
Masking Faults While Providing Bounded-Time

Phased Recovery?

Borzoo Bonakdarpour and Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
Email: {borzoo,sandeep}@cse.msu.edu

Abstract. We focus on synthesis techniques for transforming existing
fault-intolerant real-time programs to fault-tolerant programs that pro-
vide phased recovery. A fault-tolerant program is one that satisfies its
safety and liveness specifications as well as timing constraints in the
presence of faults. We argue that in many commonly considered pro-
grams (especially in mission-critical systems), when faults occur, simple
recovery to the program’s normal behavior is necessary, but not suffi-
cient. For such programs, it is necessary that recovery is accomplished
in a sequence of phases, each ensuring that the program satisfies cer-
tain properties. In this paper, we show that, in general, synthesizing
fault-tolerant real-time programs that provide bounded-time phased re-
covery is NP-complete. We also characterize a sufficient condition for
cases where synthesizing fault-tolerant real-time programs that provide
bounded-time phased recovery can be accomplished in polynomial-time
in the size of the input program’s region graph.

Keywords: Fault-tolerance, Real-time, Bounded-time recovery,
Phased recovery, Synthesis, Transformation, Formal methods.

1 Motivation

In this paper, we focus on the problem of automated synthesis for real-time
systems that provide bounded-time phased recovery in the presence of faults.
To illustrate this problem, first, we provide a motivating example to informally
describe the idea of bounded-time phased recovery and the concepts of synthe-
sis and fault-tolerance. We also use this example as a running demonstration
throughout the paper.

Consider a one-lane turn-based bridge where cars can travel in only one
direction at any time. The bridge is controlled by two traffic signals, say sig 0

and sig1, at the two ends of the bridge. The signals work as follows. Each signal

? This work was partially sponsored by NSF CAREER CCR-0092724 and ONR Grant
N00014-01-1-0744.

changes phase from green to yellow and then to red, based on a set of timing
constraints. Moreover, if one signal is red, it will turn green some time after the
other signal turns red. Thus, at any time, the values of sig0 and sig1 show in
which direction cars are traveling. The specification of this system can be easily
characterized by a set SPEC bt of bad transitions that reach states where both
signals are not red at the same time. In order to address the correctness of the
system, we identify a system invariant. Intuitively, the system invariant is a set
S of states from where the system behaves correctly. For example, in case of the
traffic signals system, one system invariant is the set of states from where the
system always reaches states where at least one signal is red and they change
phases in time. Obviously, as long the system’s state is in S, nothing catastrophic
will happen. However, this is not the case when a system is subject to a set of
faults.

Let us consider a scenario where the state of the systems is perturbed by
occurrence of a fault that causes the system to reach a state, say s, in ¬S.
Although reaching s may not necessarily violate the system specification, sub-
sequent signal operations can potentially result in execution of a transition in
SPEC bt. For example, when sig0 is green and sig1 is red, if the timer that is
responsible for changing sig1 from red to green is reset due to a circuit problem,
sig1 may turn green within some time while sig0 is also green. Such a system is
called fault-intolerant, as it violates its specification in the presence of faults.

In order to transform this system into a fault-tolerant one, it is desirable
to synthesize a version of the original system, in which even in the presence
of faults, the system (1) never executes a transition SPEC bt, and (2) always
meets the following bounded-time recovery specification denoted by SPEC br:
When the system state is in ¬S, the system must reach a state in S within a
bounded amount of time. Although such a recovery mechanism is necessary in a
fault-tolerant real-time system, it may not be sufficient. In particular, one may
require that the system must initially reach a special set of states, say Q, within
some time θ, and subsequently recover to S within δ time units. We call the
set Q an intermediate recovery predicate. The intuition for such phased recovery
comes from the requirement that the occurrence of faults must be noted (e.g.,
for scheduling hardware repairs or replacement) before normal system operation
resumes. Thus, in our example, Q could be the set of states where all signals are
red. Such a constraint ensures that the system first goes to a state in which a
set of preconditions for final recovery (e.g., via a system reboot or rollback) is
fulfilled.

In this paper, we concentrate on the problem of synthesizing real-time sys-
tems that provide bounded-time phased recovery in the presence of faults. Intu-
itively, the problem is as follows. After the occurrence of faults, the system must
recover to a state in the set Q within θ and from there, recover to the invariant
S within δ time units. The main results in this paper are as follows:

– We formally define the notion of bounded-time phased recovery in the con-
text of fault-tolerant real-time systems.

– We show that, in general (i.e., when Q 6⊆ S and S 6⊆ Q), the problem of
synthesizing fault-tolerant real-time programs that provide phased recovery
is NP-complete. An example of such a case is the traffic signals system in
which Q includes states where all signals are flashing red.

– We characterize a sufficient condition for cases where the synthesis problem
can be solved efficiently. In particular, we show that if S ⊆ Q, and, execution
of the synthesized system needs to be closed in Q (i.e., starting from a state
in Q, the state of the system never leaves Q) then there exists a polynomial-
time sound and complete synthesis algorithm in the size of time-abstract
bisimulation of the input intolerant program. An example of such a case is
the traffic signals system in which Q is the set of states where either both
signals remain red indefinitely or S holds.

Organization of the paper. In Section 2, we formally define real-time pro-
grams and the type specifications that we consider in this paper. In Section 3,
we present our fault model and introduce the notions of bounded-time phased
recovery and fault-tolerance. We formally state the problem of synthesis of fault-
tolerant real-time programs that provide bounded-time phased recovery in Sec-
tion 4. Then, in Section 5, we present our results on the complexity of the synthe-
sis problem and the sufficient condition for existence of a polynomial-time sound
and complete synthesis algorithm. In Section 6, we present the related work.
Finally, in Section 7, we make concluding remarks and discuss future work.

2 Real-Time Programs and Specifications

In our framework, real-time programs are specified in terms of their state space
and their transitions [AH97,AD94]. The definition of specification is adapted
from Alpern and Schneider [AS85] and Henzinger [Hen92].

2.1 Real-Time Program

Let V = {v1, v2 · · · vn}, n ≥ 1, be a finite set of discrete variables and X =
{x1, x2 · · ·xm}, m ≥ 0, be a finite set of clock variables. Each discrete variable
vi, 1 ≤ i ≤ n, is associated with a finite domain Di of values. Each clock variable
xj , 1 ≤ j ≤ m, ranges over nonnegative real numbers (denoted R≥0). A location
is a function that maps discrete variables to a value from their respective domain.
A clock constraint over the set X of clock variables is a Boolean combination
of formulae of the form x � c or x − y � c, where x, y ∈ X , c ∈ Z≥0, and �
is either < or ≤. We denote the set of all clock constraints over X by Φ(X). A
clock valuation is a function ν : X → R≥0 that assigns a real value to each clock
variable.

For τ ∈ R≥0, we write ν + τ to denote ν(x) + τ for every clock variable x
in X . Also, for λ ⊆ X , ν[λ := 0] denotes the clock valuation that assigns 0 to
each x ∈ λ and agrees with ν over the rest of the clock variables in X . A state
(denoted σ) is a pair (s, ν), where s is a location and ν is a clock valuation for

X . Let u be a (discrete or clock) variable and σ be a state. We denote the value
of u in state σ by u(σ). A transition is an ordered pair (σ0, σ1), where σ0 and
σ1 are two states. Transitions are classified into two types:

– Immediate transitions: (s0, ν) → (s1, ν[λ := 0]), where s0 and s1 are two
locations, ν is a clock valuation, and λ is a set of clock variables.

– Delay transitions: (s, ν) → (s, ν + δ), where s is a location, ν is a clock
valuation, and δ ∈ R≥0 is a time duration. We denote a delay transition of
duration δ at state σ by (σ, δ).

Thus, if ψ is a set of transitions, we let ψs and ψd denote the set of immediate
and delay transitions in ψ, respectively.

Definition 1 (real-time program) A real-time program P is a tuple 〈SP , ψP〉,
where SP is the state space (i.e., the set of all possible states), and ψP is a set
of transitions.

Definition 2 (state predicate) A state predicate S is any subset of SP such
that in the corresponding Boolean expression, clock constraints are in Φ(X), i.e.,
clock variables are only compared with nonnegative integers.

By closure of a state predicate S in a set ψP of transitions, we mean that (1)
if an immediate transition originates in S then it must terminate in S, and (2)
if a delay transition originates in S then it must remain in S continuously.

Definition 3 (closure) A state predicate S is closed in program P = 〈SP , ψP〉
(or briefly ψP) iff

(∀(σ0, σ1) ∈ ψsP : ((σ0 ∈ S) ⇒ (σ1 ∈ S))) ∧
(∀(σ, δ) ∈ ψdP : ((σ ∈ S) ⇒ ∀ε | ((ε ∈ R≥0) ∧ (ε ≤ δ)) : σ + ε ∈ S)).

Definition 4 (computation) A computation of P = 〈SP , ψP〉 (or briefly ψP)
is a finite or infinite timed state sequence of the form:

σ = (σ0, τ0) → (σ1, τ1) → · · ·

iff the following conditions are satisfied: (1) ∀j ∈ Z≥0 : (σj , σj+1) ∈ ψP , (2) if
σ is finite and terminates in (σf , τf) then there does not exist any state σ such
that (σf , σ) ∈ ψsP , and (3) the sequence τ0, τ1, · · · (called the global time), where
τi ∈ R≥0 for all i ∈ Z≥0, satisfies the following constraints:

1. (monotonicity) for all i ∈ Z≥0, τi ≤ τi+1,
2. (divergence) if σ is infinite, for all t ∈ R≥0, there exists j ∈ Z≥0 such that
τj ≥ t, and

3. (time consistency) for all i ∈ Z≥0, (1) if (σi, σi+1) is a delay transition (σi, δ)
in ψdP then τi+1 − τi = δ, and (2) if (σi, σi+1) is an immediate transition in
ψsP then τi = τi+1.
We distinguish between a terminating finite computation and a deadlocked

finite computation. Precisely, when a computation σ terminates in state σf , we
include the delay transitions (σf , δ) in ψdP for all δ ∈ R≥0, i.e., σ can be extended
to an infinite computation by advancing time arbitrarily. On the other hand, if
there exists a state σd, such that there is no outgoing (delay or immediate)
transition from σd then σd is a deadlock state.

2.2 Example

As mentioned in Section 1, we use the one-lane bridge traffic controller as a
running example throughout the paper. To concisely write the transitions of
a program, we use timed guarded commands. A timed guarded command (also

called timed action) is of the form L :: g
λ
−→ st , where L is a label, g is a state

predicate, st is a statement that describes how the program state is updated,
and λ is a set of clock variables that are reset by execution of L. Thus, L denotes
the set of transitions {(s0, ν) → (s1, ν[λ := 0]) | g is true in state (s0, ν), and s1
is obtained by changing s0 as prescribed by st}. A guarded wait command (also
called delay action) is of the form L :: g −→ wait, where g identifies the set of
states from where delay transitions with arbitrary durations are allowed to be
taken as long as g continuously remains true.

The one-lane bridge traffic controller program (TC) has two discrete variables
sig0 and sig1 with domain {G, Y,R} to represent the status of signals. Moreover,
for each signal i, i ∈ {0, 1}, TC has three clock variables xi, yi, and zi acting
as timers to change signal phase. When a signal turns green, it may turn yellow
within 10 time units, but not sooner than 1 time unit. Subsequently, the signal
may turn red between 1 and 2 time units after it turns yellow. Finally, when the
signal is red, it may turn green within 1 time unit after the other signal becomes
red. Both signals operate identically. Thus, the traffic controller program is as
follows. For i ∈ {0, 1}:

TC1i :: (sigi = G) ∧ (1 ≤ xi ≤ 10)
{yi}
−−−→ (sig i := Y);

TC2i :: (sigi = Y) ∧ (1 ≤ yi ≤ 2)
{zi}−−−→ (sig i := R);

TC3i :: (sigi = R) ∧ (zj ≤ 1)
{xi}−−−→ (sig i := G);

TC4i :: ((sigi = G) ∧ (xi ≤ 10)) ∨
((sigi = Y) ∧ (yi ≤ 2)) ∨
((sigi = R) ∧ (zj ≤ 1)) −−−→ wait;

where j = (i+ 1) mod 2. Notice that the guard of TC 3i depends on z timer of
signal j. For simplicity, we assume that once a traffic light turns green, all cars
from the opposite direction have already left the bridge.

2.3 Specification

Let P = 〈SP , ψP〉 be a program. A specification (or property), denoted SPEC ,
for P is a set of infinite computations of the form (σ0, τ0) → (σ1, τ1) → · · ·
where σi ∈ SP for all i ∈ Z≥0. Following Henzinger [Hen92], we require that
all computations in SPEC satisfy time-monotonicity and divergence. We now
define what it means for a program to satisfy a specification.

Definition 5 (satisfies) Let P = 〈SP , ψP〉 be a program, S be a state predi-
cate, and SPEC be a specification for P . We write P |=S SPEC and say that
P satisfies SPEC from S iff (1) S is closed in ψP , and (2) every computation of
P that starts from S is in SPEC .

Definition 6 (invariant) Let P = 〈SP , ψP〉 be a program, S be a state pred-
icate, and SPEC be a specification for P . If P |=S SPEC and S 6= {}, we say
that S is an invariant of P for SPEC .

Whenever the specification is clear from the context, we will omit it; thus, “S
is an invariant of P” abbreviates “S is an invariant of P for SPEC ”. Note that
Definition 5 introduces the notion of satisfaction with respect to infinite com-
putations. In case of finite computations, we characterize them by determining
whether they can be extended to an infinite computation in the specification.

Definition 7 (maintains) We say that program P maintains SPEC from S

iff (1) S is closed in ψP , and (2) for all computation prefixes α of P , there exists
a computation suffix β such that αβ ∈ SPEC . We say that P violates SPEC iff
it is not the case that P maintains SPEC .

Specifying timing constraints. In order to express time-related behaviors
of real-time programs (e.g., deadlines and recovery time), we focus on a standard
property typically used in real-time computing known as the bounded response
property. A bounded response property, denoted P 7→≤δ Q where P and Q are
two state predicates and δ ∈ Z≥0, is the set of all computations (σ0, τ0) →
(σ1, τ1) → · · · in which, for all i ≥ 0, if σi ∈ P then there exists j, j ≥ i, such
that (1) σj ∈ Q, and (2) τj − τi ≤ δ, i.e., it is always the case that a state in P
is followed by a state in Q within δ time units.

The specifications considered in this paper are an intersection of a safety
specification and a liveness specification [AS85,Hen92]. In this paper, we con-
sider a special case where safety specification is characterized by a set of bad
immediate transitions and a set of bounded response properties.

Definition 8 (safety specification) Let SPEC be a specification. The safety
specification of SPEC is the union of the sets SPEC bt and SPEC br defined as
follows:

1. Let SPEC bt be a set of immediate bad transitions. We denote the specifica-
tion whose computations have no transition in SPEC bt by SPEC bt.

2. We denote SPEC br by the conjunction
∧m
i=0(Pi 7→≤δi

Qi), for state predi-
cates Pi and Qi, and, response times δi.

Throughout the paper, SPEC br is meant to prescribe how a program should
carry out bounded-time phased recovery to its normal behavior after the occur-
rence of faults. We formally define the notion of recovery in Section 3.

Definition 9 (liveness specification) A liveness specification of SPEC is a
set of computations that meets the following condition: for each finite computa-
tion α ∈ SPEC , there exists a computation β such that αβ ∈ SPEC .

Remark 1. In our synthesis problem in Section 4, we begin with an initial pro-
gram that satisfies its specification (including the liveness specification). We will
show that our synthesis techniques preserve the liveness specification. Hence,
the liveness specification need not be specified explicitly.

2.4 Example (cont’d)

Following Definition 8, the safety specification of TC comprises of SPEC btTC

and SPEC brTC
. SPEC btTC

is simply the set of transitions where both signals are
not red in their target states:

SPEC btTC
= {(σ0, σ1) | (sig0(σ1) 6= R) ∧ (sig1(σ1) 6= R)}.

We define SPEC br of TC in Section 3, where we formally define the notion of
bounded-time phased recovery.

One invariant for the program TC is the following:

STC = ∀i ∈ {0, 1} : [(sig i = G) ⇒ ((sigj = R) ∧ (xi ≤ 10) ∧ (zi > 1))] ∧
[(sig i = Y) ⇒ ((sigj = R) ∧ (yi ≤ 2) ∧ (zi > 1))] ∧
[((sig i = R) ∧ (sigj = R))

⇒ ((zi ≤ 1) ⊕ (zj ≤ 1))],

where j = (i+1) mod 2 and ⊕ denotes the exclusive or operator. It is straight-
forward to see that TC satisfies SPEC btTC

from STC .

3 Fault Model and Fault-Tolerance

3.1 Fault Model

The faults that a program is subject to are systematically represented by tran-
sitions. A class of faults f for program P = 〈SP , ψP〉 is a subset of immediate
and delay transitions of the set SP ×SP . We use ψP []f to denote the transitions
obtained by taking the union of the transitions in ψP and the transitions in f .

Definition 10 (fault-span) We say that a state predicate T is an f -span (read
as fault-span) of P = 〈SP , ψP〉 from S iff the following conditions are satisfied:
(1) S ⊆ T , and (2) T is closed in ψP []f .

Example (cont’d). TC is subject to clock reset faults due to circuit malfunc-
tions. In particular, we consider faults that reset either z0 or z1 at any state in
the invariant STC (cf. Subsection 2.3), without changing the location of TC :

F0 :: STC

{z0}
−−−→ skip;

F1 :: STC

{z1}
−−−→ skip;

It is straightforward to see that in the presence of F0 and F1, TC may violate
SPEC btTC

. For instance, if F1 occurs when TC is in a state of STC where
(sig0 = sig1 = R) ∧ (z0 ≤ 1) ∧ (z1 > 1), in the resulting state, we have (sig0 =
sig1 = R) ∧ (z0 ≤ 1) ∧ (z1 = 0). From this state, immediate execution of timed
actions TC 30 and then TC 31 results in a state where (sig 0 = sig1 = G), which
is clearly a violation of the safety specification.

3.2 Phased Recovery and Fault-Tolerance

As illustrated in Section 1, preserving safety specification and providing sim-
ple recovery to the invariant from the fault-span may not be sufficient and,
hence, it may be necessary to complete recovery to the invariant in a sequence
of phases where each phase satisfies certain constraints. We formalize the no-
tion of bounded-time phased recovery by a set of bounded response properties
inside the safety specification, i.e., by SPEC br (cf. Definition 8). In this paper,
in particular, we focus on 2-phase recovery.

Definition 11 (2-phase recovery) Let P = 〈SP , ψP〉 be a real-time program
with invariant S, Q be an arbitrary intermediate recovery predicate, f be a set
of faults, and SPEC be a specification (as defined in Definitions 8 and 9). We
say that P provides 2-phase recovery from S and Q with recovery times δ, θ ∈
Z≥0, respectively, iff 〈SP , ψP []f〉 maintains SPEC br from S, where SPEC br ≡
(¬S 7→≤θ Q) ∧ (Q 7→≤δ S).

Note that in Definition 11, if S and Q are disjoint then P has to recover to Q
and then S in order, as S is closed in P . On the other hand, if S and Q are not
disjoint, P has the following options: (1) recover to Q ∩ ¬S within θ and then
S, or (2) directly recover to S ∩Q within min(δ, θ).

We are now ready to define what it means for a program to be fault-tolerant
while providing 2-phase recovery. Intuitively, a fault-tolerant program satisfies
its safety, liveness, and timing constraints in both absence and presence of faults.
In other words, the program masks the occurrence of faults in the sense that
all program requirements are persistently met in both absence and presence of
faults.

Definition 12 (fault-tolerance) Let P = 〈SP , ψP〉 be a real-time program
with invariant S, f be a set of faults, and SPEC be a specification as defined
in Definitions 8 and 9. We say that P is f -tolerant to SPEC from S, iff (1)
P |=S SPEC , and (2) there exists T such that T is an f -span of P from S and
〈SP , ψP []f〉 maintains SPEC from T .

Notation. Whenever the specification SPEC and the invariant S are clear from
the context, we omit them; thus, “f -tolerant” abbreviates “f -tolerant to SPEC
from S”.
Example (cont’d). As described in Section 1, when faults F0 or F1 (defined
in Subsection 3.1) occur, the program TC has to, first, ensure that nothing
catastrophic happens and then recover to its normal behavior. Thus, the fault-
tolerant version of TC has to, first, reach a state where both signals remain red
indefinitely and subsequently recover to S where exactly one signal turns green.
In particular, we let the 2-phase recovery specification of TC be the following:

SPEC brTC
≡ (¬STC 7→≤3 QTC) ∧ (QTC 7→≤7 STC),

where QTC = ∀i ∈ {0, 1} : (sig i = R) ∧ (zi > 1). The response times
in SPEC brTC

(i.e., 3 and 7) are simply two arbitrary numbers to express the
duration of the two phases of recovery.

4 Problem Statement

Given are a fault-intolerant real-time program P = 〈SP , ψP〉, its invariant S, a
set f of faults, and a specification SPEC such that P |=S SPEC . Our goal is to
synthesize a real-time program P ′ = 〈SP′ , ψP′〉 with invariant S′ such that P ′ is
f -tolerant to SPEC from S ′. We require that our synthesis methods obtain P ′

from P by adding fault-tolerance to P without introducing new behaviors in the
absence of faults. To this end, we first define the notion of projection. Projection
of a set ψP of transitions on state predicate S consists of immediate transitions
of ψsP that start in S and end in S, and delay transitions of ψdP that start and
remain in S continuously.

Definition 13 (projection) Projection of a set ψ of transitions on a state
predicate S (denoted ψ|S) is the following set of transitions:

ψ|S = {(σ0, σ1) ∈ ψs | σ0, σ1 ∈ S} ∪
{(σ, δ) ∈ ψd | σ ∈ S ∧ (∀ε | ((ε ∈ R≥0) ∧ (ε ≤ δ)) : σ + ε ∈ S)}.

Since meeting timing constraints in the presence of faults requires time pre-
dictability, we let our synthesis methods incorporate a finite set Y of new clock
variables. We denote the set of states obtained by abstracting the clock variables
in Y from the state predicate U by U\Y . Likewise, if ψ is a set of transitions,
we denote the set of transitions obtained by abstracting the clock variables in
Y by ψP\Y . Now, observe that in the absence of faults, if S ′ contains states
that are not in S then P ′ may include computations that start outside S.
Hence, we require that (S ′\Y) ⊆ S. Moreover, if ψ

′

P |S
′ contains a transition

that is not in ψP |S
′ then in the absence of faults, P ′ can exhibit computa-

tions that do not correspond to computations of P . Therefore, we require that
(ψP′\Y)|(S′\Y) ⊆ ψP |(S

′\Y).

Problem Statement 1 Given a program P = 〈SP , ψP〉, invariant S, specifi-
cation SPEC , and set of faults f such that P |=S SPEC , identify P ′ = 〈SP′ , ψP′〉
and S′ such that:

(C1) SP′\Y = SP , where Y is a finite set of new clock variables,
(C2) (S′\Y) ⊆ S,
(C3) ((ψP′\Y) | ((S′\Y)) ⊆ (ψP |(S

′\Y)), and
(C4) P ′ is f -tolerant to SPEC from S ′.

5 Synthesizing Fault-Tolerant Real-Time Programs with

2-Phase Recovery

5.1 Complexity

In this section, we show that, in general, the problem of synthesizing fault-
tolerant real-time programs that provide phased recovery is NP-complete in the
size of locations of the given fault-intolerant real-time program.

Instance. A real-time program P = 〈SP , ψP〉 with invariant S, a set of faults f ,
and a specification SPEC , such that P |=S SPEC , where SPEC br ≡ (¬S 7→≤θ

Q) ∧ (Q 7→≤δ S) for state predicate Q and δ, θ ∈ Z≥0.
The decision problem (FTPR). Does there exist an f -tolerant program
P ′ = 〈SP′ , ψP′〉 with invariant S′ such that P ′ and S′ meet the constraints of
Problem Statement 1?

Theorem 1. The FTPR problem is NP-complete in the size of locations of the
fault-intolerant program.

Example (cont’d). The proof of Theorem 1 particularly implies that if Q
and S are disjoint in the problem instance then NP-completeness of the synthesis
problem is certain. In the context of TC , notice that according to the definitions
of STC and QTC in Subsections 2.4 and 3.2, it is the case that STC ∩ QTC =
{}. Hence, the TC program and specification in their current form exhibit an
instance where the synthesis problem is NP-complete. However, in Subsection
5.3, we demonstrate that a slight modification in the specification of TC makes
the problem significantly easier to solve.

5.2 A Sufficient Condition for a Polynomial-Time Solution

In this section, we present a sufficient condition under which one can devise a
polynomial-time sound and complete solution to the Problem Statement 1 in the
size of time-abstract bisimulation of input program.

Claim. Let P = 〈SP , ψP〉 be a program with invariant S and recovery specifi-
cation SPEC br ≡ (¬S 7→≤θ Q) ∧ (Q 7→≤δ S). There exists a polynomial-time
sound and complete solution to Problem Statement 1 in the size of the region
graph of P , if (S ⊆ Q) ∧ (Q is closed in ψP′).

In order to validate this claim, we propose the Algorithm
Add BoundedPhasedRecovery.
Algorithm sketch. Intuitively, the algorithm works as follows. In Step 1,
we transform the input program into a region graph [AD94] (described below).
In Step 2, we isolate the set of states from where SPEC bt may be violated.
In Step 3, we ensure that any computation of P ′ that starts from a state in
¬S′ − Q (respectively, Q − S ′) reaches a state in Q (respectively, S ′) within θ

(respectively, δ) time units. In Step 4, we ensure the closure of fault-span and
deadlock freedom of invariant. We repeat Steps 3-4 until a fixpoint is reached.
Finally, in Step 5, we transform the resultant region graph back into a real-time
program.

Assumption 1 Let α = (σ0, τ0) → (σ1, τ1) → · · · (σn, τn) be a computation
prefix where σ0, σn ∈ S and σi 6∈ S for all i ∈ {1..n− 1}. Only for simplicity of
presentation, we assume that the number of occurrence of faults in α is one. Pre-
cisely, we assume that in α, only (σ0, σ1) is a fault transition and no faults occur
outside the program invariant. In our previous work [BK06b], we have shown

how to deal with cases where multiple faults occur in a computation when adding
bounded response properties. The same technique can be applied while preserv-
ing soundness and completeness of the algorithm Add BoundedPhasedRecovery

in this paper. Furthermore, notice that the proof of Theorem 1 in its current
form holds with this assumption.

Region Graph. Real-time programs can be analyzed with the help of an
equivalence relation of finite index on the set of states [AD94]. Given a real-
time program P , for each clock variable x ∈ X , let cx be the largest constant
in clock constraint of transitions of p that involve x, where cx = 0 if x does
not occur in any clock constraints of P . We say that two clock valuations ν,
µ are clock equivalent if (1) for all x ∈ X , either bν(x)c = bµ(x)c or both
ν(x), µ(x) > cx, (2) the ordering of the fractional parts of the clock variables
in the set {x ∈ X | ν(x) < cx} is the same in µ and ν, and (3) for all x ∈ X

where ν(x) < cx, the clock value ν(x) is an integer iff µ(x) is an integer. A
clock region ρ is a clock equivalence class. Two states (s0, ν0) and (s1, ν1) are
region equivalent, written (s0, ν0) ≡ (s1, ν1), if (1) s0 = s1, and (2) ν0 and ν1
are clock equivalent. A region r = (s, ρ) is an equivalence class with respect to
≡, where s is a location and ρ is a clock region. We say that a clock region β

is a time-successor of a clock region α iff for each ν ∈ α, there exists τ ∈ R≥0,
such that ν + τ ∈ β, and ν + τ ′ ∈ α ∪ β for all τ ′ < τ .

Using the region equivalence relation, we construct the region graph of P =
〈SP , ψP〉 (denoted R(P) = 〈SrP , ψ

r
P〉) as follows. Vertices of R(P) (denoted SrP)

are regions. Edges of R(P) (denoted ψrP) are of the form (s0, ρ0) → (s1, ρ1) iff
for some clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) → (s1, ν1) is a transitions
in ψP .

We now describe the algorithm Add BoundedPhasedRecovery in detail:

– (Step 1) First, we use the above technique to transform the input program
P = 〈SP , ψP〉 into a region graph R(P) = 〈SrP , ψ

r
P〉. To this end, we invoke

the procedure ConstructRegionGraph as a black box (Line 1). We let this
procedure convert state predicates and sets of transitions in P (e.g., S and
ψP) to their corresponding region predicates and sets of edges in R(P) (e.g.,
Sr and ψrP). Precisely, a region predicate U r with respect to a state predicate
U is the set U r = {(s, ρ) | ∃(s, ν) : ((s, ν) ∈ U ∧ ν ∈ ρ)}.

– (Step 2) In order to ensure that the synthesized program does not violate
SPEC bt, we identify the set ms of regions from where a computation may
reach a transition in SPEC bt by taking fault transitions alone (Line 2). Next
(Line 3), we compute the set mt of edges, which contains (1) edges that
directly violate safety (i.e., SPEC r

bt), and (2) edges whose target region is
in ms (i.e., edges that lead a computation to a state from where safety may
be violated by faults alone). Since the program does not have control over
occurrence of faults, we remove the set ms from the region predicate T r1 ,
which is our initial estimate of the fault-span (Line 4). Likewise, in Step
3, we will remove mt from the set of program edges ψrP when recomputing
program transitions.

Algorithm 1 Add BoundedPhasedRecovery
Input: A real-time program P = 〈SP , ψP

〉 with invariant S, fault transitions f , bad transitions
SPEC bt, intermediate recovery predicate Q s.t. S ⊆ Q, recovery time δ, and intermediate re-
covery time θ.

Output: If successful, a fault-tolerant real-time program P ′ = 〈SP′ , ψ
P′ 〉.

1: 〈Sr
P
, ψr

P
〉, Sr

1 , Qr , fr, SPEC
r
bt := ConstructRegionGraph(〈SP , ψP

〉, S, Q, f , SPEC bt);
2: ms := {r0 | ∃r1, r2 · · · rn : (∀j | 0≤j<n : (rj , rj+1) ∈ fr) ∧ (rn−1, rn) ∈ SPEC

r
bt};

3: mt := {(r0, r1) | (r1 ∈ ms) ∨ ((r0, r1) ∈ SPEC
r
bt)};

4: T r
1 := Sr

P
− ms;

5: repeat

6: T r
2 , S

r
2 := T r

1 , S
r
1 ;

7: ψr
P1

:= ψr
P
|Sr

1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (T r
1 −Qr) ∧ (s1, ρ1) ∈ T r

1 ∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} ∪
{((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Qr − Sr

1) ∧ (s1, ρ1) ∈ Qr ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} − mt;

8: ψr
P1
, ns := Add BoundedResponse(〈Sr

P
, ψr

P1
〉, T r

1 −Qr , Qr , θ);

9: T r
1 := T r

1 − ns;
10: ψr

P1
, ns := Add BoundedResponse(〈Sr

P
, ψr

P1
〉, Qr − Sr

1 , Sr
1 , δ);

11: T r
1 , Q

r := T r
1 − ns , Qr − ns ;

12: while (∃r0, r1 : r0∈T
r
1 ∧ r1 6∈T

r
1 ∧ (r0, r1)∈f

r) do

13: T r
1 := T r

1 − {r0};
14: end while

15: while (∃r0∈ (Sr
1 ∩ T r

1) : (∀r1 | (r1 6= r0 ∧ r1 ∈ Sr
1) : (r0, r1) 6∈ ψr

P1
)) do

16: Sr
1 := Sr

1 − {r0};
17: end while

18: if (Sr
1 = {} ∨ T r

1 = {}) then

19: print ‘‘no fault-tolerant program exists’’; exit;

20: end if

21: until (T1 = T2 ∧ S1 = S2)
22: 〈S

P′ , ψ
P′ 〉, S

′, T ′ := ConstructRealTimeProgram(〈Sr
P
, ψr

P1
〉, Sr

1 , T
r
1);

23: return 〈SP′ , ψ
P′〉, S

′, T ′;

– (Step 3) In this step, we add recovery paths to R(P) so that R(P) satisfies
¬S′ 7→≤θ Q and Q 7→≤δ S

′. To this end, we first recompute the set ψP1
of

program edges (Line 7) by including (1) existing edges that start and end
in Sr1 , and (2) new recovery edges that originate from regions in T r1 − Qr

(respectively, Qr−Sr1) and terminate at regions in T r1 (respectively, Q) such
that the time-monotonicity condition is met. We exclude the set mt from ψrP1

to ensure that these recovery edges do not violate SPEC bt. Notice that the
algorithm allows arbitrary clock resets during recovery. If such clock resets
are not desirable, one can rule them out by including them as bad transitions
in SPEC bt.
After adding recovery edges, we invoke the procedure Add BoundedResponse

(Line 8) with parameters T r1 − Qr, Qr, and θ to ensure that R(P) indeed
satisfies the bounded response property ¬S 7→≤θ Q. The details of how the
procedure Add BoundedResponse (first proposed in [BK06a]) functions are
not provided in this paper, with the exception of the following properties:
(1) it adds a clock variable, say t1, which gets reset when T1 − Q becomes
true, to the set X of clock variables of P , (2) for each state σ in T1 − Q,
it includes the set of transitions that participate in forming the computa-
tion that starts from σ and reaches a state in Q with smallest possible time
delay, if the delay is less than θ, and (3) the regions made unreachable by
this procedure (returned as the set ns) cannot be present in any solution

that satisfies ¬S1 7→≤θ Q. The procedure may optionally include additional
computations, provided they preserve the corresponding bounded response
property. Thus, since there does not exist a computation prefix that main-
tains the corresponding bounded response property from the regions in ns ,
in Line 9, the algorithm removes ns from T r1 . Likewise, in Line 10, the algo-
rithm adds a clock variable, say t2, which gets reset when Q − S1 becomes
true and ensures that R(P) satisfies Q 7→≤δ S1.

– (Step 4) Since we remove the set ns of regions from T r1 , we need to ensure
that T1 is closed in f . Thus, we remove regions from where a sequence of
fault edges can reach a region in ns (Lines 12-14). Next, due to the possibility
of removal of some regions and edges in the previous steps, the algorithm
ensures that the region graph 〈SrP , ψ

r
P1
〉 does not have deadlock regions in

the region invariant Sr1 (Lines 15-17). Precisely, we say that a region (s0, ρ0)
of region graph R(P) = 〈SrP , ψ

r
P〉 is a deadlock region in region predicate

Ur iff for all regions (s1, ρ1) ∈ Ur, there does not exist an edge of the
form (s0, ρ0) → (s1, ρ1) ∈ ψrP . Deadlock freedom in the region graph is
necessary, as the constraint C4 in the Problem Statement 1 does not allow
the algorithm to introduce new finite or time-divergent computations to the
input program. If the removal of deadlock regions and regions from where
the closure of fault-span is violated results in empty invariant or fault-span,
the algorithm declares failure (Lines 18-20).

– (Step 5) Finally, upon reaching a fixpoint, we transform the resulting region
graph 〈SrP , ψ

r
P1

〉 back into a real-time program P ′ = 〈SP′ , ψP′〉 by invoking
the procedure ConstructRealTimeProgram. In fact, the programP ′ is returned
as the final synthesized fault-tolerant program. Note that since a region graph
is a time-abstract bisimulation [AD94], we will not lose any behaviors in the
reverse transformation.

Theorem 2. The Algorithm Add BoundedPhasedRecovery is sound and com-
plete.

5.3 Example (cont’d)

We now demonstrate how the algorithm Add BoundedPhasedRecovery synthesizes
a fault-tolerant version of TC , which provides bounded-time recovery. Let the
intermediate recovery predicate be:

Qnew = STC ∪ QTC .

In other words, after the occurrence of faults, the recovery specification re-
quires that either both signals turn red within 3 time units and then return
to the normal behavior within 7 time units, or, the system reaches a state
in STC within 3 time units. Since, STC ⊆ Qnew , we apply the Algorithm
Add BoundedPhasedRecovery to transform TC into a fault-tolerant program TC ′.
We note that due to many symmetries in TC and the complex structure of the
algorithm, we only present a highlight of the process of synthesizing TC ′.

First, observe that in Step 2 of the algorithm, ms = {} and mt = SPEC btTC
. In

Step 3, consider a subset of T1 − Qnew where (sig0 = sig1 = R) ∧ (z0, z1 ≤ 1).
This predicate is reachable by a single occurrence of (for instance) F0 from an
invariant state where (sig0 = sig1 = R) ∧ (z0 > 1) ∧ (z1 ≤ 1). After adding
legitimate recovery transitions (Line 7), the invocation of Add BoundedResponse

(Line 8) results in addition of the following recovery action:

TC5i :: (sig0 = sig1 = R) ∧ (z0, z1 ≤ 2) ∧ (t1 ≤ 2) −−−→ wait;

for all i ∈ {0, 1}. This action enforces the program to take delay transitions so
that the program reaches a state in Q where (sig0 = sig1 = R) ∧ (z0, z1 > 1).

Now, consider the case where TC is in a state where (sig0 = G) ∧ (sig1 =
R) ∧ (x0 = 1) ∧ (z0, z1 ≤ 1). In this case, one may argue that TC has the
option of executing action TC 31 and reaching a state where sig0 = sig1 = G,
which is clearly a violation of safety specification SPEC btTC

. However, since we
remove the set mt from ψP1

(Line 7), action TC 3i would be revised as follows:

TC3i:: (sigi = R) ∧ (zj ≤ 1) ∧ (sigj 6= G)
{xi}
−−−→ (sigi := G);

for all i ∈ {0, 1} where j = (i+1) mod 2. In other words, the algorithm strength-
ens the guard of TC 1i such that in the presence of faults, a signal does not turn
green while the other one is also green.

In Step 4, consider the state predicate Qnew − S1TC
= (sig0 = sig1 = R) ∧

(z0, z1 > 1). Similar to Step 3, the algorithm adds recovery paths with the
smallest possible time delay, which is the following action for either i = 0 or
i = 1:

TC6i:: (sigi = sigj = R) ∧ (zi, zj > 1)
{zi}
−−−→ skip;

It is straightforward to verify that by execution of TC 6i, the program reaches
the invariant STC from where the program behaves correctly. Similar to Step
3, the procedure Add BoundedResponse may include the following additional ac-
tions:

TC7i:: (sigi = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7)
{xi}−−−→ (sigi := G);

TC8i:: (sigi = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7)
{yi}
−−−→ (sigi := Y);

TC9i:: (sigi = sigj = R) ∧ (zi, zj > 1) ∧ (t2 ≤ 7) −−−→ wait;

In the context of TC , in Step 5, the algorithm removes states from neither
the fault-span nor the invariant, as ns = {}, and, hence, the algorithm finds the
final solution in one iteration of the repeat-until loop.

6 Related Work

Our formulation of the synthesis problem is in spirit close to timed controller syn-
thesis (e.g., [BDMP03,DM02,AM99,AMPS98]), where program and fault tran-
sitions may be modeled as controllable and uncontrollable actions, and game

theory (e.g., [dAFH+03,FLM02]), where program and fault transitions may be
modeled in terms of two players. In controller synthesis (respectively, game the-
ory) the objective is to restrict the actions of a plant (respectively, an adversary)
at each state through synthesizing a controller (respectively, a wining strategy)
such that the behavior of the entire system always meets some safety and/or
reachability conditions. Notice that the conditions C1..C3 in Problem State-
ment 1 precisely express this notion of restriction (also called language inclu-
sion). Moreover, constraint C4 implicitly implies that the synthesized program
is not allowed to exhibit new finite computations, which is known as the non-
blocking condition. Note, however, that there are several distinctions. First, in
addition to safety and reachability constraints, our notion of fault-tolerance is
also concerned with adding new bounded-time recovery behaviors to the given
program as well, which is normally not a concern in controller synthesis and
game theory. Secondly, unlike most game theoretic approaches, we do not con-
sider turns between occurrence of program and fault transitions. Thirdly, in
controller synthesis and game theory, a common assumption is that the existing
program and/or the given specification must be deterministic which is not the
case in our model.

Finally, we concentrate on safety properties typically used in specifying real-
time systems (cf. Definition 8). As a result, the complexity of our synthesis
techniques is often lower than the related work. For example, synthesis problems
presented in [dAFH+03,FLM02,AMPS98,AM99] are Exptime-complete and de-
ciding the existence of a controller in [DM02,BDMP03] is 2Exptime-complete.

7 Conclusion and Future Work

In this paper, we focused on the problem of synthesizing fault-tolerant real-
time programs that mask the occurrence of faults while providing bounded-
time phased recovery. We modeled such phased recovery using bounded response
properties of the form (¬S 7→≤θ Q)∧(Q 7→≤δ S) where S is an invariant predicate
and Q is an intermediate recovery predicate. We showed that in general the
problem is NP-complete in the size of locations of the input program. We also
showed that if S ⊆ Q and Q is closed in execution of the output program then
there exists a polynomial-time solution to the problem in the size of the input
program’s region graph.

Also, as discussed in Subsection 5.3, the designer can use the contrast between
the complexity classes with slightly different problem specifications to determine
if system requirements can be slightly modified for permitting automated synthe-
sis. In particular, in Section 6, we argued that the alternate specification (where
the problem is in P) for the one-lane bridge problem considered in this paper may
be acceptable to many designers. Also, as argued in that section, the modified
specification can assist in partial automation of providing fault-tolerance with
phased recovery. One of our future works in this area is to develop algorithms
that utilize such a partial automation.

We are currently working on other variations of the problem. One such vari-
ation is where S ⊆ Q, but Q need not be closed in the output program. We
conjecture that the complexity of this problem is exponential. We also plan
to develop symbolic algorithms for synthesizing bounded-time phased recovery.
In previous work, we have shown that such techniques are extremely effective
in synthesizing distributed programs with state space of size 1030 and beyond
[BK07].

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AH97] R. Alur and T. A. Henzinger. Real-time system = discrete system + clock
variables. International Journal on Software Tools for Technology Transfer,
1(1-2):86–109, 1997.

[AM99] E. Asarin and O. Maler. As soon as possible: Time optimal control for
timed automata. In Hybrid Systems: Computation and Control (HSCC),
pages 19–30, 1999.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In IFAC Symposium on System Structure and Control,
pages 469–474, 1998.

[AS85] B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, 1985.

[BDMP03] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with
partial observability. In Computer Aided Verification (CAV), pages 180–
192, 2003.

[BK06a] B. Bonakdarpour and S. S. Kulkarni. Automated incremental synthesis
of timed automata. In International Workshop on Formal Methods for
Industrial Critical Systems (FMICS), LNCS 4346, pages 261–276, 2006.

[BK06b] B. Bonakdarpour and S. S. Kulkarni. Incremental synthesis of fault-tolerant
real-time programs. In International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), LNCS 4280, pages 122–136,
2006.

[BK07] B. Bonakdarpour and S. S. Kulkarni. Exploiting symbolic techniques in au-
tomated synthesis of distributed programs with large state space. In IEEE
International Conference on Distributed Computing Systems (ICDCS),
pages 3–10, 2007.

[dAFH+03] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga.
The element of surprise in timed games. In International Conference on
Concurrency Theory (CONCUR), 2003.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external
specifications. In Symposium on Theoretical Aspects of Computer Science
(STACS), pages 571–582, 2002.

[FLM02] M. Faella, S. LaTorre, and A. Murano. Dense real-time games. In Logic in
Computer Science (LICS), pages 167–176, 2002.

[Hen92] T. A. Henzinger. Sooner is safer than later. Information Processing Letters,
43(3):135–141, 1992.

