int. Symp. on Programming, pages 106–130. Dunod, Paris, France, 1976.

4. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proceedings of 4th ACM
Symposium on Principles of Programming Languages (POPL), pages 238–252. ACM Press,
1977.

5. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In 6th ACM
Symp. on Principles of Programming Languages (POPL), pages 238–352, 1979.

6. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In FOCS, pages 368–377. IEEE, 1991.

7. T. Gawlitza, J. Reineke, H. Seidl, and R. Wilhelm. Polynomial Exact Interval Analysis
Revisited. Technical report, TU München, 2006.

8. T. Gawlitza and H. Seidl. Precise Fixpoint Computation Through Strategy Iteration. In
European Symposium on Programming (ESOP), pages 300–315. Springer Verlag, LNCS
4421, 2007.

9. T. Gawlitza and H. Seidl. Precise Relational Invariants Through Strategy Iteration. In Com-
puter Science Logic, 21st Int. Workshop (CSL), LNCS 4646, pages 23–40. Springer, 2007.

10. M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett.,
68(3):119–124, 1998.

11. M. Jurdziński, M. Paterson, and U. Zwick. A Deterministic Subexponential Algorithm for
Solving Parity Games. In 17th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
117–123, 2006.

12. M. Karr. Affine Relationships Among Variables of a Program. Acta Informatica, 6:133–151,
1976.

13. J. Leroux and G. Sutre. Accelerated data-flow analysis. In H. R. Nielson and G. Filé, editors,
SAS, volume 4634 of Lecture Notes in Computer Science, pages 184–199. Springer, 2007.

14. A. Puri. Theory of Hybrid and Discrete Systems. PhD thesis, University of California,
Berkeley, 1995.

15. Z. Su and D. Wagner. A class of polynomially solvable range constraints for interval analysis
without widenings and narrowings. In K. Jensen and A. Podelski, editors, TACAS, volume
2988 of Lecture Notes in Computer Science, pages 280–295. Springer, 2004.

16. J. Vöge. Strategiesynthese für Paritätsspiele auf endlichen Graphen. PhD thesis, RWTH
Aachen, 2000.

17. J. Vöge and M. Jurdziński. A Discrete Strategy Improvement Algorithm for Solving Parity
Games. In Computer Aided Verification, 12th Int. Conf. (CAV), pages 202–215. LNCS 1855,
Springer, 2000.

