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Abstract The CLUSTER EDITING problem is defined as follows: Given an undi-
rected, loopless graph, we want to find a set of edge modifications (insertions and
deletions) of minimum cardinality, such that the modified graph consists of disjoint
cliques.

We present empirical results for this problem using exact methods from fixed-
parameter algorithmics and linear programming. We investigate parameter-independ-
ent data reduction methods and find that effective preprocessing is possible if the
number of edge modifications k is smaller than some multiple of |V |, where V is
the vertex set of the input graph. In particular, combining parameter-dependent data
reduction with lower and upper bounds we can effectively reduce graphs satisfying
k ≤ 25|V |.

In addition to the fastest known fixed-parameter branching strategy for the prob-
lem, we investigate an integer linear program (ILP) formulation of the problem using
a cutting plane approach. Our results indicate that both approaches are capable of
solving large graphs with 1000 vertices and several thousand edge modifications. For
the first time, complex and very large graphs such as biological instances allow for an

S. Böcker (�)
Institut für Informatik, Friedrich-Schiller-Universität Jena, Jena, Germany
e-mail: sebastian.boecker@uni-jena.de

S. Böcker
Jena Centre for Bioinformatics, Jena, Germany

S. Briesemeister
Div. for Simulation of Biological Systems, ZBIT/WSI, Eberhard Karls Universität Tübingen,
Tübingen, Germany
e-mail: briese@informatik.uni-tuebingen.de

G.W. Klau
CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands
e-mail: gunnar.klau@cwi.nl

mailto:sebastian.boecker@uni-jena.de
mailto:briese@informatik.uni-tuebingen.de
mailto:gunnar.klau@cwi.nl


Algorithmica

exact solution, using a combination of the above techniques. (A preliminary version
of this paper appeared under the title “Exact algorithms for cluster editing: Eval-
uation and experiments” in the Proceedings of the 7th Workshop on Experimental
Algorithms, WEA 2008, in: LNCS, vol. 5038, Springer, pp. 289–302.)

Keywords Cluster editing · Algorithm engineering · Computer experiments ·
NP-complete problem · Fixed-parameter tractability · FPT · Integer linear
programming · ILP · Branch-and-cut algorithm

1 Introduction

The CLUSTER EDITING problem is defined as follows: Let G = (V ,E) be an undi-
rected, loopless graph. Our task is to find a set of edge modifications (insertions and
deletions) of minimum cardinality, such that the modified graph consists of disjoint
cliques.

The CLUSTER EDITING problem has been considered frequently in the literature
since the 1980s. In 1986, Křivánek and Morávek [11] showed that the problem is NP-
hard. The problem was rediscovered in the context of computational biology [15].
Clustering algorithms for microarray data such as CAST [1] and CLICK [16] rely on
graph-theoretical intuition but solve the problem only heuristically. Studies in compu-
tational biology indicate that exact solutions of CLUSTER EDITING instances can be
highly application-relevant, see for instance [20]. This is even more the case for the
weighted version of the problem, WEIGHTED CLUSTER EDITING: Given an undi-
rected graph with modification costs for every vertex pair, we ask for a set of edge
modifications with minimum total cost such that the modified graph consists of dis-
joint cliques.

The CLUSTER EDITING problem is APX-hard [4] and has a constant-factor ap-
proximation of 2.5 [19]. In this article, we empirically investigate the power of
methods that solve the problem to provable optimality. In 1989, Grötschel and Wak-
abayashi [8] presented a formulation of the CLUSTER EDITING problem as an Integer
Linear Program (ILP) and pointed out a cutting plane approach for its solution. Re-
cently, the parameterized complexity of unweighted and weighted CLUSTER EDIT-
ING, using the number (or total cost) of edge modifications as parameter k, has gained
much attention in the literature [2, 6, 7]. Dehne et al. [5] present an empirical evalua-
tion of parameterized algorithms from [7]. The fastest fixed-parameter algorithm for
unweighted CLUSTER EDITING actually transforms the problem into its weighted
counterpart [3]. Guo [9] presents parameter-independent data reduction rules for un-
weighted instances that reduce an instance to a “hard” problem kernel of size 4kopt,
where kopt is the cardinality of the optimal solution for this unweighted instance.
A reduction from unweighted to weighted instances of size at most 4kopt is presented
in [3]. These reductions allow us to shrink an instance even before any parameter k

has been considered.

Our contributions In the first part of our paper, we evaluate the performance of two
parameter-independent data reduction strategies for unweighted CLUSTER EDITING.
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We find that the efficiency of reduction is governed mostly by the ratio k/|V |. The
unweighted kernel from [9] efficiently reduces nearly transitive graphs, but fails to
reduce graphs with k ≥ 1

2 |V |. We then present and evaluate parameter-independent
data reduction rules for weighted graphs and find it to be even more effective in ap-
plication. We combine the latter reduction with parameter-dependent reduction rules
plus upper and lower bounds. This downsizes input graphs even more and fails to
reduce graphs only when k > 25|V | for large graphs.

To solve reduced instances, we implemented a branch-and-cut algorithm for
WEIGHTED CLUSTER EDITING based on the ILP formulation proposed by Grötschel
and Wakabayashi [8]. The ILP formulation of the problem has frequently been re-
ported in the literature as being too slow for application, see for instance [10]. In con-
trast, we find that the cutting plane approach in [8] is capable of optimally solving
large instances reasonably fast. We compare the performance of the fastest branching
strategy in [3] and the cutting plane algorithm. We apply these methods to weighted
instances resulting from unweighted graphs that have been fully reduced in advance
using our data reduction. The FPT algorithm solves instances with k = 5|V | in about
an hour, where V and k are vertex set and parameter of the reduced instance, respec-
tively. The ILP approach solves instances with |V | = 1 000 in about an hour, almost
independently of k. These approaches are particularly important for weighted input
data, because we find data reduction to be less effective here.

Summarized, our experiments show that one can solve CLUSTER EDITING in-
stances on large graphs with several thousands of edge modifications in reasonable
running time to provable optimality. In particular, feasible parameters k are orders of
magnitude higher than what worst-case running times of the FPT approach suggest.
We find that the most efficient way for solving CLUSTER EDITING instances is a
well-chosen combination of several approaches, namely data reduction techniques,
lower/upper bounds, and a branch-and-cut algorithm. Test instances and source code
of our approaches are available from http://bio.informatik.uni-jena.de/peace/.

2 Preliminaries

Throughout this paper, let n := |V |. We write uv as shorthand for an unordered pair
{u,v} ∈ (

V
2

)
. For weighted instances, let s : (

V
2

) → R encode the input graph: For
s(uv) > 0 an edge uv is present in the graph and has deletion cost s(uv), while for
s(uv) ≤ 0 the edge uv is absent from the graph and has insertion cost −s(uv). We
call edges with s(uv) = ∞ “permanent” and with s(uv) = −∞ “forbidden”. A graph
G is a disjoint union of cliques if and only if there exist no conflict triples in G: a
conflict triple consists of three vertices vuw such that uv and uw are edges of G but
vw is not. Note that the order of vertices vuw is important in the notation of conflict
triples. Such graphs are also called transitive.

To solve a (weighted or unweighted) instance of CLUSTER EDITING we first iden-
tify all connected components of the input graph. We calculate the best solutions for
all components separately, because an optimal solution never connects disconnected
components. In case the graph is decomposed during the course of our tree search,
then we recurse and treat each connected component individually. Recall that k is

http://bio.informatik.uni-jena.de/peace/
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the number (or total weight) of edge modifications required to make the input graph
transitive. Our fixed-parameter algorithms often require the parameter k to be part
of the input: In case a solution with cost ≤ k exists, the algorithm finds this solution;
otherwise, “no solution” is returned. To find an optimal solution we call the algorithm
repeatedly, increasing k.

As a quality measure for data reduction we use the reduction ratio n−nred
n

where
nred denotes the number of vertices after reduction. A reduction ratio of close to 1
corresponds to a strong reduction whereas a reduction ratio of 0 corresponds to no
reduction at all.

We can encode an unweighted CLUSTER EDITING instance using a weighted
graph with edge weights ±1. In a weighted graph we can merge vertices u, v into
a new vertex u′ when edge uv is set to “permanent”: For each vertex w ∈ V \ {u,v}
we join uw, vw such that s(u′w) ← s(uw) + s(vw). Moreover, in case w is a non-
common neighbor of u,v we can conclude that either uw or vw has to be edited to
avoid a conflict triple. If this is the case, we turn out the cheaper edit operation in
advance and reduce k by min{|s(uw)|, |s(vw)|} [2].

Branching strategy After parameter-independent data reduction as described in the
following sections, the remaining instance can be solved using a branching tree strat-
egy. We are given a CLUSTER EDITING instance together with a parameter k, and we
want to decide whether there exists a solution of cost at most k. We use a recursive
algorithm following the bounded search tree paradigm. We identify a conflict triple
and then branch into two sub-cases to repair this conflict. By this, we invoke recursive
calls on “simplified” instances of the problem where parameter k is decreased.

The fastest known branching strategy for CLUSTER EDITING, both in theory and
in practice, is surprisingly simple [3]: Let uv be an edge of a conflict triple vuw.
Then, (a) set uv to forbidden, or (b) merge uv. If we always choose the edge uv

with minimal branching number,1 then the resulting search tree has size O(2k). In
fact, using a slightly different order in which edges are processed one can show that
this branching strategy leads to a search tree of size O(1.82k) [3], but this result is
mainly of theoretical interest. To find an edge with minimal branching number, we
approximate log branching numbers using two rational functions. Finally, note that
we do not know the optimal cost k in advance: To find an optimal solution we call
the algorithm repeatedly, increasing k.

3 Parameter-independent Data Reduction

We now present methods for the parameter-independent data reduction of (un-
weighted and weighted) CLUSTER EDITING instances. We describe various polyno-
mial-time reduction rules and apply these rules over and over again until no further
rule will apply. Since the presented data reduction is parameter-independent, we can

1The branching number is the root of the characteristic polynomial of the branching vector and governs
the asymptotic size of the search tree, see e.g. [13] for details.
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Fig. 1 Reduction Rules 1–3. Heavy non-edge rule (left), heavy edge rule, single end (middle), and heavy
edge rule, both ends (right)

apply it during preprocessing without considering any particular parameter k. After-
wards, we can solve the reduced graph with any algorithm for WEIGHTED CLUSTER

EDITING.
A critical clique C in an unweighted graph is an induced clique such that any two

vertices u,v ∈ C share the same neighborhood, N(u) ∪ {u} = N(v) ∪ {v}, and C is
maximal. For unweighted CLUSTER EDITING one can easily see that all vertices of
a critical clique of the input graph end up in the same cluster of an optimal cluster-
ing [9]. Furthermore, there are at most 4kopt critical cliques in a graph, where kopt is
the cost of an optimal solution. Guo [9] uses critical cliques to construct a kernel for
unweighted CLUSTER EDITING of size 4kopt. For brevity, we omit the details of this
reduction, and only note that it is based on inspecting the neighborhood (and second
neighborhood) of large critical cliques. In the following, we call this the unweighted
kernel.

For unweighted instances, all vertices of a critical clique C must end up in the
same cluster: This implies that we can merge all vertices in C for the correspond-
ing weighted instance [3]. Doing so, we have reduced an unweighted instance to a
weighted one of size at most 4kopt. In addition, we may use the following reduction
rules for any weighted instance, see Fig. 1:

Rule 1 (heavy non-edge rule) Set an edge uv with s(uv) < 0 to forbidden if

|s(uv)| ≥
∑

w∈N(u)

s(uw).

Rule 2 (heavy edge rule, single end) Merge vertices u,v of an edge uv if

s(uv) ≥
∑

w∈V \{u,v}
|s(uw)|.

Rule 3 (heavy edge rule, both ends) Merge vertices u,v of an edge uv if

s(uv) ≥
∑

w∈N(u)\{v}
s(uw) +

∑

w∈N(v)\{u}
s(vw).

Lemma 1 Rules 1 to 3 are correct, and can be carried out in time O(n3).

Proof It is easy to see that Rules 1 to 3 are correct. Also, each rule can be carried
out in time O(n). But checking these rules in each step would not lead to the desired
running time. So, we calculate

r1(uv) ← −s(uv) −
∑

w∈N(u)

s(uw),
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Fig. 2 Reduction Rule 4,
almost-clique rule.
Almost-clique C (white) and
neighborhood (gray)

r2(uv) ← s(uv) −
∑

w∈V \{u,v}
|s(uw)|,

r3(uv) ← s(uv) −
∑

w∈N(u)\{v}
s(uw) +

∑

w∈N(v)\{u}
s(vw)

and we can set uv to forbidden if r1(uv) ≥ 0, and merge uv if r2(uv) ≥ 0 or
r3(uv) ≥ 0. We compute a list of all entries that are larger or equal to zero. When-
ever we set an edge to forbidden, we have to update a linear number of entries, and
each update can be performed in constant time. This may happen at most O(n2)

times. We insert all entries that get larger or equal to zero, into our list of edges to
update. Whenever we merge an edge, we have to update O(n2) entries, and again,
each update can be performed in constant time. This may happen at most O(n) times
during the course of data reduction. The list of edge updates will never exceed O(n2)

entries. �

Rule 4 (almost clique rule) For C ⊆ V let kC denote the min-cut value of the sub-
graph of G induced by vertex set C. If

kC ≥
∑

u,v∈C,s(uv)≤0

|s(uv)| +
∑

u∈C,v∈V \C,s(uv)>0

s(uv)

then merge C.

Lemma 2 Rule 4 is correct, and can be carried out in time O(n|C| + |C|3).

See Fig. 2. We omit the simple proof of this lemma, and just note that a mincut can
be found in time O(mn + n2 logn) for n vertices and m edges [17]. Rule 4 cannot
be applied to all subsets C ⊆ V so we greedily choose reasonable subsets: We start
with a vertex C := {u} maximizing

∑
v∈V \{u}|s(uv)|, and successively add vertices

such that in every step, vertex w ∈ V \ C with maximal connectivity
∑

v∈C s(vw)

is added. In case the connectivity of the best vertex is twice as large as that of the
runner-up, we try to apply Rule 4 to the current set C. We cancel this iteration if the
newly added vertex u is connected to more vertices in V \ C than to vertices in C.

For an edge uv we define

Nu := N(u) \ (N(v) ∪ {v}) and Nv := N(v) \ (N(u) ∪ {u})
as the exclusive neighborhoods of u and v. Set W := V −(Nu ∪Nv ∪{u,v}). For U ⊆
V set s(v,U) := ∑

u∈U s(v,u). Let �u := s(u,Nu)−s(u,Nv) and �v := s(v,Nv)−
s(v,Nu).
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Fig. 3 Reduction Rule 5,
similar neighborhood rule

Rule 5 (similar neighborhood) If uv satisfies

s(uv) ≥ max
Cu,Cv

min
{
s(v,Cv) − s(v,Cu) + �v, s(u,Cu) − s(u,Cv) + �u

}
(1)

where the maximum runs over all subsets Cu,Cv ⊆ W with Cu ∩ Cv = ∅, then
merge uv.

See Fig. 3. Rule 5 turns out to be highly effective but its computation is expensive.
In practice, we use Rule 5 only in case no other rules can be applied.

Lemma 3 Rule 5 is correct.

Proof Given an edge uv of a weighted graph G that satisfies N := N(u) \ {v} =
N(v) \ {u}, so u and v have identical neighborhoods. Suppose that in the optimal
solution G′, u,v do not belong to the same cluster. Let C′

u and C′
v be the clusters in

G′ containing u and v, respectively, and set Cu := C′
u \{u} and Cv := C′

v \{v}. For the
moment, let us assume Cu ⊆ N and Cv ⊆ N . Set C∗ := N \ (Cu ∪Cv). In the optimal
solution, the cost for removing edges incident with u and v are s(u, v) + s(u,Cv) +
s(v,Cu) + s(u,C∗) + s(v,C∗) where s(v,U) := ∑

u∈U s(vu). If we remove v from
cluster C′

v and place it with cluster C′
u instead, then we can leave uv untouched and

calculate costs s(u,Cv) + s(v,Cv) + s(u,C∗) + s(v,C∗). From the optimality of G′
we infer

s(uv) ≤ s(u,Cv) + s(v,Cv) − s(u,Cv) − s(v,Cu) = s(v,Cv) − s(v,Cu).

We can also place u with C′
v , and in total we infer

s(uv) ≤ min
{
s(v,Cv) − s(v,Cu), s(u,Cu) − s(u,Cv)

}
. (2)

In reality, we initially have no information regarding the optimal solution. Assuming
that this solution satisfies C′

u ⊆ N and C′
v ⊆ N , we still infer

s(uv) ≤ max
Cu,Cv

min
{
s(v,Cv) − s(v,Cu), s(u,Cu) − s(u,Cv)

}
(3)

where the maximum runs over all subsets Cu,Cv ⊆ N with Cu ∩ Cv = ∅. In case
s(uv) exceeds the maximum in (3) then u,v must be elements in the same cluster of
an optimal solution, and we may merge u,v. If we require N(u) ∪ {u} = N(v) ∪ {v}
but allow for arbitrary disjoint clusters Cu,Cv , then we can show similarly to above
that (3) must hold where the maximum runs over all subsets Cu,Cv ⊆ V \ {u,v} with
Cu ∩ Cv = ∅.
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Finally, let us consider an edge uv such that N(u)∪{u} �= N(v)∪{v}. Now, Nu =
N(u) \ (N(v) ∪ {v}), Nv = N(v) \ (N(u) ∪ {u}), and W = V − (Nu ∪ Nv ∪ {u,v}).
Let u,v belong to different clusters Cu and Cv of the optimal solution. Recall that (2)
holds because our solution is optimal. We define �u := s(u,Nu) − s(u,Nv) and
�v := s(v,Nv) − s(v,Nu). Similar to above, we can estimate the cost of moving
u to Cv or v to Cu, respectively. Finally, (3) becomes

s(uv) ≤ max
Cu,Cv

min
{
s(v,Cv) − s(v,Cu) + �v, s(u,Cu) − s(u,Cv) + �u

}

where the maximum runs over all subsets Cu,Cv ⊆ W with Cu ∩ Cv = ∅. So, in
case u,v satisfy (1) then u,v must belong to the same cluster of an optimal solution:
In case of equality, we can find at least one solution that is optimal and shows this
property. �

How can we efficiently find the maximum of (1) over all subsets Cu,Cv? A first,
naïve approach results in O(3|W |) running time what is obviously unsatisfactory. We
formalize this problem as follows: We are given a set B of pairs (x, y) of integers.
For parameter-independent data reduction, we will set

B := {
(s(u,w), s(v,w)) : w ∈ W

}
. (4)

We use the notations
∑

x B := ∑
(x,y)∈B x and

∑
y B := ∑

(x,y)∈B y. We have to
assign all pairs in B to three buckets B0,B1,B2 such that

min

{∑

x

B1 −
∑

x

B2,
∑

y

B2 −
∑

y

B1

}
(5)

is maximized. The pairs in B0 are ignored, so a lower bound for the maximum is zero.
A trivial approach requires 3|B| running time what is obviously undesirable.

We use dynamic programming to find the maximum of (5). To this end, set
X := ∑

(x,y)∈B |x| and Y := ∑
(x,y)∈B |y|. We define Boolean dynamic program-

ming matrices Dj [−X . . .X,−Y . . . Y ] as follows: Let B = {(x1, y1), . . . , (xk, yk)}
be the set of pairs. We set Dj [x, y] to ‘true’ if there exists a partition B0,B1,B2 of
{(x1, y1), . . . , (xj , yj )} such that

∑

x

B1 −
∑

x

B2 = x and
∑

y

B2 −
∑

y

B1 = y.

Clearly, D0[x, y] is ‘true’ if and only if (x, y) = (0,0). Now, we can assign an ele-
ment (xj , yj ) to one of the three buckets and, hence,

Dj [x, y] = (
Dj−1[x, y] or Dj−1[x + xj , y − yj ] or Dj−1[x − xj , y + yj ]

)
.

Using this recurrence, Dk can be computed in time O(kXY) and space O(XY). Now,
the maximum of (5) equals

max
Dk[x,y]=‘true’

{
min{x, y}}. (6)
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To find a solution for (1) we have to take into account �u and �v . We compute
Dk as above, initializing B from (4). If uv satisfies

s(uv) ≥ max
D|W |[x,y]=‘true’

{
min{x + �u,y + �v}

}
(7)

then uv must be part of the optimal solution, so we can merge uv.
Unfortunately, the quadratic running time of the above dynamic programming is

too slow in applications, in particular if we take into account real-valued edge weights
(see below). But we can improve running time and space to linear, as follows: We
define Mj [x] to be the maximal index y such that Dj [x, y] is ‘true’. We initialize
M0[0] = 0 and M0[x] = −∞ for all x �= 0. We use the recurrence

Mj [x] = max
{
Mj−1[x],Mj−1[x + xj ] − yj ,Mj−1[x − xj ] + yj

}

and compute the maximum as maxx min{x,Mk[x]}. To prove that this value equals
the maximum in (6), we just point out that an entry Dj [x, y] = ‘true’ dominates an
entry Dj [x′, y] = ‘true’ for x > x′: No “descendant” of the latter entry will be used
for the computation of (6). From the above, we infer:

Lemma 4 Given an integer-weighted graph, then for each edge uv, Rule 5 can be
applied in time O(|W |Z) and space O(Z) where Z := ∑

w∈W(s(uw) + s(vw)).

Clearly, if s(uv) ≤ min{�u,�v} then uv cannot satisfy (7) and we may proceed
to the next edge. On the other hand, in case uv satisfies

s(uv) ≥ 1

2

( ∑

w∈W

|s(uw) − s(vw)| + �u + �v

)

then we can merge uv without computing the dynamic programming table. For edges
that fall in non of these categories, we can use these bounds do decide in which order
edges will be tested using Rule 5.

Regarding real-valued instances, we note that our dynamic programming cannot
directly be applied for real-valued weights. We stress that we can multiply weights
in an edge-weighted graph by an arbitrary constant c ∈ R without changing the op-
timal solution of the problem. We round edge weights during the course of dynamic
programming, where some care has to be taken: We have to ensure that the com-
puted bound is in fact an upper bound for an edge weight s(uv) if u,v are not part
of the same cluster, see (3). Note that by rounding, we may lose some edges that we
could merge using exact computations. But using a (sufficiently large) multiplicative
constant we can trade space and running time for exactness of the solution. We omit
further details.

Finally, we note that we can also apply the above reduction rules while traversing
the search tree. Rules 1–3 are applied in every node of the search tree, whereas the two
more involved Rules 4 and 5 are applied only every sixth step, to optimize running
times.
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4 Parameter-dependent Data Reduction

In the parameter-dependent case, we are given a CLUSTER EDITING instance to-
gether with a parameter k, and we have to decide whether there exists a solu-
tion of cost at most k. We want to use the parameter-dependent data reduction for
WEIGHTED CLUSTER EDITING from [2]: We define induced costs icf (uv) and
icp(uv) for setting uv to “forbidden” or “permanent” by

icf (uv) =
∑

w∈N(u)∩N(v)

min{s(uw), s(vw)}, and

icp(uv) =
∑

w∈N(u)�N(v)

min{|s(uw)|, |s(vw)|},
(8)

where A � B denotes the symmetric set difference of A and B . If icp(uv) +
max{0,−s(u, v)} or icf (uv) + max{0, s(u, v)} exceed k, we can set uv to “forbid-
den” or “permanent”, respectively. In the latter case, we merge u, v and reduce k by
icp(uv) + max{0,−s(u, v)} accordingly. We can also remove isolated cliques. We
use the parameter-dependent data reduction before we start the branching algorithm,
and also in the course of the branching.

As an algorithm-engineering technique, we now describe fast methods to compute
lower bounds on the cost of a weighted instance. Clearly, such bounds can be used to
stop search tree recursion more efficiently. Assume that there exist t conflict triples
in our instance G,k. For every pair uv let t (uv) denote the number of conflict triples
in G that contain uv, and let r(uv) := |s(uv)|/t (uv). To resolve t conflicts in our
graph we have to pay at least t · minuv{r(uv)}. A more careful analysis shows that we
can sort pairs uv according to the ratio r(uv), then go through this sorted list from
smallest to largest ratio. This leads to a second, tighter lower bound but requires more
computation time.

Our third lower bound proved to be most successful in applications: Let CT be
a set of edge-disjoint conflict triples. Then,

∑
vuw∈CT min{s(uv), s(uw),−s(vw)} is

a lower bound for solving all conflict triples. Since finding the set CT maximizing
this value is computationally expensive, we greedily construct a set of edge-disjoint
conflict triples CT and use the above sum as a lower bound.

The most effective use for the above lower bounds, is to make induced costs
icp(uv) and icf (uv) tighter: let b(G,uv) be a lower bound that ignores all edges
uw and vw for w ∈ V \ {u,v} in its computation. If

icp∗(uv) := icp(uv) + max{0,−s(uv)} + b(G,uv) > k or

icf ∗(uv) := icf (uv) + max{0, s(uv)} + b(G,uv) > k
(9)

holds for an edge uv, then we can set uv to “forbidden” or “permanent”, respectively.
To use this powerful reduction during (parameter-independent) preprocessing, we

generate a problem instance (G, k) from G by using an upper bound for the modifica-
tion costs of G as our parameter k. There exist a multitude of possibilities to compute
such upper bounds, because we can use any heuristic for the problem and compute the
cost of its solution, see for instance [20]. For this study, we calculate an upper bound



Algorithmica

using a greedy approach that iteratively searches for edges where reduction rules al-
most apply. In detail, we search for an edge uv such that max{icp∗(uv), icf ∗(uv)}
is maximum. In case icp∗(uv) > icf ∗(uv), we set uv to “forbidden”, otherwise we
set uv to “permanent”. Since only one edge is selected at a time we avoid the case
that icp∗(uv) = icf ∗(uv) = ∞. We find this reduction to be extremely effective in
applications.

5 Integer Linear Programming and Branch-and-Cut

In this section we describe an algorithm for WEIGHTED CLUSTER EDITING, which
is based on mathematical optimization. It relies on the following integer linear pro-
gramming (ILP) formulation due to Grötschel and Wakabayashi [8].

Let x be a binary decision vector with xe = 1 if edge e is part of the solution and
xe = 0 otherwise, for all e ∈ E. Then, an optimal solution to WEIGHTED CLUSTER

EDITING can be found by solving

minimize
∑

e∈E

s(e) −
∑

1≤i<j≤n

s(ij)xij (10)

subject to + xij + xjk − xik ≤ 1 for all 1 ≤ i < j < k ≤ n, (11)

+ xij − xjk + xik ≤ 1 for all 1 ≤ i < j < k ≤ n, (12)

− xij + xjk + xik ≤ 1 for all 1 ≤ i < j < k ≤ n, (13)

xij ∈ {0,1} for all 1 ≤ i < j ≤ n. (14)

The 3
(
n
3

)
triangle inequalities (11)–(13) of the ILP ensure that no conflict triple as

shown in Fig. 4(a) occurs in the solution. The above ILP formulation can already be
used to solve instances of WEIGHTED CLUSTER EDITING to provable optimality.

A faster algorithm can be obtained by a mathematical analysis of the correspond-
ing clique partitioning polytope. Using methods from polyhedral combinatorics,
Grötschel and Wakabayashi have studied its facial structure and could identify a num-
ber of classes of facet-defining inequalities. As proposed by the authors, we concen-
trate on the 2-partition inequalities

∑

i∈S,j∈T

xij −
∑

i∈S,j∈S

xij −
∑

i∈T ,j∈T

xij ≤ min{|S|, |T |},

where S and T are disjoint and nonempty subsets of V .

Fig. 4 Left: Forbidden conflict
triple. Here, the corresponding
triangle inequality is
xij + xjk − xik = 2 > 1. Right:
Illustration of the heuristic
separation of 2-partition
inequalities
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There is an exponential number of 2-partition inequalities. We therefore do not
generate them at once but follow a cutting plane approach, adding 2-partition in-
equalities only if they are violated by a current fractional solution. We have imple-
mented a variant of the iterative cutting plane method proposed by Grötschel and
Wakabayashi. We start optimizing the LP relaxation (10) with an empty constraint
set. Let x∗ denote the vector corresponding to an intermediate solution of the linear
programming relaxation. We first check whether x∗ violates any triangle inequalities.
If this is the case, we add the violated inequalities, resolve, and iterate. Otherwise, we
check whether x∗ is integral. If so, we stop, and x∗ is an optimal solution. If x∗ has
fractional entries, we heuristically try to find violated 2-separation inequalities in the
following manner, see also Fig. 4(b):

For every node i ∈ V we look at the nodes in W := {j ∈ V \ {i} | x∗
ij > 0}. Then,

we pick a node w ∈ W and iteratively construct a subset T of W , setting initially
T = {w} and adding nodes k ∈ W to T if x∗

ik − ∑
j∈T x∗

jk > 0. Finally, we check
whether

∑

j∈T

x∗
ij −

∑

j∈T

∑

k∈T ,k �=j

x∗
jk > 1.

If this is the case, we add the violated 2-partition inequality2

∑

j∈T

xij −
∑

j∈T

∑

k∈T ,k �=j

xjk ≤ 1.

If we find cutting planes in the separation procedure we iterate, otherwise we branch.

6 Datasets

In the absence of publicly available unweighted graph datasets that meet our require-
ments (note that the datasets used in [5] are far too small for our evaluations) we
concentrate on the following two datasets:

Random unweighted graphs Given a number of nodes n and parameter k, we uni-
formly select an integer i ∈ [1, n] and define i nodes to be a cluster. We proceed in
this way with the remaining n ← n − i nodes until n ≤ 5 holds: In this case, we
assign all remaining n nodes to the last cluster. Starting from this transitive graph
G = (V ,E) we choose k′ distinct vertex pairs uv ∈ (

V
2

)
and delete or insert the edge

uv in G. Here, k′ is chosen slightly above the desired modification cost. Let k de-
note the minimum number of modifications to make G transitive, then k ≤ k′. For
instances where we cannot compute exact modification costs k, we estimate k using
the average of upper and lower bound.

2Note that the heuristic separation procedure described in [8] contains a mistake, the term −∑
i∈T ,j∈T xij

is missing there, and the generated inequality leads to invalid cuts.
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Protein similarity data We also apply our algorithms to weighted instances that
stem from biological data. Rahmann et al. [14] present a graph derived from protein
similarity data: The vertices of our graph are more than 192 000 protein sequences
from the COG database [18]. The similarity S(u, v) of two proteins u,v is calculated
from log10 E-values of bidirectional BLAST hits. An E-value threshold of 10−10 was
used to indicate that two proteins are “sufficiently similar”, so s(uv) := S(u, v)− 10.
See [14] for more details.

The graph encoded by s contains 50 600 connected components: 42 563 compo-
nents are of size 1 or 2, and 4 073 components are cliques of size ≥ 3. The remaining
3 964 components serve as our evaluation instances. Only 11 instances have more
than 600 vertices. As a side comment, we mention that Wittkop et al. [20] evaluate
several clustering methods for this application, and find that WEIGHTED CLUSTER

EDITING methods show the best clustering quality.

Evaluation platform All algorithms were implemented in C++, the branch-and-cut
algorithm (ILP) uses the Concert interface to the commercial CPLEX solver 9.03.
Running times were measured on an AMD Opteron-275 2.2 GHz with 6+ GB of
memory.

7 Data Reduction Results

We now compare the performance of the unweighted kernel [9] and the weighted data
reduction from Sect. 3 on the dataset of random unweighted graphs. To allow for a
fair comparison with the weighted data reduction, we merge all permanent edges of
the unweighted kernel, resulting in an integer-weighted graph with even fewer ver-
tices. This seems reasonable since both ILP and edge branching can handle integer-
weighted input graphs. For the weighted data reduction, we first merge all critical
cliques in the input graph. Next, we use weighted reduction rules plus the parameter-
dependent reduction rules as described in Sect. 4. Despite the additional reduction
steps, the reduced graph can have 4kopt vertices for both approaches: A disjoint union
of k paths of length 3 is not reduced by any reduction rule.

For our first evaluation, we concentrate on the weighted reduction strategy. For
fixed k = 2 000 and varying n = 100, . . . ,5 000 we study reduction ratio and absolute
size of the resulting graph for 12 000 random instances. Results for n up to 1 000 are
shown in Fig. 5. Similar results were obtained for larger n and other choices of k,
data not shown. For fixed k, we find that the larger the graphs get, the better the
reduction ratio is on average. Most graphs are either reduced down to a few vertices
or stay unreduced. Only a few reduced graphs end up in a “twilight zone” between
these extremes. This effective reduction is not due to the upper bound n ≤ 4k =
8 000: In fact, the absolute size of reduced graphs gets smaller when input graphs get
larger. This might seem counterintuitive at first glance, but larger graphs show smaller
relative defects, which allows weighted reduction rules to more “aggressively” merge
or delete edges.

The above evaluation indicates that reduction results do not only depend on k and
n directly, but even more so on the ratio k/n. In our second evaluation, we choose n ∈
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Fig. 5 Data reduction for fixed k = 2 000 and variable graph size n: Left plot shows reduction ratio vs. n,
right plot shows reduced graph size nred vs. n. Both plots show 11 000 instances

Fig. 6 Average reduction ratio
vs. ratio k/n for
n = 100,500,1 500,2 000. Note
that the unweighted kernel is
practically independent from
graph size n

{100,500,1 500,2 000} and set k := c ·n, for varying factors c ∈ {0.25,0.5, . . . ,2.0}.
For every combination of n and k we create 10 input graphs and apply the unweighted
kernel. See Fig. 6 for resulting reduction ratios. We find reduction ratios of the un-
weighted kernel to be mostly independent of the actual graph size n. The unweighted
kernel is very effective for graphs with k ≤ 1

2n, and graphs are downsized to half of
their original size on average. For k ≥ 2n no reduction is observed. To evaluate the
weighted data reduction we again set k := c · n, for factors c ∈ {1,2, . . . ,25}. For
every combination of k and graphs size with n < 1 000 (n ≥ 1 000) we create 50 (20)
input graphs. See again Fig. 6 for reduction ratios. We observe that the weighted data
reduction is much more effective than the unweighted kernel. Here, the reduction ra-
tio depends strongly on the ratio k/n and, less pronounced, also on the graph size n.
We observe that large graphs of size n = 2 000 are reduced by 80% for k = 25n and
by more than 90% for k = 18n. Performance of our data reduction on parameters k

and n is more complex than the simple ratio k/n suggests: The number of edges and
non-edges in the input is quadratic in n, but many reduction rules only consider the
neighborhood of a constant number of vertices and, hence, a number of edges linear
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Fig. 7 Percentage of instances
which are reduced more than
90% for varying graph size n

and k = cn for c = 5,10,15,20

in n. We find that data reduction performance can be roughly estimated using the
value k/nc for c ≈ 1.5, we omit further details.

Figure 7 shows the ratio of input graphs being reduced by more than 90%. For
the weighted data reduction, we vary the number of vertices n and set k := cn for
c = 5,10,15,20.3 For the unweighted kernel we observe significantly reduced graphs
only for c = 0.25. Note that for the weighted data reduction, the ratio of significantly
reduced graphs increases for larger graphs.

In case we only use parameter-independent reduction rules from Sect. 3, the
weighted reduction is only slightly better than the unweighted kernel, data not shown.
We find the combination of parameter-dependent data reduction and lower/upper
bounds to be the reason for the effective reduction. To justify this claim, we consider
50 random graphs with n = 100 vertices, and either 25 or 100 edge modifications,
respectively. We first merge critical cliques in every instance. Using only Rules 1–3
for parameter-independent data reduction we reach average reduction ratios of 0.655
(for k = 25) and 0.130 (for k = 100). Using Rule 4 in addition to the above Rules 1–3
does not significantly improve reduction ratios. Using Rules 1–5 leads to average re-
duction ratios of 0.783 (for k = 25) and 0.131 (for k = 100). But if we use, instead of
Rules 1–5, only the parameter-dependent rules in combination with lower and upper
bound, then reduction ratios significantly increase to 0.987 (for k = 25) and 0.948
(for k = 100).

To this end, we also estimate the accuracy of our lower and upper bound. We find
that our lower bound has a relative error of 1.7 % on average, and the upper bound
has a relative error of 17.9 % on average. Calculating tighter upper bounds by, say, a
heuristic such as FORCE [20] will further improve the performance of our weighted
data reduction.

Running times of data reduction Using the unweighted kernel, most of the instance
were reduced in less than a minute, instances of size 2 000 in about one hour compu-
tation time. Graphs with k around n need more computation time than graphs with
lower or greater k since reduction rules are checked very often but rarely applied.

3We also performed experiments for all c = 0.25,0.5,0.75,1,2,3, . . . ,25 but find that results follow the
same trend, data not shown.
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Table 1 Protein similarity data: Average reduction ratio for different graph size n

Graph size n 3–49 50–99 100–149 150–199 200–249 250–299 300+

No. of instances 3453 341 78 22 24 20 25

Av. reduction ratio 0.84 0.89 0.73 0.68 0.66 0.58 0.35

Running times of the weighted data reduction are equally high for k around 5n,
whereas for k around 20n running times are slightly higher. Making the data re-
duction run fast has not been the focus of our research, because we assumed running
times of data reduction to be negligible to the following (exponential-time) step of the
analysis. We do not report details and just note that reducing graphs of size 500 took
51.23 seconds on average but at most 9.09 minutes, whereas reducing graphs of size
2 000 took 1.61 hours on average and at most 23.69 hours. Our experiments show that
many graphs are reduced to trivial or very small instances, so the exponential-time
step of the algorithm has very small running times. We believe that by optimizing our
data reduction algorithm we can achieve significantly reduced running times in the
future.

Data reduction results for weighted instances We also apply our weighted data re-
duction strategy to the protein similarity data. In this case, however, parameter k does
not reflect the complexity of the instance: here, edges might have modification costs
≤ 1 and, hence, the total modification costs may equal 1 even if thousands of edge
modifications are necessary. Instead, we use the number of edge modifications as a
complexity measure of an instance. Table 1 shows results of the weighted data re-
duction. We find that the data reduction reduces weighted instances not as much as
unweighted instances. This is mainly caused by the fact that our lower and upper
bounds are not as tight as for the unweighted case. In detail, our lower bound has a
relative error of 3.6 % on average, and the upper bound had a relative error of 54.7 %
on average. In contrast to our findings for unweighted instances, we observe that
larger graphs are reduced less effectively than smaller graphs. This can be attributed
to the fact that the number of edge modifications is growing faster than linear. Fur-
thermore, parameter-independent reduction rules are less efficient on large weighted
graphs, since it gets less likely that an edge weight is greater than a sum over O(n)

other edge weights.

8 Integer Linear Programming and Search Tree Results

We want to compare the performance of the FPT branching algorithm approach
and the ILP-based branch-and-cut method. For this evaluation, we use random un-
weighted graphs and reduce them by the weighted data reduction. Reduced graphs
are sorted into bins for sizes n ≈ 100,200, . . . ,900 and costs k ≈ 1n,2n, . . . ,10n.
Every bin contains 28 graphs on average. As described in Sect. 7, most graphs are
either reduced completely or not at all, so building these reduced graphs is computa-
tionally expensive. For each reduced instance we apply the FPT branching algorithm
and ILP with an upper limit of 6 hours of running time. For average running times,
we count unfinished instances as 6 hours. Figure 8 shows the resulting running times.
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Fig. 8 Running times of FPT
branching and ILP
branch-and-cut in seconds, for
varying ratio k/n and
n = 100,500,900

Running times of the fixed-parameter algorithm most strongly depend on the ratio
k/n and, to a smaller extent, on the actual parameter k. Instances with modification
cost k ≈ 5n need about one hour of computation to be solved. Note that running times
for FPT branching are much better than worst-case running time analysis suggests,
and dependence on the actual parameter k is much less pronounced than expected. We
believe that this is mainly due to the good lower bound estimation for the parameter-
dependent data reduction used in interleaving, and also the vertex merging operation.

The limiting factor for the ILP algorithm is the size of the input graph whereas
dependence on modification costs k is much less pronounced, with the exception of
the peak around k = 8n for the instances with n = 100. A possible explanation for
this peak is that particularly difficult instances arise around some ratio k/nc with
c ∈ [1,2], which corresponds to k/n ≈ 8 for n = 100. We expect a similar behavior
also for n = 500 and n = 900 with corresponding ratios k/n far larger than 10 and,
thus, outside the data ranges shown in this plot. Besides these difficult instances, we
observe that small instances with only 100 vertices are solved within seconds, and
medium graphs of size 500 are solved within minutes. We find that ILP is well-suited
for medium-size CLUSTER EDITING instances and clearly outperforms the fastest
fixed-parameter algorithm examined in this paper for these instances. We stress that
ILP requires preprocessing by parameter-independent data reduction since its perfor-
mance is strongly dependent on the graph size n. Only for large graphs with very
low modification costs k ≤ 2n, the FPT algorithm may outperform the cutting plane
algorithm. High running times of the cutting plane approach for large instances are,
however, mostly not due to their structural complexity but to the large number of
triangle inequalities that have to be checked in the current implementation. Once a
better separation strategy has been found, we expect the branch-and-cut algorithm to
perform well even on larger instances.

The FPT search tree algorithm can easily be modified to enumerate all optimal
solutions, whereas this is more complicated using the ILP. For our random instances
we find that the vast majority of graphs only have one optimal solution, with the
exception of small graphs with large edit costs, for which a huge number of optimal
solutions can exist.

Results for weighted instances We now compare the performance of FPT branching
and ILP using protein similarity data. We reduced all instances in the protein dataset



Algorithmica

Table 2 Running times on reduced protein similarity data for FPT branching and ILP. Instances that did
not finish after 24 hours of computation were ignored (time∗) or set to 24 hours (time) for average running
time computation, respectively

Size red. instance 3–49 50–99 100–149 150–199 200–249 250–299 300–1400

No. red. instances 297 52 16 10 9 2 19

Unfinished FPT 0 0 1 1 2 2 15

Time∗ FPT 125 ms 23.9 s 44.1 min 4.52 min 47.3 min n/a 8.98 min

Time FPT 125 ms 23.9 s 2.19 h 2.47 h 5.95 h 24 h 18.98 h

Unfinished ILP 0 0 0 0 1 1 10

Time∗ ILP 17 ms 6.97 s 5.30 min 18.20 min 76.2 min 6.85 min 1.67 h

Time ILP 17 ms 6.97 s 5.30 min 18.20 min 3.80 h 12.06 h 13.42 h

using our weighted data reduction strategy, resulting in 365 non-trivial instances. In
Table 2 we report running times of the two methods, where we stopped computation
after 24 hours. The FPT branching algorithm is usually fast enough for graphs with
up to 200 vertices, but for most larger graphs, no solution can be computed within
the time limit. In contrast, the ILP algorithm was able to solve most instances with
less than 500 vertices in only some minutes.

Using data reduction and ILP, we were able to solve all but 12 of the 3 964 in-
stances in less than 24 hours, and all but 19 in less than 60 minutes. This implies that
we can process the complete dataset of 3 964 protein similarity instances in less than
two days, and guarantee an optimal solutions for 99.52 % of the instances.

9 Conclusion

Our results demonstrate that computing exact solutions of CLUSTER EDITING in-
stances is no longer limited to small or almost transitive graphs, thus invalidating
what has often been reported in previous work. Using data reduction for WEIGHTED

CLUSTER EDITING in combination with parameter-dependent rules and lower/upper
bounds strongly improves the ability to shrink down input instances in polynomial
running time. Even complex input graphs that are far from transitive and that have
modification costs much larger than the number of vertices, can often be reduced very
effectively.

We also compared the fastest known FPT branching algorithm for CLUSTER

EDITING against a branch-and-cut approach for this problem, based on the ILP for-
mulation by Grötschel and Wakabayashi. Both algorithms perform well, and reduced
graphs with hundreds of vertices and thousands of edge modifications are processed
in acceptable running time. In particular, our results suggest that mathematical op-
timization techniques based on ILP formulations are suitable for solving large in-
stances with many modifications. Here, realizing alternative separation strategies, as,
for instance, proposed in [12] for the related comparability editing problem, seems to
be a promising way to solve even larger instances to provable optimality in reasonable
running time.
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We believe that better upper bounds will allow even larger instances of (un-
weighted and weighted) CLUSTER EDITING to be solved exactly in the future. We
plan to implement a web interface for our tools in order to give a large community
access to our exact clustering tools.
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