Skip to main content

Low-Discrepancy Curves and Efficient Coverage of Space

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

We introduce the notion of low-discrepancy curves and use it to solve the problem of optimally covering space. In doing so, we extend the notion of low-discrepancy sequences in such a way that sufficiently smooth curves with low discrepancy properties can be defined and generated. Based on a class of curves that cover the unit square in an efficient way, we define induced low discrepancy curves in Riemannian spaces. This allows us to efficiently cover an arbitrarily chosen abstract surface that admits a diffeomorphism to the unit square. We demonstrate the application of these ideas by presenting concrete examples of low-discrepancy curves on some surfaces that are of interest in robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choset, H.: Coverage for robotics - A survey of recent results. Annals of Mathematics and Artificial Intelligence 31, 113–126 (2001)

    Article  Google Scholar 

  2. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  3. Matous̆ek, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Heidelberg (1999)

    Google Scholar 

  4. LaValle, S.M., Branicky, M.S., Lindemann, S.R.: On the relationship between classical grid search and probabilistic roadmaps. International Journal of Robotics Research 23(7-8), 673–692 (2004)

    Article  Google Scholar 

  5. Lindemann, S.R., LaValle, S.M.: Incremental low-discrepancy lattice methods for motion planning. In: Proc. IEEE International Conference on Robotics and Automation (2003)

    Google Scholar 

  6. Lindemann, S.R., Yershova, A., LaValle, S.M.: Incremental grid sampling strategies in robotics. In: Proc. Workshop on Algorithmic Foundations of Robotics, pp. 297–312 (2004)

    Google Scholar 

  7. Rimon, E., Koditschek, D.E.: Exact robot navigation using artifical potential functions. IEEE Trans. Robotics and Automation 8(5), 501–518 (1992)

    Article  Google Scholar 

  8. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. In: CBMS-NSF Regional Conference Series in Applied Math., vol. 63, SIAM, Philadelphia (1992)

    Google Scholar 

  9. Kocis, L., Whiten, W.J.: Computational investigations of low-discrepancy sequences. ACM Trans. Mathematical Software 23(2), 266–294 (1997)

    Article  MATH  Google Scholar 

  10. van der Corput, J.G.: Vereilungsfunktionen I,II. Nederl. Akad. Wetensch. Proc. Ser. B 38, 813–821, 1058–1066 (1935)

    MATH  Google Scholar 

  11. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  Google Scholar 

  12. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Fiz (USSR Computational Mathematics and Mathematical Physics 7, 784–802 (1967) (in Russian)

    MathSciNet  Google Scholar 

  13. Richtmyer, R.D.: The evaluation of definite integrals, and quasi-Monte Carlo method based on the properties of algebraic numbers. Report LA-1342, Los Alamos Scientific Laboratory, Los Alamos, NM (1951)

    Google Scholar 

  14. Richtmyer, R.D.: A Non-random Sampling Method, Based on Congruences for Monte Carlo Problems, Report NYO-8674. New York: Institute of Mathematical Sciences, New York University (1958)

    Google Scholar 

  15. Hammersly, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen and Company, London (1964)

    Google Scholar 

  16. Morokoff, W., Caflisch, R.E.: Quasi-random sequences and their discrepancies. SIAM J. Sci. Stat. Computing 15, 1251–1279 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. James, F., Hoogland, J., Kleiss, R.: Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers. Computer Physics Communications 99, 180–220 (1997)

    Article  MATH  Google Scholar 

  18. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1980)

    Google Scholar 

  19. Gray, A.: Modern Differential Geometry Of Curves And Surfaces With Mathematica. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  20. McCleary, J.: Geometry from a Differentiable Viewpoint. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramamoorthy, S., Rajagopal, R., Ruan, Q., Wenzel, L. (2008). Low-Discrepancy Curves and Efficient Coverage of Space. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics