Skip to main content

Planning Near-Optimal Corridors Amidst Obstacles

  • Chapter
Book cover Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

Planning corridors among obstacles has arisen as a central problem in game design. Instead of devising a one-dimensional motion path for a moving entity, it is possible to let it move in a corridor, where the exact motion path is determined by a local planner. In this paper we introduce a quantitative measure for the quality of such corridors. We analyze the structure of optimal corridors amidst point obstacles and polygonal obstacles in the plane, and propose an algorithm to compute approximations for optimal corridors according to our measure.

This work has been supported in part by the IST Programme of the EU as Shared-cost RTD (FET Open) Projects under Contract No IST-2001-39250 (MOVIE — Motion Planning in Virtual Environments) and IST-006413 (ACS - Algorithms for Complex Shapes) , and by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations, ch.7. MIT Press, Boston (2005)

    Google Scholar 

  2. Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. In: Logarithmic Spirals, 2nd edn., pp. 40–42. CRC Press, Boca Raton (1997)

    Google Scholar 

  3. Kamphuis, A., Overmars, M.H.: Motion planning for coherent groups of entities. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3815–3822 (2004)

    Google Scholar 

  4. Kamphuis, A., Pettre, J., Overmars, M.H., Laumond, J.-P.: Path finding for the animation of walking characters. In: Proc. Eurographics/ACM SIGGRAPH Sympos. Computer Animation, pp. 8–9 (2005)

    Google Scholar 

  5. Kavraki, L.E., Švestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robotics and Automation 12, 566–580 (1996)

    Article  Google Scholar 

  6. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robotics Research 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  7. Latombe, J.-C.: Robot Motion Planning, ch. 7. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  8. Lee, D.-T., Drysdale III, R.L.: Generalization of Voronoi diagrams in the plane. SIAM J. on Computing 10(1), 73–87 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mitchell, J.S.B.: Shortest paths and networks. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch.27, 2nd edn., pp. 607–642. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  10. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: Finding shortest paths through a weighted planar subdivision. J. of the ACM 38(1), 18–73 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nieuwenhuisen, D., Kamphuis, A., Mooijekind, M., Overmars, M.H.: Automatic construction of roadmaps for path planning in games. In: Proc. Int. Conf. Computer Games: Artif. Intell., Design and Education, pp. 285–292 (2004)

    Google Scholar 

  12. Nieuwenhuisen, D., Overmars, M.H.: Motion planning for camera movements. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3870–3876 (2004)

    Google Scholar 

  13. Nieuwenhuisen, D., Overmars, M.H.: Useful cycles in probabilistic roadmap graphs. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 446–452 (2004)

    Google Scholar 

  14. Ó’Dúnlaing, C., Yap, C.K.: A “retraction” method for planning the motion of a disk. J. Algorithms 6, 104–111 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Overmars, M.H.: Path planning for games. In: Proc. 3rd Int. Game Design and Technology Workshop, pp. 29–33 (2005)

    Google Scholar 

  16. Reif, J., Wang, H.: Social potential fields: a distributed behavioral control for autonomous robots. In: Goldberg, K., Halperin, D., Latombe, J.-C., Wilson, R. (eds.) International Workshop on Algorithmic Foundations of Robotics, pp. 431–459. A. K. Peters (1995)

    Google Scholar 

  17. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  18. Wein, R., van den Berg, J., Halperin, D.: Planning near-optimal corridors amidst obstacles. Technical report, Tel-Aviv University (2006), http://www.cs.tau.ac.il/~wein/publications/pdfs/corridors.pdf

  19. Wein, R., van den Berg, J.P., Halperin, D.: The visibility-Voronoi complex and its applications. In: Proc. 21st Annu. ACM Sympos. Comput. Geom., pp. 63–72 (2005); In: Computational Geometry: Theory and Applications (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wein, R., van den Berg, J., Halperin, D. (2008). Planning Near-Optimal Corridors Amidst Obstacles. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics