Skip to main content

Discriminant Feature Analysis for Music Timbre Recognition and Automatic Indexing

  • Conference paper
Mining Complex Data (MCD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4944))

Included in the following conference series:

Abstract

The high volume of digital music recordings in the internet repositories has brought a tremendous need for a cooperative recommendation system to help users to find their favorite music pieces. Music instrument identification is one of the important subtasks of a content-based automatic indexing, for which authors developed novel new temporal features and built a multi-hierarchical decision system S with all the low-level MPEG7 descriptors as well as other popular descriptors for describing music sound objects. The decision attributes in S are hierarchical and they include Hornbostel-Sachs classification and generalization by articulation. The information richness hidden in these descriptors has strong implication on the confidence of classifiers built from S. Rule-based classifiers give us approximate definitions of values of decision attributes and they are used as a tool by content-based Automatic Indexing Systems (AIS). Hierarchical decision attributes allow us to have the indexing done on different granularity levels of classes of music instruments. We can identify not only the instruments playing in a given music piece but also classes of instruments if the instrument level identification fails. The quality of AIS can be verified using precision and recall based on two interpretations: user and system-based [16]. AIS engine follows system-based interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balzano, G.J.: What are musical pitch and timbre? Music Perception, an interdisciplinary Journal 3, 297–314 (1986)

    Google Scholar 

  2. Bay, M., Beauchamp, J.W.: Harmonic source separation using prestored spectra. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 561–568. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bregman, A.S.: Auditory scene analysis, the perceptual organization of sound. MIT Press, Cambridge (1990)

    Google Scholar 

  4. Cadoz, C.: Timbre et causalite, unpublished paper, Seminar on Timbre, Institute de Recherche et Coordination Acoustique/Musique, Paris, France (April 13-17, 1985)

    Google Scholar 

  5. Cessie, S., Houwelingen, J.C.: Ridge Estimators in Logistic Regression. Applied Statistics 41(1), 191–201 (1992)

    Article  MATH  Google Scholar 

  6. Fujinaga, I., McMillan, K.: Real time recognition of orchestral instruments. In: Proceedings of the International Computer Music Conference, pp. 141–143 (2000)

    Google Scholar 

  7. Gaasterland, T.: Cooperative answering through controlled query relaxation. IEEE Expert 12(5), 48–59 (1997)

    Article  Google Scholar 

  8. Kinoshita, T., Sakai, S., Tanaka, H.: Musical sound source identification based on frequency component adaptation. In: Proceedings of IJCAI Workshop on Computational Auditory Scene Analysis (IJCAI-CASA 1999), Stockholm, Sweden, pp. 18–24 (July-August 1999)

    Google Scholar 

  9. Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps. EURASIP Journal on Advances in Signal Processing 1, 155–155 (2007)

    Google Scholar 

  10. Lewis, R., Zhang, X., Ras, Z.W.: Knowledge discovery based identification of musical pitches and instruments in polyphonic sounds. Journal of Engineering Applications of Artificial Intelligence 20(5), 637–645 (2007)

    Article  Google Scholar 

  11. Lindsay, A.T., Herre, J.: MPEG-7 and MPEG-7 Audio-An Overview. J. Audio Eng. Soc. 49, 589–594 (2001)

    Google Scholar 

  12. Ozerov, A., Philippe, P., Gribonval, R., Bimbot, F.: One microphone singing voice separation using source adapted models. In: Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 90–93 (2005)

    Google Scholar 

  13. Pawlak, Z.: Information systems - theoretical foundations. Information Systems Journal 6, 205–218 (1991)

    Google Scholar 

  14. Pollard, H.F., Jansson, E.V.: A tristimulus Method for the specification of Musical Timbre. Acustica 51, 162–171 (1982)

    Google Scholar 

  15. Ras, Z.W., Dardzińska, A.: Solving Failing Queries through Cooperation and Collaboration. World Wide Web Journal, Special Issue on Web Resources Access 9(2), 173–186 (2006)

    Google Scholar 

  16. Ras, Z.W., Dardzińska, A., Zhang, X.: Cooperative Answering of Queries based on Hierarchical Decision Attributes. CAMES Journal, Polish Academy of Sciences, Institute of Fundamental Technological Research 14(4), 729–736 (2007)

    Google Scholar 

  17. Ras, Z.W., Zhang, X., Lewis, R.: MIRAI: Multi-hierarchical, FS-tree based Music Information Retrieval System. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 80–89. Springer, Heidelberg (2007)

    Google Scholar 

  18. Scheirer, E., Slaney, M.: Construction and Evaluation of a Robust Multi-feature Speech/Music Discriminator. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (1997)

    Google Scholar 

  19. Smith, J.O., Serra, X.: PARSHL: An Analysis/Synthesis Program for Non Harmonic Sounds Based on a Sinusoidal Representation. In: Proc. Int. Computer Music Conf., Urbana-Champaign, Illinois, pp. 290–297 (1987)

    Google Scholar 

  20. Tzanetakis, G., Cook, P.: Musical Genre Classification of Audio Signals. IEEE Trans. Speech and Audio Processing 10, 293–302 (2002)

    Article  Google Scholar 

  21. Vincent, E.: Musical source separation using time-frequency source priors. IEEE Transactions on Audio, Speech and Language Processing 14(1), 91–98 (2006)

    Article  Google Scholar 

  22. Wieczorkowska, A.: Classification of musical instrument sounds using decision trees. In: Proceedings of the 8th International Symposium on Sound Engineering and Mastering, ISSE 1999, pp. 225–230 (1999)

    Google Scholar 

  23. Wieczorkowska, A., Ras, Z., Zhang, X., Lewis, R.: Multi-way Hierarchic Classification of Musical Instrument Sounds. In: Proceedings of the International Conference on Multimedia and Ubiquitous Engineering (MUE 2007), Seoul, South Korea, pp. 897–902. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

  24. Wold, E., Blum, T., Keislar, D., Wheaton, J.: Content-Based Classification, Search and Retrieval of Audio. IEEE Multimedia, Fall, 27–36 (1996)

    Google Scholar 

  25. Zhang, X., Marasek, K., Ras, Z.W.: Maximum likelihood study for sound pattern separation and recognition. In: Proceedings of the IEEE CS International Conference on Multimedia and Ubiquitous Engineering (MUE 2007), Seoul, Korea, April 26-28, 2007, pp. 807–812 (2007)

    Google Scholar 

  26. Zhang, X., Ras, Z.W.: Sound isolation by harmonic peak partition for music instrument recognition, in the Special Issue on Knowledge Discovery. Fundamenta Informaticae Journal 78(4), 613–628 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Zhang, X., Ras, Z.W.: Differentiated Harmonic Feature Analysis on Music Information Retrieval For Instrument Recognition. In: Proceeding of IEEE International Conference on Granular Computing, Atlanta, Georgia, May 10-12, 2006, pp. 578–581 (2006)

    Google Scholar 

  28. Zhang, X., Ras, Z.W.: Analysis of sound features for music timbre recognition. In: Proceedings of the IEEE CS International Conference on Multimedia and Ubiquitous Engineering (MUE 2007), Seoul, Korea, April 26-28, 2007, pp. 3–8 (2007)

    Google Scholar 

  29. ISO/IEC JTC1/SC29/WG11, MPEG-7 Overview (2002), http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zbigniew W. Raś Shusaku Tsumoto Djamel Zighed

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Raś, Z.W., Dardzińska, A. (2008). Discriminant Feature Analysis for Music Timbre Recognition and Automatic Indexing. In: Raś, Z.W., Tsumoto, S., Zighed, D. (eds) Mining Complex Data. MCD 2007. Lecture Notes in Computer Science(), vol 4944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68416-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68416-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68415-2

  • Online ISBN: 978-3-540-68416-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics