Skip to main content

Quality of Musical Instrument Sound Identification for Various Levels of Accompanying Sounds

  • Conference paper
Mining Complex Data (MCD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4944))

Included in the following conference series:

Abstract

Research on automatic identification of musical instrument sounds has already been performed through last years, but mainly for monophonic singular sounds. In this paper we work on identification of musical instrument in polyphonic environment, with added accompanying orchestral sounds for the training purposes, and using mixes of two instrument sounds for testing. Four instruments of definite pitch has been used. For training purposes, these sounds were mixed with orchestral recordings of various levels, diminished with respect to the original recording level. The level of sounds added for testing purposes was also diminished with respect to the original recording level, in order to assure that the investigated instrument actually produced the sound dominating in the recording. The experiments have been performed using WEKA classification software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostini, G., Longari, M., Pollastri, E.: Musical Instrument Timbres Classification with Spectral Features. EURASIP Journal on Applied Signal Processing 1, 1–11 (2003)

    Google Scholar 

  2. Ando, S., Yamaguchi, K.: Statistical Study of Spectral Parameters in Musical Instrument Tones. Journal of the Acoustical Society of America 94(1), 37–45 (1993)

    Article  Google Scholar 

  3. Aniola, P., Lukasik, E.: JAVA Library for Automatic Musical Instruments Recognition. In: AES 122 Convention, Vienna, Austria (May 2007)

    Google Scholar 

  4. Brown, J.C.: Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. Journal of the Acoustical Society of America 105, 1933–1941 (1999)

    Article  Google Scholar 

  5. Cosi, P., De Poli, G., Lauzzana, G.: Auditory Modelling and Self-Organizing Neural Networks for Timbre Classification. Journal of New Music Research 23, 71–98 (1994)

    Article  Google Scholar 

  6. Dziubinski, M., Dalka, P., Kostek, B.: Estimation of Musical Sound Separation Algorithm Effectiveness Employing Neural Networks. Journal of Intelligent Information Systems 24(2/3), 133–157 (2005)

    Article  Google Scholar 

  7. Eronen, A.: Comparison of features for musical instrument recognition. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics WASPAA 2001 (2001)

    Google Scholar 

  8. Fujinaga, I., McMillan, K.: Realtime recognition of orchestral instruments. In: Proceedings of the International Computer Music Conference, Berlin, Germany, pp. 141–143 (August 2000)

    Google Scholar 

  9. Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: Proc. of International Symposium on Music Information Retrieval ISMIR 2000, Plymouth, MA (2000)

    Google Scholar 

  10. ISO/IEC JTC1/SC29/WG11: MPEG-7 Overview (2004), Available at: http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm

  11. Kaminskyj, I.: Multi-feature Musical Instrument Sound Classifier w/user determined generalisation performance. In: Proceedings of the Australasian Computer Music Association Conference ACMC 2002, pp. 53–62 (2002)

    Google Scholar 

  12. Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for Their Automatic Classification. Journal of the Audio Engineering Society 49(9), 768–785 (2001)

    Google Scholar 

  13. Lewis, R.A., Zhang, X., Raś, Z.W.: Blind Signal Separation of Similar Pitches and Instruments in a Noisy Polyphonic Domain. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 228–237. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Martin, K.D., Kim, Y.E.: Musical instrument identification: A pattern-recognition approach. In: 136-th meeting of the Acoustical Society of America, Norfolk, VA (1998)

    Google Scholar 

  15. Opolko, F., Wapnick, J.: MUMS - McGill University Master Samples. CD’s (1987)

    Google Scholar 

  16. Peeters, G., McAdams, S., Herrera, P.: Instrument Sound Description in the Context of MPEG-7. In: Proceedings of the International Computer Music Conference ICMC 2000, Berlin, Germany (August 2000)

    Google Scholar 

  17. Pollard, H.F., Jansson, E.V.: A Tristimulus Method for the Specification of Musical Timbre. Acustica 51, 162–171 (1982)

    Google Scholar 

  18. The University of Waikato: Weka Machine Learning Project. Internet (2007), Available at: http://www.cs.waikato.ac.nz/~ml/

  19. Toiviainen, P.: Optimizing Self-Organizing Timbre Maps: Two Approaches. In: Joint International Conference, II International Conference on Cognitive Musicology, College of Europe at Brugge, Belgium, pp. 264–271 (1996)

    Google Scholar 

  20. Viste, H., Evangelista, G.: Separation of Harmonic Instruments with Overlapping Partials in Multi-Channel Mixtures. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics WASPAA 2003, New Paltz, NY, USA (October 2003)

    Google Scholar 

  21. Wieczorkowska, A.: Towards Musical Data Classification via Wavelet Analysis. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 292–300. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Wieczorkowska, A., Wróblewski, J., Synak, P., Slezak, D.: Application of Temporal Descriptors to Musical Instrument Sound Recognition. Journal of Intelligent Information Systems 21(1), 71–93 (2003)

    Article  Google Scholar 

  23. Zhang, X., Ras, Z.W.: Analysis of Sound Features for Music Timbre Recognition. In: Kim, S., Park, J.H., Pissinou, N., Kim, T., Fang, W.C., Slezak, D., Arabnia, H., Howard, D. (eds.) International Conference on Multimedia and Ubiquitous Engineering MUE 2007, Seoul, Korea, April 26-28, 2007, pp. 3–8. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zbigniew W. Raś Shusaku Tsumoto Djamel Zighed

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wieczorkowska, A., Kolczyńska, E. (2008). Quality of Musical Instrument Sound Identification for Various Levels of Accompanying Sounds. In: Raś, Z.W., Tsumoto, S., Zighed, D. (eds) Mining Complex Data. MCD 2007. Lecture Notes in Computer Science(), vol 4944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68416-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68416-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68415-2

  • Online ISBN: 978-3-540-68416-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics