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Abstract. Research efforts of the past fifty years have led to a development of linear
integer programming as a mature discipline of mathematical optimization. Such a
level of maturity has not been reached when one considers nonlinear systems subject
to integrality requirements for the variables. This chapter is dedicated to this topic.

The primary goal is a study of a simple version of general nonlinear integer
problems, where all constraints are still linear. Our focus is on the computational
complexity of the problem, which varies significantly with the type of nonlinear
objective function in combination with the underlying combinatorial structure. Nu-
merous boundary cases of complexity emerge, which sometimes surprisingly lead
even to polynomial time algorithms.

We also cover recent successful approaches for more general classes of problems.
Though no positive theoretical efficiency results are available, nor are they likely to
ever be available, these seem to be the currently most successful and interesting
approaches for solving practical problems.

It is our belief that the study of algorithms motivated by theoretical considera-
tions and those motivated by our desire to solve practical instances should and do
inform one another. So it is with this viewpoint that we present the subject, and it is
in this direction that we hope to spark further research.
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1 Overview

In the past decade, nonlinear integer programming has gained a lot of mindshare.
Obviously many important applications demand that we be able to handle nonlin-
ear objective functions and constraints. Traditionally, nonlinear mixed-integer pro-
grams have been handled in the context of the field of global optimization, where
the main focus is on numerical algorithms to solve nonlinear continuous optimiza-
tion problems and where integrality constraints were considered as an afterthought,
using branch-and-bound over the integer variables. In the past few years, however,
researchers from the field of integer programming have increasingly studied nonlin-
ear mixed-integer programs from their point of view. Nevertheless, this is generally
considered a very young field, and most of the problems and methods are not as
well-understood or stable as in the case of linear mixed-integer programs.

Any contemporary review of nonlinear mixed-integer programming will there-
fore be relatively short-lived. For this reason, our primary focus is on a classification
of nonlinear mixed-integer problems from the point of view of computational com-
plexity, presenting theory and algorithms for the efficiently solvable cases. The hope
is that at least this part of the chapter will still be valuable in the next few decades.
However, we also cover recent successful approaches for more general classes of
problems. Though no positive theoretical efficiency results are available — nor are
they likely to ever be available, these seem to be the currently most successful and
interesting approaches for solving practical problems. It is our belief that the study
of algorithms motivated by theoretical considerations and those motivated by our
desire to solve practical instances should and do inform one another. So it is with
this viewpoint that we present the subject, and it is in this direction that we hope to
spark further research.

Let us however also remark that the selection of the material that we dis-
cuss in this chapter is subjective. There are topics that some researchers associate
with “nonlinear integer programming” that are not covered here. Among them are
pseudo-Boolean optimization, max-cut and quadratic assignment as well as general
0/1 polynomial programming. There is no doubt that these topics are interesting,
but, in order to keep this chapter focused, we refrain from going into these topics.
Instead we refer the interested reader to the references [55] on max-cut, [32] for
recent advances in general 0/1 polynomial programming, and the excellent surveys
[29] on pseudo-Boolean optimization and [103, 34] on the quadratic assignment
problem.

A general model of mixed-integer programming could be written as

max/min f (x1, . . . ,xn)
s.t. g1(x1, . . . ,xn)≤ 0

...
gm(x1, . . . ,xn)≤ 0
x ∈ Rn1 ×Zn2 ,

(1)
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where f ,g1, . . . ,gm : Rn → R are arbitrary nonlinear functions. However, in parts
of the chapter, we study a rather restricted model of nonlinear integer program-
ming, where the nonlinearity is confined to the objective function, i.e., the following
model:

max/min f (x1, . . . ,xn)
subject to Ax≤ b

x ∈ Rn1 ×Zn2 ,

(2)

where A is a rational matrix and b is a rational vector. It is clear that this model is
still NP-hard, and that it is much more expressive and much harder to solve than
integer linear programs.

We start out with a few fundamental hardness results that help to get a picture of
the complexity situation of the problem.

Even in the pure continuous case, nonlinear optimization is known to be hard.

Theorem 1. Pure continuous polynomial optimization over polytopes (n2 = 0) in
varying dimension is NP-hard. Moreover, there does not exist a fully polynomial
time approximation scheme (FPTAS) (unless P = NP).

Indeed the max-cut problem can be modeled as minimizing a quadratic form over
the cube [−1,1]n, and thus inapproximability follows from a result by Håstad [65].
On the other hand, pure continuous polynomial optimization problems over poly-
topes (n2 = 0) can be solved in polynomial time when the dimension n1 is fixed.
This follows from a much more general result on the computational complexity of
approximating the solutions to general algebraic formulae over the real numbers by
Renegar [111].

However, as soon as we add just two integer variables, we get a hard problem
again:

Theorem 2. The problem of minimizing a degree-4 polynomial over the lattice
points of a convex polygon is NP-hard.

This is based on the NP-completeness of the problem whether there exists a positive
integer x < c with x2 ≡ a (mod b); see [53, 41].

We also get hardness results that are much worse than just NP-hardness. The neg-
ative solution of Hilbert’s tenth problem by Matiyasevich [95, 96], based on earlier
work by Davis, Putnam, and Robinson, implies that nonlinear integer programming
is incomputable, i.e., there cannot exist any general algorithm. (It is clear that for
cases where finite bounds for all variables are known, an algorithm trivially ex-
ists.) Due to a later strengthening of the negative result by Matiyasevich (published
in [76]), there also cannot exist any such general algorithm for even a small fixed
number of integer variables; see [41].

Theorem 3. The problem of minimizing a linear form over polynomial constraints
in at most 10 integer variables is not computable by a recursive function.

Another consequence, as shown by Jeroslow [75], is that even integer quadratic
programming is incomputable.
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Theorem 4. The problem of minimizing a linear form over quadratic constraints in
integer variables is not computable by a recursive function.

How do we get positive complexity results and practical methods? One way is
to consider subclasses of the objective functions and constraints. First of all, for the
problem of concave minimization or convex maximization which we study in Sec-
tion 2, we can make use of the property that optimal solutions can always be found
on the boundary (actually on the set of vertices) of the convex hull of the feasible
solutions. On the other hand, as in the pure continuous case, convex minimization,
which we address in Section 3), is much easier to handle, from both theoretical and
practical viewpoints, than the general case. Next, in Section 4, we study the general
case of polynomial optimization, as well as practical approaches for handling the
important case of quadratic functions. Finally, in Section 5, we briefly describe the
practical approach of global optimization.

For each of these subclasses covered in sections 2–5, we discuss positive com-
plexity results, such as polynomiality results in fixed dimension, if available (Sec-
tions 2.1, 3.1, 4.1), including some boundary cases of complexity in Sections 2.2,
3.2, and 5.2, and discuss practical algorithms (Sections 2.3, 3.3, 4.2, 4.3, 5.1).

We end the chapter with conclusions (Section 6), including a table that summa-
rizes the complexity situation of the problem (Table 1).

2 Convex integer maximization

2.1 Fixed dimension

Maximizing a convex function over the integer points in a polytope in fixed dimen-
sion can be done in polynomial time. To see this, note that the optimal value is
taken on at a vertex of the convex hull of all feasible integer points. But when the
dimension is fixed, there is only a polynomial number of vertices, as Cook et al. [38]
showed.

Theorem 5. Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron with A ∈ Qm×n

and let φ be the largest binary encoding size of any of the rows of the system Ax≤ b.
Let PI = conv(P∩Zn) be the integer hull of P. Then the number of vertices of PI is
at most 2mn(6n2φ)n−1.

Moreover, Hartmann [64] gave an algorithm for enumerating all the vertices, which
runs in polynomial time in fixed dimension.

By using Hartmann’s algorithm, we can therefore compute all the vertices of the
integer hull PI, evaluate the convex objective function on each of them and pick the
best. This simple method already provides a polynomial-time algorithm.
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2.2 Boundary cases of complexity

In the past fifteen years algebraic geometry and commutative algebra tools have
shown their exciting potential to study problems in integer optimization (see [19,
131] and references therein). The presentation in this section is based on the papers
[43, 101].

The first key lemma, extending results of [101] for combinatorial optimization,
shows that when a suitable geometric condition holds, it is possible to efficiently
reduce the convex integer maximization problem to the solution of polynomially
many linear integer programming counterparts. As we will see, this condition holds
naturally for a broad class of problems in variable dimension. To state this result, we
need the following terminology. A direction of an edge (i.e., a one-dimensional face)
e of a polyhedron P is any nonzero scalar multiple of u−v with u,v any two distinct
points in e. A set of vectors covers all edge-directions of P if it contains a direction
of each edge of P. A linear integer programming oracle for matrix A ∈ Zm×n and
vector b ∈ Zm is one that, queried on w ∈ Zn, solves the linear integer program
max{w>x : Ax = b, x ∈ Nn}, that is, either returns an optimal solution x ∈ Nn, or
asserts that the program is infeasible, or asserts that the objective function w>x is
unbounded.

Lemma 1. For any fixed d there is a strongly polynomial oracle-time algorithm
that, given any vectors w1, . . . ,wd ∈ Zn, matrix A ∈ Zm×n and vector b ∈ Zm en-
dowed with a linear integer programming oracle, finite set E ⊂ Zn covering all
edge-directions of the polyhedron conv{x ∈ Nn : Ax = b}, and convex functional
c : Rd −→ R presented by a comparison oracle, solves the convex integer program

max{c(w>1 x, . . . ,w>d x) : Ax = b, x ∈ Nn} .

Here, solving the program means that the algorithm either returns an optimal
solution x ∈ Nn, or asserts the problem is infeasible, or asserts the polyhedron
{x ∈ Rn

+ : Ax = b} is unbounded; and strongly polynomial oracle-time means
that the number of arithmetic operations and calls to the oracles are polynomially
bounded in m and n, and the size of the numbers occurring throughout the algorithm
is polynomially bounded in the size of the input (which is the number of bits in the
binary representation of the entries of w1, . . . ,wd ,A,b,E).

Let us outline the main ideas behind the proof to Lemma 1, and let us point
out the difficulties that one has to overcome. Given data for a convex integer
maximization problem max{c(w>1 x, . . . ,w>d x) : Ax = b, x ∈ Nn}, consider the
polyhedron P := conv{x ∈ Nn : Ax = b} ⊆ Rn and its linear transformation Q :=
{(w>1 x, . . . ,w>d x) : x ∈ P} ⊆ Rd . Note that P has typically exponentially many ver-
tices and is not accessible computationally. Note also that, because c is convex, there
is an optimal solution x whose image (w>1 x, . . . ,w>d x) is a vertex of Q. So an impor-
tant ingredient in the solution is to construct the vertices of Q. Unfortunately, Q may
also have exponentially many vertices even though it lives in a space Rd of fixed di-
mension. However, it can be shown that, when the number of edge-directions of P
is polynomial, the number of vertices of Q is polynomial. Nonetheless, even in this
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case, it is not possible to construct these vertices directly, because the number of
vertices of P may still be exponential. This difficulty can finally be overcome by
using a suitable zonotope. See [43, 101] for more details.

Let us now apply Lemma 1 to a broad (in fact, universal) class of convex inte-
ger maximization problems. Lemma 1 implies that these problems can be solved in
polynomial time. Given an (r+s)× t matrix A, let A1 be its r× t sub-matrix consist-
ing of the first r rows and let A2 be its s× t sub-matrix consisting of the last s rows.
Define the n-fold matrix of A to be the following (r +ns)×nt matrix,

A(n) := (1n⊗A1)⊕ (In⊗A2) =


A1 A1 A1 · · · A1
A2 0 0 · · · 0
0 A2 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A2

 .

Note that A(n) depends on r and s: these will be indicated by referring to A as an
“(r + s)× t matrix.”

We establish the following theorem, which asserts that convex integer maximiza-
tion over n-fold systems of a fixed matrix A, in variable dimension nt, are solvable
in polynomial time.

Theorem 6. For any fixed positive integer d and fixed (r + s)× t integer matrix A
there is a polynomial oracle-time algorithm that, given n, vectors w1, . . . ,wd ∈ Znt

and b ∈ Zr+ns, and convex function c : Rd −→R presented by a comparison oracle,
solves the convex n-fold integer maximization problem

max{c(w>1 x, . . . ,w>d x) : A(n)x = b, x ∈ Nnt} .

The equations defined by an n-fold matrix have the following, perhaps more illu-
minating, interpretation: splitting the variable vector and the right-hand side vec-
tor into components of suitable sizes, x = (x1, . . . ,xn) and b = (b0,b1, . . . ,bn),
where b0 ∈ Zr and xk ∈ Nt and bk ∈ Zs for k = 1, . . . ,n, the equations become
A1(∑n

k=1 xk) = b0 and A2xk = bk for k = 1, . . . ,n. Thus, each component xk satis-
fies a system of constraints defined by A2 with its own right-hand side bk, and the
sum ∑

n
k=1 xk obeys constraints determined by A1 and b0 restricting the “common

resources shared by all components”.
Theorem 6 has various applications, including multiway transportation problems,

packing problems, vector partitioning and clustering. For example, we have the fol-
lowing corollary providing the first polynomial time solution of convex 3-way trans-
portation.

Corollary 1. (convex 3-way transportation) For any fixed d, p,q there is a poly-
nomial oracle-time algorithm that, given n, arrays w1, . . . ,wd ∈ Zp×q×n, u ∈ Zp×q,
v∈Zp×n, z∈Zq×n, and convex c : Rd −→R presented by comparison oracle, solves
the convex integer 3-way transportation problem
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max{c(w>1 x, . . . ,w>d x) : x∈Np×q×n , ∑
i

xi, j,k = z j,k , ∑
j

xi, j,k = vi,k , ∑
k

xi, j,k = ui, j } .

Note that in contrast, if the dimensions of two sides of the tables are variable,
say, q and n, then already the standard linear integer 3-way transportation problem
over such tables is NP-hard, see [44, 45, 46].

In order to prove Theorem 6, we need to recall some definitions. The Graver
basis of an integer matrix A∈Zm×n, introduced in [59], is a canonical finite set G (A)
that can be defined as follows. For each of the 2n orthants O j of Rn let H j denote the
inclusion-minimal Hilbert basis of the pointed rational polyhedral cone ker(A)∩
O j. Then the Graver basis G (A) is defined to be the union G (A) = ∪2n

i=1H j \ {0}
over all these 2n Hilbert bases. By this definition, the Graver basis G (A) has a nice
representation property: every z ∈ ker(A)∩Zn can be written as a sign-compatible
nonnegative integer linear combination z = ∑i αigi of Graver basis elements gi ∈
G (A). This follows from the simple observation that z has to belong to some orthant
O j of Rn and thus it can be represented as a sign-compatible nonnegative integer
linear combination of elements in H j ⊆ G (A). For more details on Graver bases and
the currently fastest procedure for computing them see [124, 67, 130].

Graver bases have another nice property: They contain all edge directions in the
integer hulls within the polytopes Pb = {x : Ax = b, x ≥ 0} as b is varying. We
include a direct proof here.

Lemma 2. For every integer matrix A ∈ Zm×n and every integer vector b ∈ Nm, the
Graver basis G (A) of A covers all edge-directions of the polyhedron conv{x ∈ Nn :
Ax = b} defined by A and b.

Proof. Consider any edge e of P := conv{x ∈ Nn : Ax = b} and pick two distinct
points u,v ∈ e∩Nn. Then g := u− v is in ker(A)∩Zn \ {0} and hence, by the
representation property of the Graver basis G (A), g can be written as a finite sign-
compatible sum g = ∑gi with gi ∈ G (A) for all i. Now, we claim that u− gi ∈ P
for all i. To see this, note first that gi ∈ G (A) ⊆ ker(A) implies Agi = 0 and hence
A(u− gi) = Au = b; and second, note that u− gi ≥ 0: indeed, if gi

j ≤ 0 then u j−
gi

j ≥ u j ≥ 0; and if gi
j > 0 then sign-compatibility implies gi

j ≤ g j and therefore
u j−gi

j ≥ u j−g j = v j ≥ 0.
Now let w ∈ Rn be a linear functional uniquely maximized over P at the edge e.

Then for all i, as just proved, u−gi ∈ P and hence w>gi ≥ 0. But ∑w>gi = w>g =
w>u−w>v = 0, implying that in fact, for all i, we have w>gi = 0 and therefore
u− gi ∈ e. This implies that each gi is a direction of the edge e (in fact, moreover,
all gi are the same, so g is a multiple of some Graver basis element).

In Section 3.2, we show that for fixed matrix A, the size of the Graver basis of
A(n) increases only polynomially in n implying Theorem 14 that states that certain
integer convex n-fold minimization problems can be solved in polynomial time when
the matrix A is kept fixed. As a special case, this implies that the integer linear n-
fold maximization problem can be solved in polynomial time when the matrix A is
kept fixed. Finally, combining these results with Lemmas 1 and 2, we can now prove
Theorem 6.
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Proof (of Theorem 6). The algorithm underlying Proposition 14 provides a poly-
nomial time realization of a linear integer programming oracle for A(n) and b. The
algorithm underlying Proposition 2 allows to compute the Graver basis G (A(n)) in
time which is polynomial in the input. By Lemma 2, this set E := G (A(n)) covers all
edge-directions of the polyhedron conv{x∈Nnt : A(n)x = b} underlying the convex
integer program. Thus, the hypothesis of Lemma 1 is satisfied and hence the algo-
rithm underlying Lemma 1 can be used to solve the convex integer maximization
problem in polynomial time.

2.3 Reduction to linear integer programming

In this section it is our goal to develop a basic understanding about when a discrete
polynomial programming problem can be tackled with classical linear integer op-
timization techniques. We begin to study polyhedra related to polynomial integer
programming. The presented approach applies to problems of the kind

max{ f (x) : Ax = b, x ∈ Zn
+}

with convex polynomial function f , as well as to models such as

max{c>x : x ∈ KI}, (3)

where KI denotes the set of all integer points of a compact basic-closed semi-
algebraic set K described by a finite number of polynomial inequalities, i. e.,

K = {x ∈ Rn : pi(x)≤ 0, i ∈M, l≤ x≤ u}.

We assume that pi ∈ Z[x] := Z[x1, . . . ,xn], for all i ∈M = {1, . . . ,m}, and l,u ∈ Zn.
One natural idea is to derive a linear description of the convex hull of KI . Un-

fortunately, conv(KI) might contain interior integer points that are not elements of
K, see Figure 1. On the other hand, if a description of conv(KI) is at hand, then the
mathematical optimization problem of solving (3) can be reduced to optimizing the
linear objective function c>x over the polyhedron conv(KI). This is our first topic
of interest. In what follows we denote for a set D the projection of D to a set of
variables x by the symbol Dx.

Definition 1. For polynomials p1, . . . , pm : Zn→ Z we define the polyhedron asso-
ciated with the vector p(x) = (p1(x), . . . , pm(x)) of polynomials as

Pp = conv
({(

x,p(x)
)
∈ Rn+m ∣∣ x ∈ [l,u]∩Zn}).

The significance of the results below is that they allow us to reformulate the non-
linear integer optimization problem max{ f (x) : Ax = b, x∈Zn

+} as the optimization
problem min{π : Ax = b, f (x) ≤ π, x ∈ Zn

+}. This in turn has the same objective
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x1

5

4

3

2

1

0 1 2 3

x2

Fig. 1 Let K = {x ∈ R2 | x1x2−1 ≤ 0, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 5}. The point (1,2) is contained in
conv(KI). But it violates the constraint x1x2−1≤ 0.

function value as the linear integer program: min{π : Ax = b, (x,π) ∈ Pf , x ∈ Zn
+}.

In this situation, an H-description or V-description of the polyhedron Pf is sufficient
to reduce the original nonlinear optimization problem to a linear integer problem.

Proposition 1. For a vector of polynomials p ∈ Z[x]m, let

KI = {x ∈ Zn : p(x)≤ 0, l≤ x≤ u}.

Then,
conv(KI)⊆

(
Pp∩{(x,πππ) ∈ Rn+m ∣∣ πππ ≤ 0}

)
x. (4)

Proof. It suffices to show that KI ⊆
(
Pp∩{(x,πππ)∈Rn+m : πππ ≤ 0}

)
x. Let us consider

x∈KI ⊆ [l,u]∩Zn. By definition,
(
x,p(x)

)
∈ Pp. Moreover, we have p(x)≤ 0. This

implies
(
x,p(x)

)
∈
(
Pp∩{(x,πππ) ∈ Rn+m : πππ ≤ 0}

)
, and thus,

x ∈
(
Pp∩{(x,πππ) ∈ Rn+m : πππ ≤ 0}

)
x.

Note that even in the univariate case, equality in Formula (4) of Proposition 1
does not always hold. For instance, if KI = {x ∈ Z : x2−5≤ 0, −3≤ x≤ 5}, then

conv(KI) = [−2,2] 6= [−2.2,2.2]⊆
(
Px2 ∩ {(x,π) ∈ R2 : π−5≤ 0}

)
x.

Although even in very simple cases the sets conv(KI) and
(
Pp∩{(x,πππ) : πππ ≤ 0}

)
x

differ, it is still possible that the integer points in KI and
(
Pp∩{(x,πππ) : πππ ≤ 0}

)
x are

equal. In our example with KI = {x ∈ Z : x2−5≤ 0, −3≤ x≤ 5}, we then obtain,

KI = {−2,−1,0,1,2}= [−2.2,2.2]∩Z.

Of course, for any p ∈ Z[x]m we have that
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KI = {x ∈ Zn : p(x)≤ 0, l≤ x≤ u} ⊆
(
Pp∩{(x,πππ) : πππ ≤ 0}

)
x∩Zn. (5)

The key question here is when equality holds in Formula (5).

Theorem 7. Let p ∈ Z[x]m and KI = {x ∈ Zn : p(x)≤ 0, l≤ x≤ u}. Then,

KI =
(
Pp∩{(x,πππ) : πππ ≤ 0}

)
x ∩ Zn

holds if every polynomial p′ ∈ {pi : i = 1, . . . ,m} satisfies the following condition

p′
(
∑
k

λkk
)
− ∑

k
λk p′(k) < 1, (6)

for all λk ≥ 0, k ∈ [l,u]∩Zn, ∑k λk = 1 and ∑k λkk ∈ Zn.

Proof. Using Formula (5), we have to show that
(
Pp∩{(x,πππ) : πππ ≤ 0}

)
x∩Zn ⊆ KI

if all pi, i ∈ {1, . . . ,m}, satisfy Equation (6). Let x ∈
(
Pp ∩{(x,πππ) ∈ Rm+n : πππ ≤

0}
)

x∩Zn. Then, there exists a πππ ∈ Rm such that

(x,πππ) ∈ Pp∩{(x,πππ) ∈ Rn+m : πππ ≤ 0}.

By definition, πππ ≤ 0. Furthermore, there must exist nonnegative real numbers λk ≥
0, k ∈ [l,u]∩Zn, such that ∑k λk = 1 and (x,πππ) = ∑k λk(k,p(k)). Suppose that
there exists an index i0 such that the inequality pi0(x)≤ 0 is violated. The fact that
pi0 ∈ Z[x] and x ∈ Zn, implies that pi0(x)≥ 1. Thus, we obtain

∑
k

λk pi0(k) = πi0 ≤ 0 < 1≤ pi0(x) = pi0

(
∑
k

λkk
)
,

or equivalently, pi0

(
∑k λkk

)
−∑k λk pi0(k) ≥ 1. Because this is a contradiction to

our assumption, we have that pi(x) ≤ 0 for all i. Hence, x ∈ KI . This proves the
claim.

The next example illustrates the statement of Theorem 7.

Example 1. Let p ∈ Z[x], x 7→ p(x) := 3x2
1 + 2x2

2 − 19. We consider the semi-
algebraic set

K = {x ∈ R2 | p(x)≤ 0, 0≤ x1 ≤ 3, 0≤ x2 ≤ 3} and KI = K∩Z2.

It turns out that the convex hull of KI is described by x1 + x2 ≤ 3, 0 ≤ x1 ≤ 2 and
0≤ x2. Notice that the polynomial p is convex. This condition ensures that p satisfies
Equation (6) of Theorem 7. We obtain in this case(

Pp∩
{
(x,π) ∈ R3 : π ≤ 0}

)
x = { x ∈ R2 : 9x1 +6x2 ≤ 29,

3x1 +10x2 ≤ 31,
9x1 +10x2 ≤ 37,
15x1 +2x2 ≤ 37,
15x1 +6x2 ≤ 41,
−x1 ≤ 0, 0≤ x2 ≤ 3

}
.
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The sets K, conv(KI) and
(
Pp ∩{(x,π) ∈ R3 : π ≤ 0}

)
x are illustrated in Figure 2.

Note that here KI =
(
Pp∩{(x,π) : π ≤ 0}

)
x∩Z2.

y2

3

2

1

0 1 2 3 y1

conv(K)

φ(y) = 0

projy(P[φ ]∩{(y,π) ∈ R3 | π ≤ 0})

Fig. 2 Illustration of Theorem 7 in Example 1.

Next we introduce a large class of nonlinear functions for which one can ensure
that equality holds in Formula (5).

Definition 2. (Integer-Convex Polynomials)
A polynomial f ∈ Z[x] is said to be integer-convex on [l,u] ⊆ Rn, if for any finite
subset of nonnegative real numbers {λk}k∈[l,u]∩Zn ⊆R+ with ∑k∈[l,u]∩Zn λk = 1 and
∑k∈[l,u]∩Zn λkk ∈ [l,u]∩Zn, the following inequality holds:

f
(

∑
k∈[l,u]∩Zn

λkk
)
≤ ∑

k∈[l,u]∩Zn
λk f (k). (7)

If (7) holds strictly for all {λk}k∈[l,u]∩Zn ⊆R+, and x ∈ [l,u]∩Zn such that ∑k λk =
1, x = ∑k λkk, and λx < 1, then the polynomial f is called strictly integer-convex on
[l,u].

By definition, a (strictly) convex polynomial is (strictly) integer-convex. Con-
versely, a (strictly) integer-convex polynomial is not necessarily (strictly) convex.
Figure 3 gives an example.

Integer convexity is inherited under taking conic combinations and applying a
composition rule.

(a) For any finite number of integer-convex polynomials fs ∈Z[x], s∈ {1, ..., t}, on
[l,u], and nonnegative integers as ∈Z+, s∈ {1, . . . , t}, the polynomial f ∈Z[x],
x 7→ f (x) := ∑

t
s=1 as fs(x), is integer-convex on [l,u].
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0 y1 2 3 4

φ(y)

π

Fig. 3 The graph of an integer-convex polynomial p on [1,4].

(b) Let l,u ∈ Zn and let h ∈ Z[x], x 7→ h(x) := c>x+γ, be a linear function. Setting
W =

{
c>x + γ : x ∈ [l,u]

}
, for every integer-convex univariate polynomial q ∈

Z[w], the function p ∈ Z[x], x 7→ p(x) := q(h(x)) is integer-convex on [l,u].

Indeed, integer-convex polynomial functions capture a lot of combinatorial struc-
ture. In particular, we can characterize the set of all vertices in an associated poly-
hedron. Most importantly, if f is integer-convex on [l,u], then this ensures that for
any integer point x ∈ [l,u] the value f (x) is not underestimated by all π ∈ R with
(x,π) ∈ Pf , where Pf is the polytope associated with the graph of the polynomial
f ∈ Z[x].

Theorem 8. For a polynomial f ∈ Z[x] and l,u ∈ Zn, l+1 < u, let

Pf = conv
({(

x, f (x)
)
∈ Zn+1 ∣∣ x ∈ [l,u]∩Zn}).

Then, f is integer-convex on [l,u] is equivalent to the condition that for all (x,π) ∈
Pf , x ∈ Zn we have that f (x)≤ π . Moreover, if f is strictly integer-convex on [l,u],
then for every x ∈ [l,u]∩Zn, the point (x, f (x)) is a vertex of Pf .

Proof. First let us assume that f is integer-convex on [l,u]. Let (x,π) ∈ Pf such that
x ∈ Zn. Then, there exist nonnegative real numbers {λk}k∈[l,u]∩Zn ⊆R+, ∑k λk = 1,
such that (x,π) = ∑k λk (k, f (k)). It follows that

f (x) = f
(
∑
k

λkk
)
≤ ∑

k
λk f (k) = π.

Next we assume that f is not integer-convex on [l,u]. Then, there exists a subset
of nonnegative real numbers {λk}k∈[l,u]∩Zn ⊆ R+ with ∑k λk = 1 such that
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x := ∑
k

λkk ∈ [l,u]∩Zn and π := ∑
k

λk f (k) < f
(
∑
k

λkk
)

= f (x).

But then, (x,π) = ∑k λk(k, f (k)) ∈ Pf violates the inequality f (x) ≤ π. This is a
contradiction to the assumption.

If f is strictly integer-convex on [l,u], then for each x ∈ [l,u]∩Zn, we have that

f (x) < ∑
k∈[l,u]∩Zn\{x}

λk f (k),

for all λk ∈ R+, k ∈ [l,u]∩Zn \ {x}, with x = ∑k λkk and ∑k λk = 1. Thus, every
point

(
x, f (x)

)
, x ∈ [l,u]∩Zn, is a vertex of Pf .

3 Convex integer minimization

The complexity of the case of convex integer minimization is set apart from the gen-
eral case of integer polynomial optimization by the existence of bounding results for
the coordinates of optimal solutions. Once a finite bound can be computed, it is clear
that an algorithm for minimization exists. Thus the fundamental incomputability re-
sult for integer polynomial optimization (Theorem 3) does not apply to the case of
convex integer minimization.

The first bounds for the optimal integer solutions to convex minimization prob-
lems were proved by [78, 125]. We present the sharpened bound that was obtained
by [11, 10] for the more general case of quasi-convex polynomials. This bound is a
consequence of an efficient theory of quantifier elimination over the reals; see [110].

Theorem 9. Let f ,g1, . . . ,gm ∈ Z[x1, . . . ,xn] be quasi-convex polynomials of degree
at most d ≥ 2, whose coefficients have a binary encoding length of at most `. Let

F =
{

x ∈ Rn : gi(x)≤ 0 for i = 1, . . . ,m
}

be the (continuous) feasible region. If the integer minimization problem min{ f (x) :
x ∈ F ∩Zn } is bounded, there exists a radius R ∈ Z+ of binary encoding length at
most (md)O(n)` such that

min
{

f (x) : x ∈ F ∩Zn}= min
{

f (x) : x ∈ F ∩Zn, ‖x‖ ≤ R
}
.

3.1 Fixed dimension

In fixed dimension, the problem of convex integer minimization can be solved us-
ing variants of Lenstra’s algorithm [87] for integer programming. Indeed, when the
dimension n is fixed, the bound R given by Theorem 9 has a binary encoding size
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that is bounded polynomially by the input data. Thus, a Lenstra-type algorithm can
be started with a “small” (polynomial-size) initial outer ellipsoid that includes a
bounded part of the feasible region containing an optimal integer solution.

The first algorithm of this kind for convex integer minimization was announced
by Khachiyan [78]. In the following we present the variant of Lenstra’s algorithm
due to Heinz [66], which seems to yield the best known complexity bound for the
problem. The complexity result is the following.

Theorem 10. Let f ,g1, . . . ,gm ∈ Z[x1, . . . ,xn] be quasi-convex polynomials of de-
gree at most d ≥ 2, whose coefficients have a binary encoding length of at most `.
There exists an algorithm running in time m`O(1)dO(n)2O(n3) that computes a mini-
mizer x∗ ∈Zn of the problem (1) or reports that no minimizer exists. If the algorithm
outputs a minimizer x∗, its binary encoding size is `dO(n).

A complexity result of greater generality was presented by Khachiyan and Porko-
lab [79]. It covers the case of minimization of convex polynomials over the inte-
ger points in convex semialgebraic sets given by arbitrary (not necessarily quasi-
convex) polynomials.

Theorem 11. Let Y ⊆ Rk be a convex set given by

Y =
{

y ∈ Rk : Q1x1 ∈ Rn1 : · · · Qω xω ∈ Rnω : P(y,x1, . . . ,xω)
}

with quantifiers Qi ∈ {∃,∀}, where P is a Boolean combination of polynomial in-
equalities

gi(y,x1, . . . ,xω)≤ 0, i = 1, . . . ,m

with degrees at most d ≥ 2 and coefficients of binary encoding size at most `.
There exists an algorithm for solving the problem min{yk : y ∈ Y ∩Zk } in time
`O(1)(md)O(k4)∏

ω
i=1 O(ni).

When the dimension k + ∑
ω
i=1 ni is fixed, the algorithm runs in polynomial time.

For the case of convex minimization where the feasible region is described by
convex polynomials, the complexity bound of Theorem 11, however, translates to
`O(1)mO(n2)dO(n4), which is worse than the bound of Theorem 10 [66].

In the remainder of this subsection, we describe the ingredients of the variant
of Lenstra’s algorithm due to Heinz. The algorithm starts out by “rounding” the
feasible region, by applying the shallow-cut ellipsoid method to find proportional
inscribed and circumscribed ellipsoids. It is well-known [60] that the shallow-cut el-
lipsoid method only needs an initial circumscribed ellipsoid that is “small enough”
(of polynomial binary encoding size – this follows from Theorem 9) and an imple-
mentation of a shallow separation oracle, which we describe below.

For a positive-definite matrix A we denote by E (A, x̂) the ellipsoid {x ∈ Rn :
(x− x̂)>A(x− x̂)≤ 1}.

Lemma 3 (Shallow separation oracle). Let g0, . . . ,gm+1 ∈ Z[x] be quasi-convex
polynomials of degree at most d, the binary encoding sizes of whose coefficients are
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Fig. 4 The implementation of the shallow separation oracle. (a) Test points xi j in the circumscribed
ball E (1,0). (b) Case I: All test points xi1 are (continuously) feasible; so their convex hull (a cross-
polytope) and its inscribed ball E ((n+1)−3,0) are contained in the (continuous) feasible region F .

at most r. Let the (continuous) feasible region F = {x∈Rn : gi(x) < 0} be contained
in the ellipsoid E (A, x̂), where A and x̂ have binary encoding size at most `. There
exists an algorithm with running time m(lnr)O(1)dO(n) that outputs

(a) “true” if
E ((n+1)−3A, x̂)⊆ F ⊆ E (A, x̂); (8)

(b) otherwise, a vector c ∈Qn \{0} of binary encoding length (l + r)(dn)O(1) with

F ⊆ E (A, x̂)∩
{

x ∈ Rn : c>(x− x̂)≤ 1
n+1 (c>Ac)1/2}. (9)

Proof. We give a simplified sketch of the proof, without hard complexity estimates.
By applying an affine transformation to F ⊆ E (A, x̂), we can assume that F is con-
tained in the unit ball E (I,0). Let us denote as usual by e1, . . . ,en the unit vec-
tors and by en+1, . . . ,e2n their negatives. The algorithm first constructs numbers
λi1, . . . ,λid > 0 with

1
n+ 3

2

< λi1 < · · ·< λid <
1

n+1
(10)

and the corresponding point sets Bi = {xi j := λi jei : j = 1, . . . ,d }; see Figure 4 (a).
The choice of the bounds (10) for λi j will ensure that we either find a large enough
inscribed ball for (a) or a deep enough cut for (b). Then the algorithm determines
the (continuous) feasibility of the center 0 and the 2n innermost points xi,1.

Case I. If xi,1 ∈ F for i = 1, . . . ,2n, then the cross-polytope conv{xi,1 : i =
1, . . . ,2n} is contained in F ; see Figure 4 (b). An easy calculation shows that the
ball E ((n + 1)−3,0) is contained in the cross-polytope and thus in F ; see Figure 4.
Hence the condition in (a) is satisfied and the algorithm outputs “true”.

Case II. We now discuss the case when the center 0 violates a polynomial in-
equality g0(x) < 0 (say). Let F0 = {x∈Rn : g0(x) < 0}⊇F . Due to convexity of F0,
for all i = 1, . . . ,n, one set of each pair Bi∩F0 and Bn+i∩F0 must be empty; see Fig-
ure 5 (a). Without loss of generality, let us assume Bn+i ∩F0 = /0 for all i. We can
determine whether a n-variate polynomial function of known maximum degree d is
constant by evaluating it on (d + 1)n suitable points (this is a consequence of the
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0
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Fig. 5 The implementation of the shallow separation oracle. (a) Case II: The center 0 violates a
polynomial inequality g0(x) < 0 (say). Due to convexity, for all i = 1, . . . ,n, one set of each pair
Bi ∩F and Bn+i ∩F must be empty. (b) Case III: A test point xk1 is infeasible, as it violates an
inequality g0(x) < 0 (say). However, the center 0 is feasible at least for this inequality.

Fundamental Theorem of Algebra). For our case of quasi-convex polynomials, this
can be improved; indeed, it suffices to test whether the gradient ∇g0 vanishes on the
nd points in the set B1∪·· ·∪Bn. If it does, we know that g0 is constant, thus F = /0,
and so can we return an arbitrary vector c. Otherwise, there is a point xi j ∈ Bi with
c := ∇g0(xi j) 6= 0; we return this vector as the desired normal vector of a shallow
cut. Due to the choice of λi j as a number smaller than 1

n+1 , the cut is deep enough
into the ellipsoid E (A, x̂), so that (9) holds.

Case III. The remaining case to discuss is when 0 ∈ F but there exists a k ∈
{1, . . . ,2n}with xk,1 /∈F . Without loss of generality, let k = 1, and let x1,1 violate the
polynomial inequality g0(x) < 0, i.e., g0(x1,1)≥ 0; see Figure 5 (b). We consider the
univariate polynomial φ(λ ) = g0(λei). We have φ(0) = g0(0) < 0 and φ(λ1,1)≥ 0,
so φ is not constant. Because φ has degree at most d, its derivative φ ′ has degree at
most d− 1, so φ ′ has at most d− 1 roots. Thus, for at least one of the d different
values λ1,1, . . . ,λ1,d , say λ1, j, we must have φ ′(λ1, j) 6= 0. This implies that c :=
∇g0(x1, j) 6= 0. By convexity, we have x1, j /∈ F , so we can use c as the normal vector
of a shallow cut.

By using this oracle in the shallow-cut ellipsoid method, one obtains the follow-
ing result.

Corollary 2. Let g0, . . . ,gm ∈Z[x] be quasi-convex polynomials of degree at most d≥
2. Let the (continuous) feasible region F = {x ∈Rn : gi(x)≤ 0} be contained in the
ellipsoid E (A0,0), given by the positive-definite matrix A0 ∈Qn×n. Let ε ∈Q>0 be
given. Let the entries of A0 and the coefficients of all monomials of g0, . . . ,gm have
binary encoding size at most `.

There exists an algorithm with running time m(`n)O(1)dO(n) that computes a
positive-definite matrix A ∈Qn×n and a point x̂ ∈Qn with

(a) either E ((n+1)−3A, x̂)⊆ F ⊆ E (A, x̂)
(b) or F ⊆ E (A, x̂) and volE (A, x̂) < ε .

Finally, there is a lower bound for the volume of a continuous feasible region F
that can contain an integer point.
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Lemma 4. Under the assumptions of Theorem 2, if F ∩Zn 6= /0, then there exists an
ε ∈Q>0 of binary encoding size `(dn)O(1) with volF > ε .

On the basis of these results, one obtains a Lenstra-type algorithm for the de-
cision version of the convex integer minimization problem with the desired com-
plexity. By applying binary search, the optimization problem can be solved, which
provides a proof of Theorem 10.

3.2 Boundary cases of complexity

In this section we present an optimality certificate for problems of the form

min{ f (x) : Ax = b, l≤ x≤ u,x ∈ Zn},

where A ∈ Zd×n, b ∈ Zd , l,u ∈ Zn, and where f : Rn → R is a separable convex

function, that is, f (x) =
n
∑

i=1
fi(xi) with convex functions fi : R→ R, i = 1, . . . ,n.

This certificate then immediately leads us to a oracle-polynomial time algorithm to
solve the separable convex integer minimization problem at hand. Applied to sep-
arable convex n-fold integer minimization problems, this gives a polynomial time
algorithm for their solution [69].

For the construction of the optimality certificate, we exploit a nice super-additivity
property of separable convex functions.

Lemma 5. Let f : Rn → R be a separable convex function and let h1, . . .hk ∈ Rn

belong to a common orthant of Rn, that is, they all have the same sign pattern from
{≥ 0,≤ 0}n. Then, for any x ∈ Rn we have

f

(
x+

k

∑
i=1

hi

)
− f (x)≥

k

∑
i=1

[ f (x+hi)− f (x)].

Proof. The claim is easy to show for n = 1 by induction. If, w.l.o.g., h2 ≥ h1 ≥ 0
then convexity of f implies [ f (x+h1 +h2)− f (x+h2)]/h1 ≥ [ f (x+h1)− f (x)]/h1,
and thus f (x+h1 +h2)− f (x)≥ [ f (x+h2)− f (x)]+ [ f (x+h1)− f (x)]. The claim
for general n then follows from the separability of f by adding the superadditivity
relations of each one-parametric convex summand of f .

A crucial role in the following theorem is again played by the Graver basis G (A)
of A. Let us remind the reader that the Graver basis G (A) has a nice representa-
tion property due to its definition: every z ∈ ker(A)∩Zn can be written as a sign-
compatible nonnegative integer linear combination z = ∑i αigi of Graver basis el-
ements gi ∈ G (A). This followed from the simple observation that z has to belong
to some orthant O j of Rn and thus it can be represented as a sign-compatible non-
negative integer linear combination of elements in H j ⊆ G (A) belonging to this
orthant. Note that by the integer Carathéodory property of Hilbert bases, at most
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2 ·dim(ker(A))−2 vectors are needed in such a representation [118]. It is precisely
this simple representation property of G (A) combined with the superadditivity of
the separable convex function f that turns G (A) into an optimality certificate for
min{ f (x) : Ax = b, l≤ x≤ u,x ∈ Zn}.

Theorem 12. Let f : Rn→R be a separable convex function given by a comparison
oracle that when queried on x,y ∈ Zn decides whether f (x) < f (y), f (x) = f (y),
or f (x) > f (y). Then x0 is an optimal feasible solution to min{ f (x) : Ax = b, l ≤
x ≤ u,x ∈ Zn} if and only if for all g ∈ G (A) the vector x0 + g is not feasible or
f (x0 +g)≥ f (x0).

Proof. Assume that x0 is not optimal and let xmin be an optimal solution to the given
problem. Then xmin− x0 ∈ ker(A) and thus it can be written as a sign-compatible
nonnegative integer linear combination xmin−x0 = ∑i αigi of Graver basis elements
gi ∈ G (A). We show that one of the gi must be an improving vector, that is, for some
gi we have that x0 +gi is feasible and f (x0 +gi) < f (x0).

For all i, the vector gi has the same sign-pattern as xmin−x0 and it is now easy to
check that the coordinates of x0 + gi lie between the corresponding coordinates of
x0 and xmin. This implies in particular l≤ x0 +gi ≤ u. Because gi ∈ ker(A), we also
have A(x0 + gi) = b for all i. Consequently, for all i the vector x0 + gi would be a
feasible solution. It remains to show that one of these vectors has a strictly smaller
objective value than x0.

Due to the superadditivity from Lemma 5, we have

0≥ f (xmin)− f (x0) = f

(
x0 +

2n−2

∑
i=1

αigi

)
− f (x0)≥

k

∑
i=1

αi[ f (x0 +gi)− f (x0)].

Thus, at least one of the summands f (x0 +gi)− f (x0) must be negative and we have
found an improving vector for z0 in G (A).

We now turn this optimality certificate into a polynomial oracle-time algorithm
to solve the separable convex integer minimization problem min{ f (x) : Ax = b, l≤
x≤ u,x ∈ Zn}. For this, we call αg a greedy Graver improving vector if x0 +αg is
feasible and such that f (x0 +αg) is minimal among all such choices of α ∈ Z+ and
g ∈ G (A). Then the following result holds.

Theorem 13. Let f : Rn→R be a separable convex function given by a comparison
oracle. Moreover, assume that | f (x)| < M for all x ∈ {x : Ax = b, l ≤ x ≤ u,x ∈
Zn}. Then any feasible solution x0 to min{ f (x) : Ax = b, l≤ x≤ u,x ∈ Zn} can be
augmented to optimality by a number of greedy Graver augmentation steps that is
polynomially bounded in the encoding lengths of A, b, l, u, M, and x0.

Proof. Assume that x0 is not optimal and let xmin be an optimal solution to the given
problem. Then xmin− x0 ∈ ker(A) and thus it can be written as a sign-compatible
nonnegative integer linear combination xmin−x0 = ∑i αigi of at most 2n−2 Graver
basis elements gi ∈G (A). As in the proof of Theorem 12, sign-compatibility implies
that for all i the coordinates of x0 +αigi lie between the corresponding coordinates
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of x0 and xmin. Consequently, we have l ≤ x0 + αigi ≤ u. Because gi ∈ ker(A), we
also have A(x0 +αigi) = b for all i. Consequently, for all i the vector x0 +αigi would
be a feasible solution.

Due to the superadditivity from Lemma 5, we have

0≥ f (xmin)− f (x0) = f

(
x0 +

2n−2

∑
i=1

αigi

)
− f (x0)≥

k

∑
i=1

[ f (x0 +αigi)− f (x0)].

Thus, at least one of the summands f (x0 + αigi)− f (x0) must be smaller than
1

2n−2 [ f (xmin)− f (x0)], giving an improvement that is at least 1
2n−2 times the max-

imal possible improvement f (xmin)− f (x0). Such a geometric improvement, how-
ever, implies that the optimum is reached in a number of greedy augmentation steps
which is polynomial in the encoding lengths of A, b, l, u, M, and x0 [3].

Thus, once we have a polynomial size Graver basis, we get a polynomial time
algorithm to solve the convex integer minimization problem at hand.

For this, let us consider again n-fold systems (introduced in Section 2.2). Two
nice stabilization results established by Hoşten and Sullivant [71] and Santos and
Sturmfels [113] immediately imply that if A1 and A2 are kept fixed, then the size of
the Graver basis increases only polynomially in the number n of copies of A1 and
A2.

Proposition 2. For any fixed (r + s)× t integer matrix A there is a polynomial time
algorithm that, given any n, computes the Graver basis G (A(n)) of the n-fold matrix
A(n) = (1n⊗A1)⊕ (In⊗A2).

Combining this proposition with Theorem 13, we get following nice result from
[69].

Theorem 14. Let A be a fixed integer (r + s)× t matrix and let f : Rnt → R be
any separable convex function given by a comparison oracle. Then there is a poly-
nomial time algorithm that, given n, a right-hand side vector b ∈ Zr+ns and some
bound | f (x)| < M on f over the feasible region, solves the n-fold convex integer
programming problem

min{ f (x) : A(n)x = b, x ∈ Nnt}.

Note that by applying an approach similar to Phase I of the simplex method one
can also compute an initial feasible solution x0 to the n-fold integer program in
polynomial time based on greedy Graver basis directions [43, 67].

We wish to point out that the presented approach can be generalized to the mixed-
integer situation and also to more general objective functions that satisfy a certain
superadditivity/subadditivity condition, see [68, 86] for more details. Note that for
mixed-integer convex problems one may only expect an approximation result, as
there need not exist a rational optimum. In fact, already a mixed-integer greedy aug-
mentation vector can be computed only approximately. Nonetheless, the technical
difficulties when adjusting the proofs for the pure integer case to the mixed-integer
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situation can be overcome [68]. It should be noted, however, that the Graver basis
of n-fold matrices does not show a stability result similar to the pure integer case
as presented in [71, 113]. Thus, we do not get a nice polynomial time algorithm for
solving mixed-integer convex n-fold problems.

3.3 Practical algorithms

In this section, the methods that we look at, aimed at formulations having convex
continuous relaxations, are driven by O.R./engineering approaches, transporting and
motivated by successful mixed-integer linear programming technology and smooth
continuous nonlinear programming technology. In Section 3.3.1 we discuss general
algorithms that make few assumptions beyond those that are typical for convex con-
tinuous nonlinear programming. In Section 3.3.2 we present some more specialized
techniques aimed at convex quadratics.

3.3.1 General algorithms

Practical, broadly applicable approaches to general mixed-integer nonlinear pro-
grams are aimed at problems involving convex minimization over a convex set with
some additional integrality restriction. Additionally, for the sake of obtaining well-
behaved continuous relaxations, a certain amount of smoothness is usually assumed.
Thus, in this section, the model that we focus on is

min f (x,y)
s.t. g(x,y)≤ 0

l≤ y≤ u
x ∈ Rn1 , y ∈ Zn2 ,

(P[l,u])

where f : Rn → R and g : Rn → Rm are twice continuously-differentiable convex
functions, l ∈ (Z∪ {−∞})n2 , u ∈ (Z∪ {+∞})n2 , and l ≤ u. It is also helpful to
assume that the feasible region of the relaxation of (P[l,u]) obtained by replacing
y∈Zn2 with y∈Rn2 is bounded. We denote this continuous relaxation by (PR[l,u]).

To describe the various algorithmic approaches, it is helpful to define some re-
lated subproblems of (P[l,u]) and associated relaxations. Our notation is already
designed for this. For vector l′ ∈ (Z ∪ {−∞})n2 and u′ ∈ (Z ∪ {+∞})n2 , with
l ≤ l′ ≤ u′ ≤ u, we have the subproblem (P[l′,u′]) and its associated continuous
relaxation (PR[l′,u′]).

Already, we can see how the family of relaxations (PR[l′,u′]) leads to the ob-
vious extension of the Branch-and-Bound Algorithm of mixed-integer linear pro-
gramming. Indeed, this approach was experimented with in [63]. The Branch-and-
Bound Algorithm for mixed-integer nonlinear programming has been implemented
as MINLP-BB [88], with continuous nonlinear-programming subproblem relax-
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ations solved with the active-set solver filterSQP and also as SBB, with asso-
ciated subproblems solved with any of CONOPT, SNOPT and MINOS. Moreover,
Branch-and-Bound is available as an algorithmic option in the actively developed
code Bonmin [21, 25, 23], which can be used as a callable library, as a stand-alone
solver, via the modeling languages AMPL and GAMS, and is available in source-code
form, under the Common Public License, from COIN-OR [28], available for running
on NEOS [27]. By default, relaxations of subproblems are solved with the interior-
point solver Ipopt (whose availability options include all of those for Bonmin),
though there is also an interface to filterSQP. The Branch-and-Bound Algorithm
in Bonmin includes effective strong branching and SOS branching. It can also be
used as a robust heuristic on problems for which the relaxation (PR) does not have
a convex feasible region, by setting negative ‘cutoff gaps’.

Another type of algorithmic approach emphasizes continuous nonlinear pro-
gramming over just the continuous variables of the formulation. For fixed ȳ ∈ Zn2 ,
we define

min f (x,y)
s.t. g(x,y)≤ 0

y = ȳ
x ∈ Rn1 .

(Pȳ)

Clearly any feasible solution to such a continuous nonlinear-programming subprob-
lem (Pȳ) yields an upper bound on the optimal value of (P[l,u]). When (Pȳ) is
infeasible, we may consider the continuous nonlinear-programming feasibility sub-
problem

min
m

∑
i=1

wi

s.t. g(x,y)≤ w
y = ȳ
x ∈ Rn1

w ∈ Rm
+.

(Fȳ)

If we can find a way to couple the solution of upper-bounding problems (Pȳ) (and
the closely related feasibility subproblems (Fȳ)) with a lower-bounding procedure
exploiting the convexity assumptions, then we can hope to build an iterative proce-
dure that will converge to a global optimum of (P[l,u]). Indeed, such a procedure is
the Outer-Approximation (OA) Algorithm [48, 49]. Toward this end, for a finite set
of “linearization points”

K :=
{(

xk ∈ Rn1 ,yk ∈ Rn2
)

: k = 1, . . . ,K
}

,

we define the mixed-integer linear programming relaxation
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min z

s.t. ∇ f (xk,yk)>
(

x−xk

y−yk

)
+ f (xk,yk)≤ z, ∀

(
xk,yk

)
∈K

∇g(xk,yk)>
(

x−xk

y−yk

)
+g(xk,yk)≤ 0, ∀

(
xk,yk

)
∈K

x ∈ Rn1

y ∈ Rn2 , l≤ y≤ u
z ∈ R.

(PK [l,u])

We are now able to concisely state the basic OA Algorithm.

Algorithm 1 (OA Algorithm)
Input: The mixed-integer nonlinear program (P[l,u]).
Output: An optimal solution (x∗,y∗).

1. Solve the nonlinear-programming relaxation (PR), let
(
x1,y1

)
be an optimal

solution, and let K := 1, so that initially we have K =
{(

x1,y1
)}

.
2. Solve the mixed-integer linear programming relaxation (PK [l,u]), and let (x∗,y∗,z∗)

be an optimal solution. If (x∗,y∗,z∗) corresponds to a feasible solution of
(P[l,u]) (i.e, if f (x∗,y∗) ≤ z∗ and g(x∗,y∗) ≤ 0), then STOP (with the optimal
solution (x∗,y∗) of (P[l,u])).

3. Solve the continuous nonlinear-programming subproblem (Pȳ∗).

i. Either a feasible solution (x∗,y∗,z∗) is obtained,
ii. or (Pȳ∗) is infeasible, in which case we solve the nonlinear-programming

feasibility subproblem (Fȳ), and let its solution be (x∗,y∗,u∗)

4. In either case, we augment the set K of linearization points, by letting K :=
K +1 and

(
xK ,yK

)
:= (x∗,y∗).

5. GOTO 2.

Each iteration of Steps 3-4 generate a linear cut that can improve the mixed-
integer linear programming relaxation (PK [l,u]) that is repeatedly solved in Step
2. So clearly the sequence of optimal objective values for (PK [l,u]) obtained in
Step 2 corresponds to a nondecreasing sequence of lower bounds on the optimum
value of (P[l,u]). Moreover each linear cut returned from Steps 3-4 cuts off the
previous solution of (PK [l,u]) from Step 2. A precise proof of convergence (see
for example [21]) uses these simple observations, but it also requires an additional
assumption that is standard in continuous nonlinear programming (i.e. a “constraint
qualification”).

Implementations of OA include DICOPT [39] which can be used with either of
the mixed-integer linear programs codes Cplex and Xpress-MP, in conjunction
with any of the continuous nonlinear programming codes CONOPT, SNOPT and
MINOS and is available with GAMS. Additionally Bonmin has OA as an algorith-
mic option, which can use Cplex or the COIN-OR code Cbc as its mixed-integer



Nonlinear Integer Programming 23

linear programming solver, and Ipopt or FilterSQP as its continuous nonlinear
programming solver.

Generalized Benders Decomposition [54] is a technique that is closely related
to and substantially predates the OA Algorithm. In fact, one can regard OA as a
proper strengthening of Generalized Benders Decomposition (see [48, 49]), so as a
practical tool, we view it as superseded by OA.

Substantially postdating the development of the OA Algorithm is the simpler
and closely related Extended Cutting Plane (ECP) Algorithm introduced in [135].
The original ECP Algorithm is a straightforward generalization of Kelley’s Cutting-
Plane Algorithm [77] for convex continuous nonlinear programming (which pre-
dates the development of the OA Algorithm). Subsequently, the ECP Algorithm has
been enhanced and further developed (see, for example [136, 134]) to handle, for
example, even pseudo-convex functions.

The motivation for the ECP Algorithm is that continuous nonlinear programs are
expensive to solve, and all that the associated solutions give us are further lineariza-
tion points for (PK [l,u]). So the ECP Algorithm dispenses altogether with the so-
lution of continuous nonlinear programs. Rather, in the most rudimentary version,
after each solution of the mixed-integer linear program (PK [l,u]), the most vio-
lated constraint (i.e, of f (x∗,y∗) ≤ z and g(x∗,y∗) ≤ 0) is linearized and appended
to (PK [l,u]). This simple iteration is enough to easily establish convergence (see
[135]). It should be noted that for the case in which there are no integer-constrained
variables, then at each step (PK [l,u]) is just a continuous linear program and we
exactly recover Kelley’s Cutting-Plane Algorithm for convex continuous nonlinear
programming.

It is interesting to note that Kelley, in his seminal paper [77], already considered
application of his approach to integer nonlinear programs. In fact, Kelley cited Go-
mory’s seminal work on integer programming [58, 57] which was also taking place
in the same time period, and he discussed how the approaches could be integrated.

Of course, many practical improvements can be made to the rudimentary ECP
Algorithm. For example, more constraints can be linearized at each iteration. An im-
plementation of the ECP Algorithm is the code Alpha-ECP (see [134]) which uses
Cplex as its mixed-integer linear programming solver and is available with GAMS.
The general experience is that for mildly nonlinear problems, an ECP Algorithm can
outperform an OA Algorithm. But for a highly nonlinear problem, the performance
of the ECP Algorithm is limited by the performance of Kelley’s Cutting-Plane Al-
gorithm, which can be quite poor on highly-nonlinear purely continuous problems.
In such cases, it is typically better to use an OA Algorithm, which will handle the
nonlinearity in a more sophisticated manner.

In considering again the performance of an OA Algorithm on a mixed-integer
nonlinear program (P[l,u]), rather than the convex continuous nonlinear program-
ming problems (Pȳ∗) and (Fȳ) being too time consuming to solve (which led us
to the ECP Algorithm), it can be the case that solution of the mixed-integer linear
programming problems (PK [l,u]) dominate the running time. Such a situation led
to the Quesada-Grossmann Branch-and-Cut Algorithm [107]. The viewpoint is that
the mixed-integer linear programming problems (PK [l,u]) are solved by a Branch-
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and-Bound or Branch-and-Cut Algorithm. During the solution of the mixed-integer
linear programming problem (PK [l,u]), whenever a new solution is found (i.e., one
that has the variables y integer), we interrupt the solution process for (PK [l,u]), and
we solve the convex continuous nonlinear programming problems (Pȳ∗) to derive
new outer approximation cuts that are appended to mixed-integer linear program-
ming problem (PK [l,u]). We then continue with the solution process for (PK [l,u]).
The Quesada-Grossmann Branch-and-Cut Algorithm is available as an option in
Bonmin.

Finally, it is clear that the essential scheme of the Quesada-Grossmann Branch-
and-Cut Algorithm admits enormous flexibility. The Hybrid Algorithm [21] incor-
porates two important enhancements.

First, we can seek to further improve the linearization (PK [l,u]) by solving con-
vex continuous nonlinear programming problems at additional nodes of the mixed-
integer linear programming Branch-and-Cut tree for (PK [l,u]) — that is, not just
when solutions are found having y integer. In particular, at any node (PK [l′,u′]) of
the mixed-integer linear programming Branch-and-Cut tree, we can solve the as-
sociated convex continuous nonlinear programming subproblem (PR[l′,u′]): Then,
if in the solution (x∗,y∗) we have that y∗ is integer, we may update the incumbent
and fathom the node; otherwise, we append (x∗,y∗) to the set K of linearization
points. In the extreme case, if we solve these continuous nonlinear programming
subproblems at every node, we essentially have the Branch-and-Bound Algorithm
for mixed-integer nonlinear programming.

A second enhancement is based on working harder to find a solution (x∗,y∗) with
y∗ integer at selected nodes (PK [l′,u′]) of the mixed-integer linear programming
Branch-and-Cut tree. The idea is that at a node (PK [l′,u′]), we perform a time-
limited mixed-integer linear programming Branch-and-Bound Algorithm. If we are
successful, then we will have found a solution to the node with (x∗,y∗) with y∗
integer, and then we perform an OA iteration (i.e., Steps 3-4) on (P[l′,u′]) which
will improve the linearization (PK [l′,u′]). We can then repeat this until we have
solved the mixed-integer nonlinear program (P[l′,u′]) associated with the node. If
we do this without time limit at the root node (P[l,u]), then the entire procedure
reduces to the OA Algorithm. The Hybrid Algorithm was developed for and first
made available as part of Bonmin.
FilMint [1] is another successful modern code, also based on enhancing the

general framework of the Quesada-Grossmann Branch-and-Cut Algorithm. The
main additional innovation introduced with FilMint is the idea of using ECP
cuts rather than only performing OA iterations for getting cuts to improve the
linearizations (PK [l′,u′]). Subsequently, this feature was also added to Bonmin.
FilMint was put together from the continuous nonlinear programming active-set
code FilterSQP, and the mixed-integer linear programming code MINTO. Cur-
rently, FilMint is only generally available via NEOS [50].

It is worth mentioning that just as for mixed-integer linear programming, effec-
tive heuristics can and should be used to provide good upper bounds quickly. This
can markedly improve the performance of any of the algorithms described above.
Some examples of work in this direction are [24] and [22].
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3.3.2 Convex quadratics and second-order cone programming

Though we will not go into any details, there is considerable algorithmic work and
associated software that seeks to leverage more specialized (but still rather gen-
eral and powerful) nonlinear models and existing convex continuous nonlinear-
programming algorithms for the associated relaxations. In this direction, recent
work has focused on conic programming relaxations (in particular, the semi-definite
and second-order cones). On the software side, we point to work on the binary
quadratic and max-cut problems (via semi-definite relaxation) [108, 109] with the
code Biq Mac [20]. We also note that Cplex (v11) has a capability aimed at
solving mixed-integer quadratically-constrained programs that have a convex con-
tinuous relaxation.

One important direction for approaching quadratic models is at the modeling
level. This is particulary useful for the convex case, where there is a strong and ap-
pealing relationship between quadratically constrained programming and second-
order cone programming (SOCP). A second-order cone constraint is one that ex-
presses that the Euclidean norm of an affine function should be no more than another
affine function. An SOCP problem consists of minimizing a linear function over a
finite set of second-order cone constraints. Our interest in SOCP stems from the fact
that (continuous) convex quadratically constrained programming problems can be
reformulated as SOCP problems (see [92]). The appeal is that very efficient interior-
point algorithms have been developed for solving SOCP problems (see [56], for
example), and there is considerable mature software available that has functional-
ity for efficient handling of SOCP problems; see, for example: SDPT3 [117] (GNU
GPL open-source license; Matlab) , SeDuMi [119] (GNU GPL open-source license;
Matlab), LOQO [93] (proprietary; C library with interfaces to AMPL and Matlab),
MOSEK [99] (proprietary; C library with interface to Matlab), Cplex [72] (propri-
etary; C library). Note also that MOSEK and Cplex can handle integer variables as
well; one can expect that the approaches essentially marry specialized SOCP solvers
with Branch-and-Bound and/or Outer-Approximation Algorithms. Further branch-
and-cut methods for mixed-integer SOCP, employing linear and convex quadratic
cuts [36] and a careful treatment of the non-differentiability inherent in the SOCP
constraints, have recently been proposed [47].

Also in this vein is recent work by Günlük and Linderoth [61, 62]. Among
other things, they demonstrated that many practical mixed-integer quadratically
constrained programming formulations have substructures that admit extended for-
mulations that can be easily strengthened as certain integer SOCP problems. This
approach is well known in the mixed-integer linear programming literature. Let

Q :=
{

w ∈ R, x ∈ Rn
+, z ∈ {0,1}n : w≥

n

∑
i=1

rix2
i , uizi ≥ xi ≥ lizi, i = 1,2, . . . ,n

}
,

where ri ∈ R+ and ui, li ∈ R for all i = 1,2, . . . ,n. The set Q appears in several
formulations as a substructure. Consider the following extended formulation of Q
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Q̄ :=
{

w ∈ R, x ∈ Rn,y ∈ Rn,z ∈ Rn : w≥∑
i

riyi,

(xi,yi,zi) ∈ Si, i = 1,2, . . . ,n
}

,

where

Si :=
{
(xi,yi,zi) ∈ R2×{0,1} : yi ≥ x2

i , uizi ≥ xi ≥ lizi, xi ≥ 0
}

,

and ui, li ∈ R. The convex hull of each Si has the form

Sc
i :=

{
(xi,yi,zi) ∈ R3 : yizi ≥ x2

i , uizi ≥ xi ≥ lizi, 1≥ zi ≥ 0, xi,yi ≥ 0
}

(see [35, 61, 62, 129]). Note that x2
i − yizi is not a convex function, but nonetheless

Sc
i is a convex set. Finally, we can state the result of [61, 62], which also follows

from a more general result of [70], that the convex hull of the extended formulation
Q̄ has the form

Q̄c :=
{

w ∈ R, x ∈ Rn, y ∈ Rn, z ∈ Rn : w≥
n

∑
i=1

riyi,

(xi,yi,zi) ∈ Sc
i , i = 1,2, . . . ,n

}
.

Note that all of the nonlinear constraints describing the Sc
i and Q̄c are rather simple

quadratic constraints. Generally, it is well known that even the “restricted hyperbolic
constraint”

yizi ≥
n

∑
k=1

x2
k , x ∈ Rn, yi ≥ 0, zi ≥ 0

(more general than the nonconvexity in Sc
i ) can be reformulated as the second-order

cone constraint ∥∥∥∥( 2x
yi− zi

)∥∥∥∥
2
≤ yi + zi .

In this subsection, in the interest of concreteness and brevity, we have focused
our attention on convex quadratics and second-order cone programming. However,
it should be noted that a related approach, with broader applicability (to all con-
vex objective functions) is presented in [51], and a computational comparison is
available in [52]. Also, it is relevant that many convex non-quadratic functions are
representable as second-order cone programs (see [4, 15]).

4 Polynomial optimization

In this section, we focus our attention on the study of optimization models involving
polynomials only, but without any assumptions on convexity or concavity. It is worth
emphasizing the fundamental result of Jeroslow (Theorem 4) that even pure integer
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quadratically constrained programming is undecidable. One can however avoid this
daunting pitfall by bounding the variables, and this is in fact an assumption that we
should and do make for the purpose of designing practical approaches. From the
point of view of most applications that we are aware of, this is a very reasonable
assumption. We must be cognizant of the fact that the geometry of even quadratics
on boxes is daunting from the point of view of mathematical programming; see
Figure 6. Specifically, the convex envelope of the graph of the product x1x2 on a
box deviates badly from the graph, so relaxation-based methods are intrinsically
handicapped. It is easy to see, for example, that for δ1,δ2 > 0, x1x2 is strictly convex
on the line segment joining (0,0) and (δ1,δ2); while x1x2 is strictly concave on the
line segment joining (δ1,0) and (0,δ2) .

Fig. 6 Tetrahedral convex envelope of the graph of the product x1x2 on a box

Despite these difficulties, we have positive results. In Section 4.1, the highlight
is a fully polynomial time approximation scheme (FPTAS) for problems involving
maximization of a polynomial in fixed dimension, over the mixed-integer points in
a polytope. In Section 4.2, we broaden our focus to allow feasible regions defined
by inequalities in polynomials (i.e., semi-algebraic sets). In this setting, we do not
present (nor could we expect) complexity results as strong as for linear constraints,
but rather we show how tools of semi-definite programming are being developed to
provide, in a systematic manner, strengthened relaxations. Finally, in Section 4.3,
we describe recent computational advances in the special case of semi-algebraic
programming for which all of the functions are quadratic — i.e., mixed-integer
quadratically constrained programming (MIQCP).

4.1 Fixed dimension and linear constraints: An FPTAS

As we pointed out in the introduction (Theorem 2), optimizing degree-4 polynomi-
als over problems with two integer variables is already a hard problem. Thus, even
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when we fix the dimension, we cannot get a polynomial-time algorithm for solving
the optimization problem. The best we can hope for, even when the number of both
the continuous and the integer variables is fixed, is an approximation result.

Definition 3. (FPTAS)

(a) An algorithm A is an ε-approximation algorithm for a maximization problem
with optimal cost fmax, if for each instance of the problem of encoding length n,
A runs in polynomial time in n and returns a feasible solution with cost fA ,
such that fA ≥ (1− ε) · fmax.

(b) A family {Aε}ε of ε-approximation algorithms is a fully polynomial time ap-
proximation scheme (FPTAS) if the running time of Aε is polynomial in the
encoding size of the instance and 1/ε .

Indeed it is possible to obtain an FPTAS for general polynomial optimization of
mixed-integer feasible sets in polytopes [41, 40, 42]. To explain the method of the
FPTAS, we need to review the theory of short rational generating functions pio-
neered by Barvinok [12, 13]. The FPTAS itself appears in Section 4.1.3.

4.1.1 Introduction to rational generating functions

We explain the theory on a simple, one-dimensional example. Let us consider the
set S of integers in the interval P = [0, . . . ,n]; see the top of Figure 7 (a). We associate
with S the polynomial g(S;z) = z0 + z1 + · · ·+ zn−1 + zn; i.e., every integer α ∈ S
corresponds to a monomial zα with coefficient 1 in the polynomial g(S;z). This
polynomial is called the generating function of S (or of P). From the viewpoint
of computational complexity, this generating function is of exponential size (in the
encoding length of n), just as an explicit list of all the integers 0, 1, . . . , n− 1, n
would be. However, we can observe that g(S;z) is a finite geometric series, so there
exists a simple summation formula that expresses it in a much more compact way:

g(S;z) = z0 + z1 + · · ·+ zn−1 + zn =
1− zn+1

1− z
. (11)

The “long” polynomial has a “short” representation as a rational function. The en-
coding length of this new formula is linear in the encoding length of n.

Suppose now someone presents to us a finite set S of integers as a generating
function g(S;z). Can we decide whether the set is nonempty? In fact, we can do
something much stronger even – we can count the integers in the set S, simply by
evaluating at g(S;z) at z = 1. On our example we have |S|= g(S;1) = 10 +11 + · · ·+
1n−1 + 1n = n + 1. We can do the same on the shorter, rational-function formula if
we are careful with the (removable) singularity z = 1. We just compute the limit

|S|= lim
z→1

g(S;z) = lim
z→1

1− zn+1

1− z
= lim

z→1

−(n+1)zn

−1
= n+1
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(a)
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=
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|z|< 1

|z|> 1

Fig. 7 (a) One-dimensional Brion theorem. (b) The domains of convergence of the Laurent series.

using the Bernoulli–l’Hôpital rule. Note that we have avoided to carry out a poly-
nomial division, which would have given us the long polynomial again.

The summation formula (11) can also be written in a slightly different way:

g(S;z) =
1

1− z
− zn+1

1− z
=

1
1− z

+
zn

1− z−1 (12)

Each of the two summands on the right-hand side can be viewed as the summation
formula of an infinite geometric series:

g1(z) =
1

1− z
= z0 + z1 + z2 + . . . , (13a)

g2(z) =
zn

1− z−1 = zn + zn−1 + zn−2 + . . . . (13b)

The two summands have a geometrical interpretation. If we view each geometric
series as the generating function of an (infinite) lattice point set, we arrive at the
picture shown in Figure 7. We remark that all integer points in the interval [0,n]
are covered twice, and also all integer points outside the interval are covered once.
This phenomenon is due to the one-to-many correspondence of rational functions
to their Laurent series. When we consider Laurent series of the function g1(z) about
z = 0, the pole z = 1 splits the complex plane into two domains of convergence
(Figure 7): For |z| < 1, the power series z0 + z1 + z2 + . . . converges to g1(z). As a
matter of fact, it converges absolutely and uniformly on every compact subset of the
open circle {z ∈C : |z|< 1}. For |z|> 1, however, the series diverges. On the other
hand, the Laurent series−z−1− z−2− z−3− . . . converges (absolutely and compact-
uniformly) on the open circular ring {z∈C : |z|> 1} to the function g1(z), whereas
it diverges for |z|< 1. The same holds for g2(z). Altogether we have:

g1(z) =

{
z0 + z1 + z2 + . . . for |z|< 1
−z−1− z−2− z−3− . . . for |z|> 1

(14)

g2(z) =

{
−zn+1− zn+2− zn+3− . . . for |z|< 1
zn + zn−1 + zn−2 + . . . for |z|> 1

(15)
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(a)

b2

b1

(b)

e1

e2

0

Fig. 8 (a) Tiling a rational two-dimensional cone with copies of the fundamental parallelepiped.
(b) The semigroup S⊆ Z2 generated by b1 and b2 is a linear image of Z2

+

We can now see that the phenomenon we observed in formula (13) and Figure 7
is due to the fact that we had picked two Laurent series for the summands g1(z)
and g2(z) that do not have a common domain of convergence; the situation of for-
mula (13) and Figure 7 appears again in the d-dimensional case as Brion’s Theorem.

Let us now consider a two-dimensional cone C spanned by the vectors b1 =
(α,−1) and b2 = (β ,1); see Figure 8 for an example with α = 2 and β = 4. We
would like to write down a generating function for the integer points in this cone. We
apparently need a generalization of the geometric series, of which we made use in
the one-dimensional case. The key observation now is that using copies of the half-
open fundamental parallelepiped, Π =

{
λ1b1 +λ2b2 : λ1 ∈ [0,1),λ2 ∈ [0,1)

}
, the

cone can be tiled:

C =
⋃
s∈S

(s+Π) where S = {µ1b1 + µ2b2 : (µ1,µ2) ∈ Z2
+ } (16)

(a disjoint union). Because we have chosen integral generators b1,b2, the integer
points are “the same” in each copy of the fundamental parallelepiped. Therefore,
also the integer points of C can be tiled by copies of Π ∩Z2; on the other hand, we
can see C∩Z2 as a finite disjoint union of copies of S, shifted by the integer points
of Π :

C∩Z2 =
⋃
s∈S

(
s+(Π ∩Z2)

)
=

⋃
x∈Π∩Z2

(x+S). (17)

The set S is just the image of Z2
+ under the matrix (b1,b2) =

(
α β

−1 1

)
; cf. Figure

8. Now Z2
+ is the direct product of Z+ with itself, whose generating function is

the geometric series g(Z+;z) = z0 + z1 + z2 + z3 + · · · = 1
1−z . We thus obtain the

generating function as a product, g(Z2
+;z1,z2) = 1

1−z1
· 1

1−z2
. Applying the linear

transformation (b1,b2),

g(S;z1,z2) =
1

(1− zα
1 z−1

2 )(1− zβ

1 z1
2)

.
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Fig. 9 (a) A cone of index 5 generated by b1 and b2. (b) A triangulation of the cone into the
two cones spanned by {b1,w} and {b2,w}, having an index of 2 and 3, respectively. We have
the inclusion-exclusion formula g(cone{b1,b2};z) = g(cone{b1,w};z) + g(cone{b2,w};z) −
g(cone{w};z); here the one-dimensional cone spanned by w needed to be subtracted. (c) A
signed decomposition into the two unimodular cones spanned by {b1,w′} and {b2,w′}. We have
the inclusion-exclusion formula g(cone{b1,b2};z) = g(cone{b1,w′};z)− g(cone{b2,w′};z) +
g(cone{w′};z).

From (17) it is now clear that g(C;z1,z2) = ∑x∈Π∩Z2 zx1
1 zx2

2 g(S;z1,z2); the multipli-
cation with the monomial zx1

1 zx2
2 corresponds to the shifting of the set S by the vector

(x1,x2). In our example, it is easy to see that Π ∩Z2 = {(i,0) : i = 0, . . . ,α +β−1}.
Thus

g(C;z1,z2) =
z0

1 + z1
1 + · · ·+ zα+β−2

1 + zα+β−1
1

(1− zα
1 z−1

2 )(1− zβ

1 z1
2)

.

Unfortunately, this formula has an exponential size as the numerator contains α +β

summands. To make the formula shorter, we need to recursively break the cone into
“smaller” cones, each of which have a much shorter formula. We have observed
that the length of the formula is determined by the number of integer points in the
fundamental parallelepiped, the index of the cone. Triangulations usually do not
help to reduce the index significantly, as another two-dimensional example shows.
Consider the cone C′ generated by b1 = (1,0) and b2 = (1,α); see Figure 9. We have
Π ′ ∩Z2 = {(0,0)}∪{(1, i) : i = 1, . . . ,α − 1}, so the rational generating function
would have α summands in the numerator, and thus have exponential size. Every
attempt to use triangulations to reduce the size of the formula fails in this example.
The choice of an interior vector w in Figure 9, for instance, splits the cone of index 5
into two cones of index 2 and 3, respectively – and also a one-dimensional cone.
Indeed, every possible triangulation of C′ into unimodular cones contains at least α

two-dimensional cones! The important new idea by Barvinok was to use so-called
signed decompositions in addition to triangulations in order to reduce the index of
a cone. In our example, we can choose the vector w = (0,1) from the outside of the
cone to define cones C1 = cone{b1,w} and C2 = cone{w,b2}; see Figure 9. Using
these cones, we have the inclusion-exclusion formula
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(a) (b)

Fig. 10 Brion’s theorem, expressing the generating function of a polyhedron to those of the sup-
porting cones of all vertices

g(C′;z1,z2) = g(C1;z1,z2)−g(C2;z1,z2)+g(C1∩C2;z1,z2)

It turns out that all cones C1 and C2 are unimodular, and we obtain the rational
generating function by summing up those of the subcones,

g(C′;z1,z2) =
1

(1− z1)(1− z2)
− 1

(1− z1
1zα

2 )(1− z2)
+

1
1− z1zα

2
.

4.1.2 Barvinok’s algorithm for short rational generating functions

We now present the general definitions and results. Let P ⊆ Rd be a rational
polyhedron. We first define its generating function as the formal Laurent series
g̃(P;z) = ∑ααα∈P∩Zd zααα ∈ Z[[z1, . . . ,zd ,z−1

1 , . . . ,z−1
d ]], i.e., without any consideration

of convergence properties. (A formal power series is not enough because monomi-
als with negative exponents can appear.) As we remarked above, this encoding of a
set of lattice points does not give an immediate benefit in terms of complexity. We
will get short formulas only when we can identify the Laurent series with certain
rational functions. Now if P is a polytope, then g̃(P;z) is a Laurent polynomial (i.e.,
a finite sum of monomials with positive or negative integer exponents), so it can be
naturally identified with a rational function g(P;z). Convergence comes into play
whenever P is not bounded, since then g̃(P;z) can be an infinite formal sum. We
first consider a pointed polyhedron P, i.e., P does not contain a straight line.

Theorem 15. Let P⊆Rd be a pointed rational polyhedron. Then there exists a non-
empty open subset U ⊆Cd such that the series g̃(P;z) converges absolutely and uni-
formly on every compact subset of U to a rational function g(P;z) ∈Q(z1, . . . ,zd).

Finally, when P contains an integer point and also a straight line, there does not
exist any point z ∈ Cd where the series g̃(P;z) converges absolutely. In this case
we set g(P;z) = 0; this turns out to be a consistent choice (making the map P 7→
g(P;z) a valuation, i.e., a finitely additive measure). The rational function g(P;z) ∈
Q(z1, . . . ,zd) defined as described above is called the rational generating function
of P∩Zd .
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Theorem 16 (Brion [30]). Let P be a rational polyhedron and V (P) be the set of
vertices of P. Then, g(P;z) = ∑v∈V (P) g(CP(v);z), where CP(v) = v + cone(P− v)
is the supporting cone of the vertex v; see Figure 10.

We remark that in the case of a non-pointed polyhedron P, i.e., a polyhedron that
has no vertices because it contains a straight line, both sides of the equation are zero.

Barvinok’s algorithm computes the rational generating function of a polyhe-
dron P as follows. By Brion’s theorem, the rational generating function of a polyhe-
dron can be expressed as the sum of the rational generating functions of the support-
ing cones of its vertices. Every supporting cone vi +Ci can be triangulated to obtain
simplicial cones vi +Ci j. If the dimension is fixed, these polyhedral computations
all run in polynomial time.

Now let K be one of these simplicial cones, whose basis vectors b1, . . . ,bd
(i.e., primitive representatives of its extreme rays) are the columns of some ma-
trix B ∈ Zd×d ; then the index of K is |detB|. Barvinok’s algorithm now computes a
signed decomposition of K to produce simplicial cones with smaller index. To this
end, it constructs a vector w = α1b1 + · · ·+αdbd ∈Zd \{0} with |αi| ≤ |detB|−1/d .
The existence of such a vector follows from Minkowski’s first theorem, and it can
be constructed in polynomial time using integer programming or lattice basis re-
duction followed by enumeration. The cone is then decomposed into cones spanned
by d vectors from the set {b1, . . . ,bd ,w}; each of the resulting cones then has an
index at most (indK)(d−1)/d . In general, these cones form a signed decomposition
of K; only if w lies inside K, they form a triangulation (see Figure 9). The resulting
cones and their intersecting proper faces (arising in an inclusion-exclusion formula)
are recursively processed, until cones of low index (for instance unimodular cones)
are obtained. Finally, for a unimodular cone v+BRd

+, the rational generating func-
tion is za/∏

d
j=1(1− zb j), where a is the unique integer point in the fundamental

parallelepiped. We summarize Barvinok’s algorithm below.

Algorithm 2 (Barvinok’s algorithm)
Input: A polyhedron P⊂ Rd given by rational inequalities.
Output: The rational generating function for P∩Zd in the form

gP(z) = ∑
i∈I

εi
zai

∏
d
j=1(1− zbi j)

(18)

where εi ∈ {±1}, ai ∈ Zd , and bi j ∈ Zd .

1. Compute all vertices vi and corresponding supporting cones Ci of P.
2. Triangulate Ci into simplicial cones Ci j, keeping track of all the intersecting

proper faces.
3. Apply signed decomposition to the cones vi +Ci j to obtain unimodular cones

vi +Ci jl , keeping track of all the intersecting proper faces.
4. Compute the unique integer point ai in the fundamental parallelepiped of every

resulting cone vi +Ci jl .
5. Write down the formula (18).
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k = 1 k = 2

Fig. 11 Approximation properties of `k-norms

We remark that it is possible to avoid computations with the intersecting proper faces
of cones (step 2 of the algorithm) entirely, using techniques such as polarization,
irrational decomposition [80], or half-open decomposition [31, 81].

Due to the descent of the indices in the signed decomposition procedure, the
depth of the decomposition tree is at most

⌊
1+ log2 log2 D

log2
d

d−1

⌋
, where D = |detB|. Be-

cause at each decomposition step at most O(2d) cones are created and the depth of
the tree is doubly logarithmic in the index of the input cone, Barvinok could obtain
a polynomiality result in fixed dimension:

Theorem 17 (Barvinok [12]). Let d be fixed. There exists a polynomial-time algo-
rithm for computing the rational generating function (18) of a polyhedron P ⊆ Rd

given by rational inequalities.

4.1.3 The FPTAS for polynomial optimization

We now describe the fully polynomial-time approximation scheme, which appeared
in [41, 40, 42]. It makes use of the elementary relation

max{s1, . . . ,sN}= lim
k→∞

k
√

sk
1 + · · ·+ sk

N , (19)

which holds for any finite set S = {s1, . . . ,sN} of non-negative real numbers. This
relation can be viewed as an approximation result for `k-norms. Now if P is a poly-
tope and f is an objective function non-negative on P∩Zd , let x1, . . . ,xN denote all
the feasible integer solutions in P∩Zd and collect their objective function values
si = f (xi) in a vector s ∈QN . Then, comparing the unit balls of the `k-norm and the
`∞-norm (Figure 11), we get the relation

Lk := N−1/k‖s‖k ≤ ‖s‖∞ ≤ ‖s‖k =: Uk.

Thus, for obtaining a good approximation of the maximum, it suffices to solve a
summation problem of the polynomial function h = f k on P∩Zd for a value of k that
is large enough. Indeed, for k =

⌈
(1+1/ε) logN

⌉
, we obtain Uk−Lk ≤ ε f (xmax).

On the other hand, this choice of k is polynomial in the input size (because 1/ε is
encoded in unary in the input, and logN is bounded by a polynomial in the binary
encoding size of the polytope P). Hence, when the dimension d is fixed, we can
expand the polynomial function f k as a list of monomials in polynomial time.
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Solving the summation problem can be accomplished using short rational gener-
ating functions as follows. Let g(P;z) be the rational generating function of P∩Zd ,
computed using Barvinok’s algorithm. By symbolically applying differential op-
erators to g(P;z), we can compute a short rational function representation of the
Laurent polynomial g(P,h;z) = ∑ααα∈P∩Zd h(ααα)zααα , where each monomial zααα corre-
sponding to an integer point ααα ∈ P∩Zd has a coefficient that is the value h(ααα). To
illustrate this, consider again the generating function of the interval P = [0,4],

gP(z) = z0 + z1 + z2 + z3 + z4=
1

1− z
− z5

1− z
.

We now apply the differential operator z d
dz and obtain(

z
d
dz

)
gP(z) = 1z1 +2z2 +3z3 +4z4=

1
(1− z)2 −

−4z5 +5z4

(1− z)2

Applying the same differential operator again, we obtain(
z

d
dz

)(
z

d
dz

)
gP(z) = 1z1 +4z2 +9z3 +16z4=

z+ z2

(1− z)3 −
25z5−39z6 +16z7

(1− z)3

We have thus evaluated the monomial function h(α) = α2 for α = 0, . . . ,4; the
results appear as the coefficients of the respective monomials. The same works for
several variables, using the partial differential operators zi

∂

∂ zi
for i = 1, . . . ,d. In fixed

dimension, the size of the rational function expressions occuring in the symbolic
calculation can be bounded polynomially. Thus one obtains the following result.

Theorem 18. (a) Let h(x1, . . . ,xd) = ∑βββ cβββ xβββ ∈Q[x1, . . . ,xd ] be a polynomial. De-
fine the differential operator

Dh = h
(

z1
∂

∂ z1
, . . . ,zd

∂

∂ zd

)
= ∑

βββ

cβββ

(
z1

∂

∂ z1

)β1

. . .

(
zd

∂

∂ zd

)βd

.

Then Dh maps the generating function g(P;z) = ∑ααα∈P∩Zd zααα to the weighted
generating function (Dhg)(z) = g(P,h;z) = ∑ααα∈P∩Zd h(ααα)zααα .

(b) Let the dimension d be fixed. Let g(P;z) be the Barvinok representation of the
generating function ∑ααα∈P∩Zd zααα of P∩Zd . Let h∈Q[x1, . . . ,xd ] be a polynomial,
given as a list of monomials with rational coefficients cβββ encoded in binary and
exponents βββ encoded in unary. We can compute in polynomial time a Barvinok
representation g(P,h;z) for the weighted generating function ∑ααα∈P∩Zd h(ααα)zααα .

Thus, we can implement the following algorithm in polynomial time.

Algorithm 3 (Computation of bounds for the optimal value)
Input: A rational convex polytope P ⊂ Rd; a polynomial objective function f ∈
Q[x1, . . . ,xd ] that is non-negative over P∩Zd , given as a list of monomials with
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rational coefficients cβββ encoded in binary and exponents βββ encoded in unary; an
index k, encoded in unary.
Output: A lower bound Lk and an upper bound Uk for the maximal function value
f ∗ of f over P∩Zd . The bounds Lk form a nondecreasing, the bounds Uk a nonin-
creasing sequence of bounds that both reach f ∗ in a finite number of steps.

1. Compute a short rational function expression for the generating function g(P;z)=
∑ααα∈P∩Zd zααα . Using residue techniques, compute |P∩Zd |= g(P;1) from g(P;z).

2. Compute the polynomial f k from f .
3. From the rational function g(P;z) compute the rational function representation

of g(P, f k;z) of ∑ααα∈P∩Zd f k(ααα)zααα by Theorem 18. Using residue techniques,
compute

Lk :=
⌈

k
√

g(P, f k;1)/g(P;1)
⌉

and Uk :=
⌊

k
√

g(P, f k;1)
⌋

.

Taking the discussion of the convergence of the bounds into consideration, one ob-
tains the following result.

Theorem 19 (Fully polynomial-time approximation scheme). Let the dimension
d be fixed. Let P ⊂ Rd be a rational convex polytope. Let f be a polynomial with
rational coefficients that is non-negative on P∩Zd , given as a list of monomials
with rational coefficients cβββ encoded in binary and exponents βββ encoded in unary.

(i) Algorithm 3 computes the bounds Lk, Uk in time polynomial in k, the input size
of P and f , and the total degree D. The bounds satisfy the following inequality:

Uk−Lk ≤ f ∗ ·
(

k
√
|P∩Zd |−1

)
.

(ii) For k = (1 + 1/ε) log(|P∩Zd |) (a number bounded by a polynomial in the
input size), Lk is a (1− ε)-approximation to the optimal value f ∗ and it can
be computed in time polynomial in the input size, the total degree D, and 1/ε .
Similarly, Uk gives a (1+ ε)-approximation to f ∗.

(iii) With the same complexity, by iterated bisection of P, we can also find a feasible
solution xε ∈ P∩Zd with

∣∣ f (xε)− f ∗
∣∣≤ ε f ∗.

The mixed-integer case can be handled by discretization of the continuous vari-
ables. We illustrate on an example that one needs to be careful to pick a sequence of
discretizations that actually converges. Consider the mixed-integer linear optimiza-
tion problem depicted in Figure 12, whose feasible region consists of the point ( 1

2 ,1)
and the segment {(x,0) : x ∈ [0,1]}. The unique optimal solution is x = 1

2 , z = 1.
Now consider the sequence of grid approximations where x ∈ 1

mZ≥0. For even m,
the unique optimal solution to the grid approximation is x = 1

2 , z = 1. However, for
odd m, the unique optimal solution is x = 0, z = 0. Thus the full sequence of the
optimal solutions to the grid approximations does not converge because it has two
limit points; see Figure 12.
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Z

1

11
2 R

Optimal solution
f ( 1

2 ,1) = 1

Z

1

11
2 R

f ( 1
2 ,1) = 1

Optimal solution Z

1

11
2 Rf (0,0) = 0

Opt.

Fig. 12 A mixed-integer linear optimization problem and a sequence of optimal solutions to grid
problems with two limit points, for even m and for odd m

To handle polynomial objective functions that take arbitrary (positive and nega-
tive) values on the feasible region, one can shift the objective function by a constant
that is large enough. Then, to obtain a strong approximation result, one iteratively
reduces the constant by a factor. Altogether we have the following result.

Theorem 20 (Fully polynomial-time approximation schemes). Let the dimension
n = n1 +n2 be fixed. Let an optimization problem (2) of a polynomial function f over
the mixed-integer points of a polytope P and an error bound ε be given, where

(I1) f is given as a list of monomials with rational coefficients cβββ encoded in
binary and exponents βββ encoded in unary,

(I2) P is given by rational inequalities in binary encoding,
(I3) the rational number 1

ε
is given in unary encoding.

(a) There exists a fully polynomial time approximation scheme (FPTAS) for the max-
imization problem for all polynomial functions f (x,z) that are non-negative on
the feasible region. That is, there exists a polynomial-time algorithm that, given
the above data, computes a feasible solution (xε ,zε) ∈ P∩

(
Rn1 ×Zn2

)
with∣∣ f (xε ,zε)− f (xmax,zmax)

∣∣≤ ε f (xmax,zmax).

(b) There exists a polynomial-time algorithm that, given the above data, computes
a feasible solution (xε ,zε) ∈ P∩

(
Rn1 ×Zn2

)
with∣∣ f (xε ,zε)− f (xmax,zmax)

∣∣≤ ε
∣∣ f (xmax,zmax)− f (xmin,zmin)

∣∣.
4.2 Semi-algebraic sets and SOS programming

In this section we use results from algebraic geometry over the reals to provide a
convergent (and in the case of binary optimization, finite) sequence of semi-definite
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relaxations for the general polynomial optimization problem over semi-algebraic
sets.

Z∗ = minimize f (x)
s.t. gi(x)≥ 0, i = 1, . . . ,m,

x ∈ Rn,

(20)

where f ,gi ∈ R[x] are polynomials defined as:

f (x) = ∑
ααα∈Zn

+

fααα xααα , gi(x) = ∑
ααα∈Zn

+

gi,ααα xααα ,

where there are only finitely many nonzero coefficients fααα and gi,ααα . Moreover, let
K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . ,m} denote the set of feasible solutions. Note
that problem (20) can model binary optimization, by taking f (x) = c>x, and taking
as the polynomials gi(x), a>i x− bi, x2

j − x j and −x2
j + x j (to model x2

j − x j = 0).
Problem (20) can also model bounded integer optimization (using for example the
equation (x j− l j)(x j− l j + 1) · . . . · (x j−u j) = 0 to model l j ≤ x j ≤ u j), as well as
bounded mixed-integer nonlinear optimization. Problem (20) can be written as:

maximize γ

s.t. f (x)− γ ≥ 0, ∀ x ∈ K.
(21)

This leads us to consider conditions for polynomials to be nonnegative over a set K.

Definition 4. Let p ∈ R[x] where x = (x1, . . . ,xn)>. The polynomial p is called sos
(sum of squares), if there exist polynomials h1, . . . ,hk ∈ R[x] such that p = ∑

k
i=1 h2

i .

Clearly, in multiple dimensions if a polynomial can be written as a sum of squares
of other polynomials, then it is nonnegative. However, is it possible for a polyno-
mial in higher dimensions to be nonnegative without being a sum of squares? The
answer is yes. The most well-known example is probably the Motzkin-polynomial
M(x,y,z) = x4y2 + x2y4 + z6− 3x2y2z2, which is nonnegative without being a sum
of squares of polynomials.

The following theorem establishes a certificate of positivity of a polynomial on
the set K, under a certain assumption on K.

Theorem 21 ([106] [74]). Suppose that the set K is compact and there exists a poly-
nomial h(x) of the form

h(x) = h0(x)+
m

∑
i=1

hi(x)gi(x),

such that {x ∈Rn | h(x)≥ 0} is compact and hi(x), i = 0,1, . . . ,m, are polynomials
that have a sum of squares representation. Then, if the polynomial g is strictly posi-
tive over K, then there exist pi ∈ R[x], i = 0,1, . . . ,m, that are sums of squares such
that

g(x) = p0(x)+
m

∑
i=1

pi(x)gi(x). (22)
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Note that the number of terms in Equation (22) is linear. While the assumption
of Theorem 21 may seem restrictive, it is satisfied in several cases:

(a) For binary optimization problems, that is, when K includes the inequalities x2
j ≥

x j and x j ≥ x2
j for all j = 1, . . . ,n.

(b) If all the g j’s are linear, i.e., K is a polyhedron.
(c) If there is one polynomial gk such that the set {x ∈ Rn | gk(x)≥ 0} is compact.

More generally, one way to ensure that the assumption of Theorem 21 holds
is to add to K the extra quadratic constraint gm+1(x) = a2−‖x‖2 ≥ 0 for some a
sufficiently large. It is also important to emphasize that we do not assume that K is
convex. Notice that it may even be disconnected.

Let us now investigate algorithmically when a polynomial is a sum of squares.
As we will see this question is strongly connected to semi-definite optimization.
The idea of using semi-definite optimization for solving optimization problems over
polynomials is due to [120] and further expanded in [82] and [104]. We consider the
vector

vd(x) = (xααα)|ααα|≤d = (1,x1, . . . ,xn,x2
1,x1x2, . . . ,xn−1xn,x2

n, . . . ,x
d
1 , . . . ,x

d
n)
>,

of all the monomials xααα of degree less than or equal to d, which has dimension
s = ∑

d
i=0
(n

i

)
=
(n+d

d

)
.

Proposition 3 ([37]). The polynomial g(x) of degree 2d has a sum of squares de-
composition if and only if there exists a positive semi-definite matrix Q for which
g(x) = vd(x)>Qvd(x).

Proof. Suppose there exists an s× s matrix Q� 0 for which g(x) = vd(x)>Qvd(x).
Then Q = HH> for some s× k matrix H, and thus,

g(x) = vd(x)>HH>vd(x) =
k

∑
i=1

(H>vd(x))2
i .

Because (H>vd(x))i is a polynomial, then g(x) is expressed as a sum of squares of
the polynomials (H>vd(x))i.

Conversely, suppose that g(x) has a sum of squares decomposition g(x) =
∑

`
i=1 hi(x)2. Let hi be the vector of coefficients of the polynomial hi(x), i.e.,

hi(x) = h>i vd(x). Thus,

g(x) =
`

∑
i=1

vd(x)>hih>i vd(x) = vd(x)>Qvd(x),

with Q = ∑
`
i=1 hih>i � 0, and the proposition follows. ut

Proposition 3 gives rise to an algorithm. Given a polynomial f (x) ∈R[x1, . . . ,xn]
of degree 2d. In order to compute the minimum value f ∗ = min{ f (x) | x ∈ Rn} we
introduce an artificial variable λ and determine



40 Raymond Hemmecke, Matthias Köppe, Jon Lee and Robert Weismantel

max{λ | λ ∈ R, f (x)−λ ≥ 0}.

With the developments above, we realize that we can determine a lower bound for
f ∗ by computing the value

psos = max{λ | λ ∈ R, f (x)−λ is sos} ≤ f ∗.

The latter task can be accomplished by setting up a semi-definite program. In fact,
if we denote by fααα the coefficient of the monomial xααα in the polynomial f , then
f (x)−λ is sos if and only if there exists an s×s matrix Q� 0 for which f (x)−λ =
vd(x)>Qvd(x). Now we can compare the coefficients on both sides of the latter
equation. This leads to the SOS-program

psos = max λ

st. f0−λ = Q0,0
∑βββ ,γγγ, βββ+γγγ=ααα Qβββ ,γγγ = fααα

Q = (Qβββ ,γγγ)βββ ,γγγ � 0.

In a similar vein, Theorem 21 and Proposition 3 jointly imply that we can use
semi-definite optimization to provide a sequence of semi-definite relaxations for
the optimization problem (21). Assuming that the set K satisfies the assumption of
Theorem 21, then if f (x)− γ > 0 for all x ∈ K, then

f (x)− γ = p0(x)+
m

∑
i=1

pi(x)gi(x), (23)

where pi(x), i = 0,1, . . . ,m have a sum of squares representation. Theorem 21 does
not specify the degree of the polynomials pi(x). Thus, we select a bound 2d on the
degree of the polynomials pi(x), and we apply Proposition 3 to each of the polyno-
mials pi(x), that is, pi(x) is a sum of squares if and only if pi(x) = vd(x)>Qivd(x)
with Qi � 0, i = 0,1, . . . ,m. Substituting to Eq. (23), we obtain that γ,Qi, i =
0,1, . . . ,m, satisfy linear equations that we denote as L(γ,Q0,Q1, . . . ,Qm) = 0. Thus,
we can find a lower bound to problem (20) by solving the semi-definite optimization
problem

Zd = max γ

st. L(γ,Q0,Q1, . . . ,Qm) = 0,

Qi � 0, i = 0,1, . . . ,m.

(24)

Problem (24) involves semi-definite optimization over m + 1 s× s matrices. From
the construction we get the relation Zd ≤ Z∗. It turns out that as d increases, Zd
converges to Z∗. Moreover, for binary optimization, there exists a finite d for which
Zd = Z∗ [83].

Problem (24) provides a systematic way to find convergent semi-definite relax-
ations to problem (20). While the approach is both general (it applies to very general
nonconvex problems including nonlinear mixed-integer optimization problems) and
insightful from a theoretical point of view, it is only practical for values of d = 1,2,
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as large scale semi-definite optimization problems cannot be solved in practice. In
many situations, however, Z1 or Z2 provide strong bounds. Let us consider an exam-
ple.

Example 2. Let us minimize f (x1,x2) = 2x4
1 + 2x3

1x2− x2
1x2

2 + 5x4
2 over R2. We at-

tempt to write

f (x1,x2) = 2x4
1 +2x3

1x2− x2
1x2

2 +5x4
2

=

 x2
1

x2
2

x1x2


>q11 q12 q13

q12 q22 q23

q13 q23 q33


 x2

1

x2
2

x1x2


= q11x4

1 +q22x4
2 +(q13 +2q12)x2

1x2
2 +2q13x3

1x2 +2q23x1x3
2.

In order to have an identity, we obtain

q11 = 2, q22 = 5, q33 +2q12 =−1, 2q13 = 2, q23 = 0.

Using semi-definite optimization, we find a particular solution such that Q � 0 is
given by

Q =

 2 −3 1
−3 5 0

1 0 5

= HH>, H =
1√
2

 2 0
−3 1

1 3

 .

It follows that f (x1,x2) = 1
2 (2x2

1−3x2
2 +x1x2)2 + 1

2 (x2
2 +3x1x2)2, and thus the opti-

mal solution value is γ∗ = 0 and the optimal solution is x∗1 = x∗2 = 0.

4.3 Quadratic functions

In this section, we focus on instances of polynomial programming where the func-
tions are all quadratic. The specific form of the mixed-integer quadratically con-
strained programming problem that we consider is

min q0(x)
s.t. q(x)≤ 0

l≤ x≤ u
xi ∈ R for i = 1, . . . ,k

xi ∈ Z for i = k +1, . . . ,n,

(MIQCP[l,u])

where q0 : Rn→ R and q : Rn→ Rm are quadratic, l,u ∈ Zn, and l≤ u. We denote
the continuous relaxation by (MIQCPR[l,u]). We emphasize that we are not gener-
ally making any convexity/concavity assumptions on the quadratic functions qi, so
when we do require any such assumptions we will state so explicitly.
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Of course one can write a binary constraint yi ∈ {0,1} as the (nonconvex)
quadratic inequality yi(1− yi) ≤ 0 in the bound-constrained variable 0 ≤ yi ≤ 1.
So, in this way, the case of binary variables yi can be seen as the special case
of (MIQCP[l,u]) with no discrete variables (i.e., k = n). So, in a sense, the topic
of mixed-binary quadratically constrained programming can be seen as a special
case of (purely continuous) quadratically constrained programming. We are not
saying that it is necessarily useful to do this from a computational viewpoint, but
it makes it clear that the scope of even the purely continuous quadratic model in-
cludes quadratic models having both binary and continuous variables, and in partic-
ular mixed-{0,1} linear programming.

In addition to the natural mathematical interest in studying mixed-integer quadrat-
ically constrained programming, there is a wealth of applications that have mo-
tivated the development of practical approaches; for example: Trimloss problems
(see [84], for example), portfolio optimization (see [26], for example), Max-Cut
and other binary quadratic models (see [108, 109] and the references therein).

In the remainder of this section, we describe some recent work on practical com-
putational approaches to nonconvex quadratic optimization models. Rather than at-
tempt a detailed survey, our goal is to present a few recent and promising tech-
niques. One could regard these techniques as belonging more to the field of global
optimization, but in Section 5 we present material on global optimization aimed at
more general unstructured nonlinear integer programming problems.

4.3.1 Disjunctive programming

It is not surprising that integer variables in a mixed-integer nonlinear program can
be treated with disjunctive programming [7, 9]. A corresponding branch-and-cut
method was first described in [123] in the context of 0/1 mixed convex program-
ming.

Here we describe an intriguing result from [114, 115, 116], which shows that one
can also make useful disjunctions from nonconvex quadratic functions in a mixed-
integer quadratically-constrained programming problem or even in a purely con-
tinuous quadratically-constrained programming problem. The starting point for this
approach is that we can take a quadratic form x>Aix in x ∈Rn, and rewrite it via an
extended formulation as the linear form 〈Ai,X〉, using the matrix variable X∈Rn×n,
and the nonlinear equation X = xx>. The standard approach is to relax X = xx> to
the convex inequality X� xx>. But the approach of [114, 115, 116] involves work-
ing with the nonconvex inequality X� xx>. This basic idea is as follows. Let v∈Rn

be arbitrary (for now). We have the equation

〈vv>,X〉= 〈vv>,xx>〉= (v>x)2 ,

which we relax as the concave inequality

(v>x)2 ≥ 〈vv>,X〉. (Ω)
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If we have a point (x̂, X̂) that satisfies the convex inequality X� xx>, but for which
X̂ 6= x̂x̂> , then it is the case that X̂− x̂x̂> has a positive eigenvalue λ . Let v denote
a unit-length eigenvector belonging to λ . Then

λ = λ‖v‖2
2

= 〈vv>, X̂− x̂x̂>〉.

So, λ > 0 if and only if (v>x̂)2 < 〈vv>, X̂〉 . That is, every positive eigenvalue
of X̂− x̂x̂> yields an inequality of the form (Ω) that is violated by (x̂, X̂) . Next,
we make a disjunction on this violated nonconvex inequality (Ω). First, we choose
a suitable polyhedral relaxation P of the feasible region, and we let [ηL,ηU ] be
the range of v>x as (x,X) varies over the relaxation P . Next, we choose a value
θ ∈ (ηL,ηU ) (e.g., the midpoint), and we get the polyhedral disjunction:{

(x,X) ∈P :
ηL(v)≤ v>x≤ θ

(v>x)(ηL(v)+θ) − θηL(v)≥ 〈vv>,X〉

}

or

{
(x,X) ∈P :

θ ≤ v>x≤ ηU (v)
(v>x)(ηU (v)+θ) − θηU (v)≥ 〈vv>,X〉.

}
.

Notice that the second part of the first (resp., second) half of the disjunction corre-
sponds to a secant inequality over the interval between the point θ and the lower
(resp., upper) bound for v>x. Finally, we use the linear-programming technology
of ordinary disjunctive programming to separate, via a linear inequality, the point
(x̂, X̂) from the convex closure of the two halves of the disjunction. Details and
extensions of this idea appear in [114, 115, 116].

4.3.2 Branch and cut

A branch-and-cut scheme for optimization of a nonconvex quadratic form over a box
was recently developed by Vandenbussche and Nemhauser [133, 132]. They use
a formulation of Balas via linear programming with complementarity conditions,
based on the necessary optimality conditions of continuous quadratic programming
(see [8]). Specifically, they consider the problem

min 1
2 x>Qx+ c>x

s.t. x ∈ [0,1]n,
(BoxQP[Q,c])

where Q is an n×n symmetric, non positive semi-definite matrix, and c ∈ Rn. The
KKT necessary optimality conditions for (BoxQP[Q,c]) are
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y−Qx− z = c, (25)
y>(1−x) = 0 (26)
z>x = 0 (27)
x ∈ [0,1]n (28)
y, z ∈ Rn

+ . (29)

Vandenbussche and Nemhauser, appealing to a result of Balas, define P(Q,c) as
the polyhedron defined as the convex hull of solutions to (25-29), and they work
with the reformulation of (BoxQP) as the linear program

min 1
2 c>x+ 1

2 1>y
s.t. (x,y,z) ∈P(Q,c). (Balas[Q,c])

The main tactic of Vandenbussche and Nemhauser is to develop cutting planes for
P(Q,c).

Burer and Vandenbussche pursue a similar direction, but they allow general poly-
hedral constraints and employ semi-definite relaxations [33].

4.3.3 Branch and bound

Linderoth also looks at quadratically-constrained programs that are not convex [91].
He develops a novel method for repeatedly partitioning the continuous feasible re-
gion into the Cartesian product of triangles and rectangles. What is particularly inter-
esting is that to do this effectively, Linderoth develops convex envelopes of bilinear
functions over rectangles and triangles (also see Anstreicher and Burer’s paper [6]),
and then he demonstrates that these envelopes involve hyperbolic constraints which
can be reformulated as the second-order cone constraints. It is interesting to com-
pare this with the similar use of second-order cone constraints for convex quadratics
(see Section 3.3.2).

One can view the technique of Linderoth as being a specialized “Spatial Branch-
and-Bound Algorithm.” In Section 5 we will describe the Spatial Branch-and-Bound
Algorithm for global optimization in its full generality.

5 Global optimization

In the present section we take up the subject of global optimization of rather gen-
eral nonlinear functions. This is an enormous subject, and so we will point to just a
couple of directions that we view as promising. On the practical side, in Section 5.1
we describe the Spatial Branch-and-Bound Algorithm which is one of the most suc-
cessful computational approaches in this area. In Section 5.2, from the viewpoint of
complexity theory, with a goal of trying to elucidate the boundary between tractable
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and intractable, we describe some very recent work on global optimization of a very
general class of nonlinear functions over an independence system.

5.1 Spatial Branch-and-Bound

In this section we address methods for global optimization of rather general mixed-
integer nonlinear programs having non-convex relaxations. Again, to have any hope
at all, we assume that the variables are bounded. There is a very large body of
work on solution techniques in this space. We will not attempt to make any kind of
detailed survey. Rather we will describe one very successful methodology, namely
the Spatial Branch-and-Bound Algorithm. We refer to [122, 127] and the references
therein.

The Spatial Branch-and-Bound Algorithm for mixed-integer nonlinear program-
ming has many similarities to the ordinary branch-and-bound employed for the so-
lution of mixed-integer linear programs, but there are many additional wrinkles.
Moreover, the techniques can be integrated. In what follows, we will concentrate on
how continuous nonlinearities are handled. We leave it to the reader to see how these
techniques would be integrated with the associated techniques for mixed-integer lin-
ear programs.

One main difference with the mixed-integer linear case is that all nonlinear func-
tions in a problem instance are symbolically and recursively decomposed via simple
operators, until we arrive at simple functions. The simple operators should be in a
limited library. For example: sum, product, quotient, exponentiation, power, loga-
rithm, sine, cosine, absolute value. Such a decomposition is usually represented via
a collection of rooted directed acyclic graphs. At each root is a nonlinear function
occurring in the problem formulation. Leaves are constants, affine functions and
atomic variables. Each non-leaf node is thought of as an auxiliary variable and also
as representing a simple operator, and its children are the arguments of that operator.

An inequality constraint in the problem formulation can be thought of as a bound-
ing interval on a root. In addition, the objective function is associated with a root,
and so lower and upper bounds on the optimal objective value can also be thought
of as a bounding interval on a root. Simple bounds on a variable in the problem
formulation can be thought of as a bounding interval on a leaf. In this way, we have
an extended-variable reformulation of the given problem.

Bounds are propagated up and down each such rooted directed acyclic graph via
interval arithmetic and a library of convex envelopes or at least linear convex relax-
ations of the graphs of simple nonlinear operators acting on one or two variables on
simple domains (intervals for univariate operators and simple polygons for bivariate
operators). So, in this way, we have a now tractable convex or even linear relaxation
of the extended-variable reformulation, and this is used to get a lower bound on the
minimum objective value.

The deficiency in our relaxation is localized to the graphs of simple functions that
are only approximated by convex sets. We can seek to improve bounds by branching
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on the interval for a variable and reconvexifying on the subproblems. For example,
we may have a variable v that is a convex function f in a variable w on an inter-
val [l,u]. Then the convex envelope of the graph G[l,u] := {(v,w) : v = f (w)} is
precisely

G̃[l,u] :=
{

(v,w) : f (w)≤ v≤ f (l)+
(

f (u)− f (l)
u− l

)
(w− l)

}
.

We may find that at a solution of the relaxation, the values of the variables (u,v),
say (v̂, ŵ) ∈ G̃[l,u], are far from G[l,u]. In such a case, we can branch by choosing
a point b ∈ [l,u] (perhaps at or near v̂), and forming two subproblems in which
the bounding interval for v is amended as [l,b] in one and [b,u] in the other. The
value in branching on such a continuous variable is that we now reconvexify on
the subintervals, effectively replacing G̃[l,u] with the smaller set G̃[l,b]∪ G̃[b,u]. In
particular, if we did choose b = v̂, then (v̂, ŵ) /∈ G̃[l,b]∪ G̃[l,b], and so the algorithm
makes some progress. We note that a lot of work has gone into good branching
strategies (see [14] for example).

Finally, a good Spatial Branch-and-Bound procedure should have an effective
strategy for finding good feasible solutions, so as to improve the objective upper
bound (for minimization problems). A good rudimentary strategy is to take the so-
lution of a relaxation as a starting point for a continuous nonlinear-programming
solver aimed at finding a locally-optimal solution of the continuous relaxation (of
either the original or extended-variable formulation). Then if a feasible solution to
this relaxation is obtained and if it happens to have integer values for the appro-
priate variables, then we have an opportunity to update the objective value upper
bound. Alternatively, one can use a solver aimed mainly at mixed-integer nonlinear
programs having convex relaxation as a heuristic also from such a starting point.
In fact, the Branch-and-Bound Algorithm in Bonmin has options aimed at giving
good solutions from such a starting point, even for non-convex problems.

The Spatial Branch-and-Bound Algorithm relies on the rapid and tight convex-
ification of simple functions on simple domains. Therefore, considerable work has
gone into developing closed-form expressions for such envelopes. This type of work
has paralleled some research in mixed-integer linear programming that has focused
on determining convex hulls for simple constraints. Useful results include: univari-
ate functions [2, 121, 35], univariate monomials of odd degree [89, 90], bilinear
functions [5, 97], trilinear functions [98], so-called (n− 1)-convex functions [73],
and fractional terms [126]. Further relevant work includes algorithms exploiting
variable transformations and appropriate convex envelopes and relaxations. For ex-
ample, for the case of “signomials” (i.e., terms of the form a0xa1

1 xa2
2 · · ·xan

n , with
ai ∈ R), see [105].

We do not make any attempt to exhaustively review available software for global
optimization. Rather we just mention that state-of-the-art codes implementing a
Spatial Branch-and-Bound Algorithm include Baron [112, 127, 128] and the new
open-source code Couenne [14].
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5.2 Boundary cases of complexity

Now, we shift our attention back to the viewpoint of complexity theory. Our goal is
to sample a bit of the recent work that is aimed at revealing the boundary between
tractable and intractable instances of nonlinear discrete optimization problems. We
describe some very recent work on global optimization of a very general class of
nonlinear functions over an independence system (see [85]). Other work in this vein
includes [16, 17].

Specifically, we consider the problem of optimizing a nonlinear objective func-
tion over a weighted independence system presented by a linear-optimization oracle.
While this problem is generally intractable, we are able to provide a polynomial-
time algorithm that determines an “r-best” solution for nonlinear functions of the
total weight of an independent set, where r is a constant that depends on certain
Frobenius numbers of the individual weights and is independent of the size of the
ground set.

An independence system is a nonempty set of vectors S⊆ {0,1}n with the prop-
erty that x ∈ {0,1}n, x ≤ y ∈ S implies x ∈ S. The general nonlinear optimization
problem over a multiply-weighted independence system is as follows. Given an in-
dependence system S ⊆ {0,1}n, weight vectors w1, . . . ,wd ∈ Zn, and a function
f : Zd → R, find x ∈ S minimizing the objective f (w>1 x, . . . ,w>d x).

The representation of the objective in the above composite form has several ad-
vantages. First, for d > 1, it can naturally be interpreted as multi-criteria optimiza-
tion: the d given weight vectors w1, . . . ,wd represent d different criteria, where the
value of x ∈ S under criterion i is its i-th total weight w>i x and the objective is
to minimize the “balancing” f (w>1 x, . . . ,w>d x) of the d given criteria by the given
function f . Second, it allows us to classify nonlinear optimization problems into a
hierarchy of increasing generality and complexity: at the bottom lies standard linear
optimization, recovered with d = 1 and f the identity on Z; and at the top lies the
problem of maximizing an arbitrary function, which is typically intractable, arising
with d = n and wi = 1i the i-th standard unit vector in Zn for all i.

The computational complexity of the problem depends on the number d of
weight vectors, on the weights wi, j, on the type of function f and its presentation,
and on the type of independence system S and its presentation. For example, when
S is a matroid, the problem can be solved in polynomial time for any fixed d, any
{0,1, . . . , p}-valued weights wi, j with p fixed, and any function f presented by a
comparison oracle, even when S is presented by a mere membership oracle, see
[16]. Also, for example, when S consists of the matchings in a given bipartite graph
G, the problem can be solved in polynomial time for any fixed d, any weights wi, j
presented in unary, and any concave function f , see [18]; but on the other hand, for
convex f , already with fixed d = 2 and {0,1}-valued weights wi, j, the problem in-
cludes as a special case the exact matching problem whose complexity is long open
[100, 102].

In view of the difficulty of the problem already for d = 2, we take a first step and
concentrate on nonlinear optimization over a (singly) weighted independence sys-
tem, that is, with d = 1, single weight vector w = (w1, . . . ,wn), and univariate func-
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tion f : Z→ R. The function f can be arbitrary and is presented by a comparison
oracle that, queried on x,y ∈ Z, asserts whether or not f (x)≤ f (y). The weights w j
take on values in a p-tuple a = (a1, . . . ,ap) of positive integers. Without loss of gen-
erality we assume that a = (a1, . . . ,ap) is primitive, by which we mean that the ai are
distinct positive integers whose greatest common divisor gcd(a) := gcd(a1, . . . ,ap)
is 1. The independence system S is presented by a linear-optimization oracle that,
queried on vector c∈Zn, returns an element x∈ S that maximizes the linear function
c>x = ∑

n
j=1 c jx j. It turns out that this problem is already quite intriguing, and so we

settle for an approximative solution in the following sense, that is interesting in its
own right. For a nonnegative integer r, we say that x∗ ∈ S is an r-best solution to the
optimization problem over S if there are at most r better objective values attained by
feasible solutions. In particular, a 0-best solution is optimal. Recall that the Frobe-
nius number of a primitive a is the largest integer F(a) that is not expressible as a
nonnegative integer combination of the ai. We prove the following theorem.

Theorem 22. For every primitive p-tuple a = (a1, . . . ,ap), there is a constant r(a)
and an algorithm that, given any independence system S ⊆ {0,1}n presented by a
linear-optimization oracle, weight vector w∈ {a1, . . . ,ap}n, and function f : Z→R
presented by a comparison oracle, provides an r(a)-best solution to the nonlinear
problem min{ f (w>x) : x ∈ S}, in time polynomial in n. Moreover:

1. If ai divides ai+1 for i = 1, . . . , p− 1, then the algorithm provides an optimal
solution.

2. For p = 2, that is, for a = (a1,a2), the algorithm provides an F(a)-best solution.

In fact, we give an explicit upper bound on r(a) in terms of the Frobenius num-
bers of certain subtuples derived from a. An interesting special case is that of
a = (2,3). Because F(2,3) = 1, the solution provided by our algorithm in that case
is either optimal or second best.

The proof of Theorem 22 is pretty technical, so we only outline the main ideas.
Below we present a naı̈ve solution strategy that does not directly lead to a good ap-
proximation. However, this naı̈ve approach is used as a basic building block. One
partitions the independence system into suitable pieces, to each of which a suitable
refinement of the naı̈ve strategy is applied separately. Considering the monoid gen-
erated by {a1, . . . ,ap} allows one to show that the refined naı̈ve strategy applied to
each piece gives a good approximation within that piece. In this way, the approx-
imation quality r(a) can be bounded as follows, establishing a proof to Theorem
22.

Lemma 6. Let a = (a1, . . . ,ap) be any primitive p-tuple. Then the following hold:

1. An upper bound on r(a) is given by r(a)≤ (2max(a))p.
2. For divisible a, we have r(a) = 0.
3. For p = 2, that is, for a = (a1,a2), we have r(a) = F(a).

Before we continue, let us fix some notation. The indicator of a subset J ⊆ N is
the vector 1J := ∑ j∈J 1 j ∈ {0,1}n, so that supp(1J) = J. Unless otherwise specified,



Nonlinear Integer Programming 49

x denotes an element of {0,1}n and λλλ ,τττ,ννν denote elements of Zp
+. Throughout,

a = (a1, . . . ,ap) is a primitive p-tuple. We will be working with weights taking
values in a, that is, vectors w ∈ {a1, . . . ,ap}n. With such a weight vector w being
clear from the context, we let Ni := { j ∈ N : w j = ai} for i = 1, . . . , p, so that
N =

⊎p
i=1 Ni. For x ∈ {0,1}n we let λi(x) := |supp(x)∩Ni| for i = 1, . . . , p, and

λλλ (x) := (λ1(x), . . . ,λp(x)), so that w>x = λλλ (x)>a. For integers z,s ∈ Z and a set of
integers Z ⊆ Z, we define z+ sZ := {z+ sx : x ∈ Z}.

Let us now present the naı̈ve strategy to solve the univariate nonlinear problem
min{ f (w>x) : x ∈ S}. Consider a set S⊆ {0,1}n, weight vector w ∈ {a1, . . . ,ap}n,
and function f : Z→ R presented by a comparison oracle. Define the image of S
under w to be the set of values w>x taken by elements of S; we denote it by w ·S.

We point out the following simple observation.

Proposition 4. A necessary condition for any algorithm to find an r-best solution to
the problem min{ f (w>x) : x ∈ S}, where the function f is presented by a compar-
ison oracle only, is that it computes all but at most r values of the image w · S of S
under w.

Note that this necessary condition is also sufficient for computing the objective value
f (w>x∗) of an r-best solution, but not for computing an actual r-best solution x∗ ∈
S, which may be harder. Any point x̄ attaining max{w>x : x ∈ S} provides an
approximation of the image given by

{w>x : x≤ x̄} ⊆ w ·S⊆ {0,1, . . . ,w>x̄} . (30)

This suggests the following natural naı̈ve strategy for finding an approximative so-
lution to the optimization problem over an independence system S that is presented
by a linear-optimization oracle.

Algorithm 4 (Naı̈ve Strategy)
input Independence system S ⊆ {0,1}n presented by a linear-optimization oracle,
f : Z→ R presented by a comparison oracle, and w ∈ {a1, . . . ,ap}n

obtain x̄ attaining max{w>x : x ∈ S} using the linear-optimization oracle for S
output x∗ as one attaining min{ f (w>x) : x≤ x̄} using the algorithm of Lemma 7
below.

Unfortunately, as the next example shows, the number of values of the image that
are missing from the approximating set on the left-hand side of equation (30) cannot
generally be bounded by any constant. So by Proposition 4, this strategy cannot be
used as is to obtain a provably good approximation.

Example 3. Let a := (1,2), n := 4m, y := ∑
2m
i=1 1i, z := ∑

4m
i=2m+1 1i, and w := y+2z,

that is,

y = (1, . . . ,1,0, . . . ,0) , z = (0, . . . ,0,1, . . . ,1) , w = (1, . . . ,1,2, . . . ,2) ,

define f on Z by
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f (k) :=
{

k, k odd;
2m, k even,

and let S be the independence system

S := {x ∈ {0,1}n : x≤ y} ∪ {x ∈ {0,1}n : x≤ z}.

Then the unique optimal solution of the linear-objective problem max{w>x : x∈ S}
is x̄ := z, with w>x̄ = 4m, and therefore

{w>x : x≤ x̄} = {2i : i = 0,1, . . . ,2m} and
w ·S = {i : i = 0,1, . . . ,2m} ∪ {2i : i = 0,1, . . . ,2m}.

So all m odd values (i.e., 1,3, . . . ,2m− 1) in the image w · S are missing from the
approximating set {w>x : x ≤ x̄} on the left-hand side of (30), and x∗ attaining
min{ f (w>x) : x≤ x̄} output by the above strategy has objective value f (w>x∗) =
2m, while there are m = n

4 better objective values (i.e., 1,3, . . . ,2m− 1) attainable
by feasible points (e.g., ∑

k
i=1 1i, for k = 1,3, . . . ,2m−1).

Nonetheless, a more sophisticated refinement of the naı̈ve strategy, applied re-
peatedly to several suitably chosen subsets of S rather than S itself, will lead to a
good approximation. Note that the naı̈ve strategy can be efficiently implemented as
follows.

Lemma 7. For every fixed p-tuple a, there is a polynomial-time algorithm that,
given univariate function f : Z→ R presented by a comparison oracle, weight vec-
tor w ∈ {a1, . . . ,ap}n, and x̄ ∈ {0,1}n, solves min{ f (w>x) : x≤ x̄}.

Proof. Consider the following algorithm:

Algorithm 5 input function f : Z→ R presented by a comparison oracle, w ∈
{a1, . . . ,ap}n and x̄ ∈ {0,1}n

let Ni := { j : w j = ai} and τi := λi(x̄) = |supp(x̄)∩Ni|, i = 1, . . . , p
For every choice of ννν = (ν1, . . . ,νp)≤ (τ1, . . . ,τp) = τττ

determine some xννν ≤ x̄ with λi(xννν) = |supp(xννν)∩Ni|= νi, i = 1, . . . , p
output x∗ as one minimizing f (w>x) among the xννν by using the comparison

oracle of f .

As the value w>x depends only on the cardinalities |supp(x)∩Ni|, i = 1, . . . , p,
it is clear that

{w>x : x≤ x̄}= {w>xννν : ννν ≤ τττ}.

Clearly, for each choice ννν ≤ τττ it is easy to determine some xννν ≤ x̄ by zeroing out
suitable entries of x̄. The number of choices ννν ≤ τττ and hence of loop iterations and
comparison-oracle queries of f to determine x∗ is

p

∏
i=1

(τi +1) ≤ (n+1)p.
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Table 1 Computational complexity and algorithms for nonlinear integer optimization.

Constraints
Objective
function Linear Convex Polynomial Arbitrary Polynomial

Linear Polynomial-time in fixed
dimension:

– Lenstra’s algorithm [87]
– Generalized basis re-

duction, Lovász–Scarf
[94]

– Short rational generating
functions, Barvinok [12]

Polynomial-time in fixed
dimension:
Lenstra-type algorithms
(§ 3.1)

– Khachiyan–Porkolab
[79]

– Heinz [66]

Incomputable:
Hilbert’s 10th problem,
Matiyasevich [95] (§ 1),
even for:

– quadratic constraints,
Jeroslow [75]

– fixed dimension 10,
Matiyasevich [76]

Convex max
(§ 2)

Polynomial-time in fixed
dimension: Cook et al. [38]
(§ 2.1)

Incomputable (§ 1)

Convex min
(§ 3)

Polynomial-time in fixed dimension: Lenstra-type al-
gorithms: Khachiyan–Porkolab [79], Heinz [66] (§ 3.1)

Incomputable (§ 1)

Arbitrary
Polynomial
(§ 4)

NP-hard, inapproximable, even for quadratic forms
over hypercubes: MAX-CUT, Håstad [65] (§ 1)
NP-hard, even for fixed dimension 2, degree 4 (§ 1)

FPTAS in fixed dimen-
sion: Short rational gener-
ating functions, De Loera
et al. [41] (§ 4.1)

Incomputable (§ 1)

6 Conclusions

In this chapter, we hope to have succeeded in reviewing mixed-integer nonlinear
programming from two important viewpoints.

We have reviewed the computational complexity of several important classes
of mixed-integer nonlinear programs. Some of the negative complexity results (in-
computability, NP-hardness) that appeared in Section 1 have been supplemented by
polynomiality or approximability results in fixed dimension. Table 1 gives a sum-
mary. In addition to that, and not shown in the table, we have explored the bound-
ary between tractable and intractable problems, by highlighting interesting cases in
varying dimension where still polynomiality results can be obtained.

Additionally, we have reviewed a selection of practical algorithms that seem to
have the greatest potential from today’s point of view. Many of these algorithms,
at their core, are aimed at integer convex minimization. Here we have nonlinear
branch-and-bound, outer approximation, the Quesada–Grossman algorithm, hybrid
algorithms, and generalized Benders decomposition. As we have reported, such ap-
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proaches can be specialized and enhanced for problems with SDP constraints, SOCP
constraints, and (convex) quadratics. For integer polynomial programming (without
convexity assumptions), the toolbox of Positivstellensätze and SOS programming is
available. For the case of quadratics (without convexity assumptions), specialized
versions of disjunctive programming, branch-and-cut, and branch-and-bound have
been devised. Finally, for general global optimization, spatial branch-and-bound is
available as a technique, which relies heavily on convexification methods.

It is our hope that, by presenting these two viewpoints to the interested reader,
this chapter will help to create a synergy between both viewpoints in the near future.
May this lead to a better understanding of the field, and to much better algorithms
than what we have today!
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permission to base the presentation of some of the material in this chapter on our
joint papers [43, 86, 85].

References

1. Abhishek, K., Leyffer, S., Linderoth, J.: Filmint: An outer-approximation-based solver for
nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906 (2006)

2. Adjiman, C.: Global optimization techniques for process systems engineering. Ph.D. thesis,
Princeton University (1998)

3. Ahuja, R., Magnanti, T., Orlin, J.: Network flows: theory, algorithms, and applications.
Prentice-Hall, Inc., New Jersey (1993)
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34. Burkard, R.E., Çela, E., Pitsoulis, L.: The quadratic assignment problem. In: Handbook of
Combinatorial Optimization, Computer-aided chemical engineering, pp. 241–339. Kluwer
Academic Publishers, Dordrecht (1998)

35. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Mathemati-
cal Programming 86(3), 595–614 (1999). DOI 10.1007/s101070050106
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40. De Loera, J.A., Hemmecke, R., Köppe, M., Weismantel, R.: FPTAS for mixed-integer poly-

nomial optimization with a fixed number of variables. In: 17th ACM-SIAM Symposium on
Discrete Algorithms, pp. 743–748 (2006)
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81. Köppe, M., Verdoolaege, S.: Computing parametric rational generating functions with a pri-
mal Barvinok algorithm. The Electronic Journal of Combinatorics 15, 1–19 (2008). #R16

82. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization 11, 796–817 (2001)

83. Laurent, M.: A comparison of the Sherali–Adams, Lovász–Schrijver and Lasserre relaxations
for 0-1 programming. Mathematics of Operations Research 28(3), 470–496 (2003)

84. Lee, J.: In situ column generation for a cutting-stock problem. Computers & Operations
Research 34(8), 2345–2358 (2007)

85. Lee, J., Onn, S., Weismantel, R.: Nonlinear optimization over a weighted independence sys-
tem. IBM Research Report RC24513 (2008)

86. Lee, J., Onn, S., Weismantel, R.: On test sets for nonlinear integer maximization. Operations
Research Letters 36, 439–443 (2008)

87. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of Op-
erations Research 8, 538–548 (1983)

88. Leyffer, S.: User manual for MINLP BB. Tech. rep., University of Dundee, UK (1999)
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