Skip to main content

Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

This paper presents a method of computing efficient and natural-looking motions for humanoid robots walking on varied terrain. It uses a small set of high-quality motion primitives (such as a fixed gait on flat ground) that have been generated offline. But rather than restrict motion to these primitives, it uses them to derive a sampling strategy for a probabilistic, sample-based planner. Results in simulation on several different terrains demonstrate a reduction in planning time and a marked increase in motion quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akinc, M., Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E., Kavraki, L.E.: Probabilistic roadmaps of trees for parallel computation of multiple query roadmaps. In: Int. Symp. Rob. Res., Siena, Italy (2003)

    Google Scholar 

  2. Arun, K., Huang, T., Blostein, S.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Machine Intell. 9(5), 698–700 (1987)

    Article  Google Scholar 

  3. Bevly, D., Farritor, S., Dubowsky, S.: Action module planning and its application to an experimental climbing robot. In: IEEE Int. Conf. Rob. Aut., pp. 4009–4014 (2000)

    Google Scholar 

  4. Bobrow, J., Martin, B., Sohl, G., Wang, E., Park, F., Kim, J.: Optimal robot motions for physical criteria. J. of Robotic Systems 18(12), 785–795 (2001)

    Article  MATH  Google Scholar 

  5. Bretl, T.: Motion planning of multi-limbed robots subject to equilibrium constraints: The free-climbing robot problem. Int. J. Rob. Res. 25(4), 317–342 (2006)

    Article  Google Scholar 

  6. Bretl, T., Lall, S.: A fast and adaptive test of static equilibrium for legged robots. In: IEEE Int. Conf. Rob. Aut., Orlando (2006)

    Google Scholar 

  7. Bretl, T., Latombe, J.-C., Rock, S.: Toward autonomous free-climbing robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)

    Google Scholar 

  8. Burridge, R., Rizzi, A., Koditschek, D.: Sequential composition of dynamically dexterous robot behaviors. Int. J. Rob. Res. 18(6), 534–555 (1999)

    Article  Google Scholar 

  9. Cortés, J., Siméon, T., Laumond, J.-P.: A random loop generator for planning the motions of closed kinematic chains using prm methods. In: IEEE Int. Conf. Rob. Aut., Washington (2002)

    Google Scholar 

  10. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Robot. 25(1), 116–129 (2002)

    Google Scholar 

  11. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. AIAA J. of Guidance, Control, and Dynamics 25(1), 116–129 (2002)

    Article  Google Scholar 

  12. Gavrilets, V., Frazzoli, E., Mettler, B., Peidmonte, M., Feron, E.: Aggressive maneuvering of small autonomous helicopters: A human-centered approach. Int. J. Rob. Res. 20(10), 795–807 (2001)

    Article  Google Scholar 

  13. Gleicher, M.: Retargetting motion to new characters. In: SIGGRAPH, pp. 33–42 (1998)

    Google Scholar 

  14. Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: A hierarchical structure for rapid interference detection. In: ACM SIGGRAPH, pp. 171–180 (1996)

    Google Scholar 

  15. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004)

    Article  Google Scholar 

  16. Hauser, K., Bretl, T., Latombe, J.-C.: Non-gaited humanoid locomotion planning. In: Humanoids, Tsukuba, Japan (2005)

    Google Scholar 

  17. Hsu, D., Latombe, J., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. In: Int. Symp. Rob. Res., San Francisco (2005)

    Google Scholar 

  18. Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., Akachi, K., Isozumi, T.: Humanoid robot HRP-2. In: IEEE Int. Conf. Rob. Aut., New Orleans, pp. 1083–1090 (2004)

    Google Scholar 

  19. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: SIGGRAPH, San Antonio, Texas, pp. 473–482 (2002)

    Google Scholar 

  20. Kron, T., Shin, S.Y.: Motion modeling for on-line locomotion synthesis. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Los Angeles, pp. 29–38 (2005)

    Google Scholar 

  21. Kuffner Jr., J.J.: Autonomous Agents for Real-Time Animation. PhD thesis, Stanford University (1999)

    Google Scholar 

  22. Kuffner Jr., J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)

    Google Scholar 

  23. Laumond, J., Jacobs, P., Taix, M., Murray, R.: A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Automat. 10(5), 577–593 (1994)

    Article  Google Scholar 

  24. Laumond, J.-P.: Finding collision-free smooth trajectories for a non-holonomic mobile robot. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1120–1123 (1987)

    Google Scholar 

  25. LaValle, S.M., Kuffner Jr., J.J.: Rapidly-exploring random trees: progress and prospects. In: WAFR (2000)

    Google Scholar 

  26. Lawrence, C., Zhou, J., Tits, A.: User’s guide for CFSQP version 2.5: A C code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality constraints. Technical Report TR-94-16r1, 20742, Institute for Systems Research, University of Maryland, College Park, MD (1997)

    Google Scholar 

  27. Liao, L., Fox, D., Kautz, H.: Location-based activity recognition. In: Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  28. Liu, C.K., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071–1081 (2005)

    Article  Google Scholar 

  29. Meredith, M., Maddock, S.: Adapting motion capture data using weighted real-time inverse kinematics. Comput. Entertain. 3(1) (2005)

    Google Scholar 

  30. Missiuro, P.E., Roy, N.: Adapting probabilistic roadmaps to handle uncertain maps. In: IEEE Int. Conf. Rob. Aut., Orlando (2006)

    Google Scholar 

  31. Ng, A.Y., Kim, H.J., Jordan, M., Sastry, S.: Autonomous helicopter flight via reinforcement learning. In: Neural Information Processing Systems 16 (2004)

    Google Scholar 

  32. Pettré, J., Laumond, J.-P., Siméon, T.: A 2-stages locomotion planner for digital actors. In: Eurographics/SIGGRAPH Symp. Comp. Anim. (2003)

    Google Scholar 

  33. Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. Int. J. Rob. Res. 24(12), 1013–1032 (2005)

    Article  Google Scholar 

  34. Popović, Z., Witkin, A.: Physically based motion transformation. In: SIGGRAPH, pp. 11–20 (1999)

    Google Scholar 

  35. Ren, L., Patrick, A., Efros, A.A., Hodgins, J.K., Rehg, J.M.: A data-driven approach to quantifying natural human motion. ACM Trans. Graph. 24(3), 1090–1097 (2005)

    Article  Google Scholar 

  36. Sánchez, G., Latombe, J.-C.: On delaying collision checking in PRM planning: Application to multi-robot coordination. Int. J. of Rob. Res. 21(1), 5–26 (2002)

    Article  Google Scholar 

  37. Schwarzer, F., Saha, M., Latombe, J.-C.: Exact collision checking of robot paths. In: WAFR, Nice, France (December 2002)

    Google Scholar 

  38. Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robotics 2(4), 505–518 (2005)

    Article  Google Scholar 

  39. Shin, H.J., Lee, J., Shin, S.Y., Gleicher, M.: Computer puppetry: An importance-based approach. ACM Trans. Graph. 20(2), 67–94 (2001)

    Article  Google Scholar 

  40. Witkin, A., Popović, Z.: Motion warping. In: SIGGRAPH, Los Angeles, CA, pp. 105–108 (1995)

    Google Scholar 

  41. Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Trans. Graph. 23(3), 532–539 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hauser, K., Bretl, T., Harada, K., Latombe, JC. (2008). Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics