Skip to main content

Competitive Disconnection Detection in On-Line Mobile Robot Navigation

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

This paper concerns target unreachability detection during on-line mobile robot navigation in an unknown planar environment. Traditionally, competitiveness characterizes an on-line navigation algorithm in cases where the target is reachable from the robot’s start position. This paper introduces a complementary notion of competitiveness which characterizes an on-line navigation algorithm in cases where the target is unreachable. The disconnection competitiveness of an on-line navigation algorithm measures the path length it generates in order to conclude target unreachability relative to the shortest off-line path that proves target unreachability from the same start position. It is shown that only competitive navigation algorithms can possess disconnection competitiveness. A competitive on-line navigation algorithm for a disc-shaped mobile robot, called CBUG, is described. This algorithm has a quadratic competitive performance, which is also the best achievable performance over all on-line navigation algorithms. The disconnection competitiveness of CBUG is analyzed and shown to be quadratic in the length of the shortest off-line disconnection path. Moreover, it is shown that quadratic disconnection competitiveness is the best achievable performance over all on-line navigation algorithms. Thus CBUG achieves optimal competitiveness both in terms of connection and disconnection paths. Examples illustrate the usefulness of connection-and-disconnection competitiveness in terms of path stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeza-Yates, R., Culderson, J., Rawline, G.: Searching in the plane. J. of Information and Computation 106, 234–252 (1993)

    Article  MATH  Google Scholar 

  2. Basch, J., Guibas, L.J., Hsu, D., Nguyen, A.T.: Disconnection proofs for motion planning. In: IEEE Int. Conf. on Robotics and Automation, pp. 1765–1772 (2001)

    Google Scholar 

  3. Bellman, R.: Problem 63-9. SIAM Review 5(2) (1963)

    Google Scholar 

  4. Berman, P., Blum, A., Fiat, A., Karloff, H., Rosen, A., Saks, M.: Randomized robot navigation algorithms. In: SODA, pp. 75–84 (1996)

    Google Scholar 

  5. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar terrain. STOC, 494–504 (1991)

    Google Scholar 

  6. Choset, H., Burdick, J.W.: Sensor based planning, part ii: Incremental construction of the generalized voronoi graph. In: IEEE Int. Conference on Robotics and Automation, pp. 1643–1649 (1995)

    Google Scholar 

  7. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  8. Datta, A., Icking, C.: Competitive searching in a generalized street. In: 10th ACM Symp. on Computational Geometry, pp. 175–182 (1994)

    Google Scholar 

  9. Datta, A., Soundaralakshmi, S.: Motion planning in an unknown polygonal environment with bounded performance guarantee. In: IEEE Int. Conf. on Robotics and Automation, pp. 1032–1037 (1999)

    Google Scholar 

  10. Bar Eli, E., Berman, P., Fiat, A., Yan, P.: Online navigation in a room. J. of Algorithms 17(3), 319–341 (1996)

    Article  MathSciNet  Google Scholar 

  11. Farber, M.: Instabilities of robot motion. Topology and its Applications 140, 245–266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gabriely, Y., Rimon, E.: Competitive complexity of mobile robot on-line motion planning problems. In: 6’th Int. Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 155–170 (2004)

    Google Scholar 

  13. Gabriely, Y., Rimon, E.: Cbug: A quadratically competitive mobile robot navigation algorithm. In: IEEE Int. Conf. on Robotics and Automation, pp. 954–960 (2005)

    Google Scholar 

  14. Icking, C., Klein, R., Langetepe, E.: An optimal competitive strategy for walking in streets. In: 16th Symp. on Theoretical Aspects of Computer Science, vol. 110, pp. 405–413 (1988)

    Google Scholar 

  15. Kamon, I., Rimon, E., Rivlin, E.: Tangentbug: A range-sensor based navigation algorithm. Int. Journal of Robotics Research 17(9), 934–953 (1998)

    Article  Google Scholar 

  16. Laubach, S.L., Burdick, J.W., Matthies, L.: An autonomous path planner implemented on the rocky7 prototype microrover. In: IEEE Int. Conf. on Robotics and Automation, pp. 292–297 (1998)

    Google Scholar 

  17. Lumelsky, V.J., Stepanov, A.: Path planning strategies for point automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2, 403–430 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Noborio, H., Yoshioka, T.: An on-line and deadlock-free path-planning algorithm based on world topology. In: Conf. on Intelligent Robots and Systems, IROS, pp. 1425–1430. IEEE/RSJ (1993)

    Google Scholar 

  19. Papadimitriou, C.H., Yanakakis, M.: Shortest paths without a map. Theoretical Computer Science 84, 127–150 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sankaranarayanan, A., Vidyasagar, M.: Path planning for moving a point object amidst unknown obstacles in a plane: the universal lower bound on worst case path lengths and a classification of algorithms. In: IEEE Int. Conf. on Robotics and Automation, pp. 1734–1941 (1991)

    Google Scholar 

  21. Tovar, B., Lavalle, S.M., Murrieta, R.: Optimal navigation and object finding without geometric maps or localization. In: IEEE Int. Conf. on Robotics and Automation, pp. 464–470 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabriely, Y., Rimon, E. (2008). Competitive Disconnection Detection in On-Line Mobile Robot Navigation. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics