
StateML+: From Graphical State Machine Models to
Thread-Safe Ada Code†

Diego Alonso1, Cristina Vicente-Chicote1, Juan A. Pastor1, Bárbara Álvarez1

† This research has been funded by the Spanish CICYT project MEDWSA (TIN2006-15175-

C05-02) and the Regional Government of Murcia Seneca Program (02998-PI-05).

1 Departamento de Tecnologías de la Información y las Comunicaciones

División de Sistemas y Ingeniería Electrónica (DSIE)
Universidad Politécnica de Cartagena, 30202 Cartagena, Spain

{diego.alonso, cristina.vicente, juanangel.pastor, balvarez}@upct.es

Abstract. This paper presents the StateML+ tool aimed at designing state-
machines and automatically generating thread-safe and multi-tasking modular
Ada code from them, following a Model-Driven Engineering approach. The
StateML+ meta-model is an extension of a previous version, and now it offers
improved modeling capabilities, which include regions and macro-state
definition. In this paper, a case study regarding the design of a robotic system
will be used to demonstrate the benefits of the proposed approach.

Keywords: Model-Driven Engineering, Model-To-Text Transformation, Finite
State Machines, Thread-Safe Code Generation, Eclipse platform.

1 Introduction

Model-Driven Engineering (MDE) technologies offer a promising approach to
address the inability of third-generation languages to alleviate the complexity of
platforms and express domain concepts effectively [1]. Objects are replaced by
models, and model transformations appear as a powerful mechanism to automatically
and incrementally develop software [2].

The work presented in this paper starts from the definition of the ACRoSeT [3]
abstract architectural framework, aimed at developing abstract software components
for tele-operated robots. This framework allows designers to define the software
architecture of a robotic system in terms of abstract (platform independent) robotic
components. ACRoSET components are designed taking into account both structural
and behavioral aspects.

Although the adoption of ACRoSET for component-based robotic system design
has demonstrated many advantages, the translation of its abstract components into
concrete ones has not been automated yet and, thus, it remains an error-prone process.
This is one of the current aims of our research group and this paper covers it partially.

To tackle the problem of automatically translating ACRoSET abstract components
into concrete ones, we propose a MDE approach based on a previous experience,
already published in [4]. In that work, we presented a basic state-machine meta-
model, called StateML, and a graphical modeling tool built on top of it, which
allowed designers to depict and to validate very simple state-machine models. These
models could then be automatically translated into Ada code using a model-to-text
transformation, also implemented as part of that work.

State machines provide very powerful behavioral descriptions. This is why they are
quite commonly used for modeling general-purpose processes and, in particular, why
they have been extensively adopted by the robotics community. Even when using a
Component-Based Software Development (CBSD) [5] approach for robotic
application design, as the one proposed in ACRoSET, state-machines are a very
appropriate and natural way for describing component behavior, since they allow
designers to define how components react to different external and internal stimuli. In
addition, state machines provide a very natural and precise notation for describing
aspects such as concurrency.

However, in order to model ACRoSET abstract components, the state-machine
models built using the previous StateML tool presented in [4] was not expressive
enough, since it did not include mechanisms to model concurrency. Thus, instead of
tackling the whole problem of translating ACRoSET abstract components into
concrete ones, we decided to first complete the state-machine models and the
translation of the component behavior part, leaving the structural aspects for a later
stage.

In this vein, this paper presents the extended StateML+ meta-model, which includes
all the concepts needed to model the behavior of ACRoSET abstract components,
including those related to concurrency. Besides, the new tools implemented on top of
this meta-model are also presented, i.e. a new graphical model editor and a new
automatic model-to-code transformation, which generates a thread-safe Ada code
implementation of the input state-machine model. Although developed in the context
of ACRoSeT, StateML+ can be used as a stand-alone tool by any designer who wants
to generate a multi-threaded Ada skeleton from a hierarchical state machine.

Before entering into details, the following section presents an outline of the
research goals covered in this paper. Then, the rest of the paper is organized as
follows. Firstly, section 2 presents the extended StateML+ meta-model, and the
graphical modeling tool implemented to support the newly added elements. This
section also presents a case study on robotics that will be used through the rest of the
paper to illustrate the benefits of the proposed approach. Then, the automatic model-
to-code transformation, from StateML+ models to thread-safe Ada code, is presented
in section 3. Finally, section 4 presents the conclusions and some future research
lines.

1.1 Goals of the Paper

In reactive systems, software commonly interacts simultaneously with multiple
external elements (sensors, actuators, robots, conveyor belts, etc.). Actually, the real-
world is inherently concurrent and this must be somehow captured in software

applications. This obviously requires using platforms and programming languages
which provide concurrency mechanisms.

As previously stated, the StateML meta-model did not offer any mechanism to
model concurrency, although in [4] we proposed this extension as a future work. The
main goal of this paper is to show how we have addressed this extension presenting
the improved StateML+ meta-model, which now can deal with concurrency aspects.
To achieve this goal, the following sub-goals have been addressed:

• Firstly, the state-machine meta-model was extended with new concepts in order to
improve its modeling capabilities. Among others, it now includes orthogonal
regions to represent independent and concurrently active states. The extension of
the meta-model implied the addition of a comprehensive set of OCL (Object
Constraint Language) [6] expressions in order to complete the syntax and the
semantics of the meta-model, as it will be further explained in section 2.1.

• A new graphical modeling tool was also developed to allow designers to
graphically define state-machine models and to validate them against the meta-
model and the set of additional OCL constraints. This tool was validated building
different robotic-related case studies, such as the one presented in section 2.2.

• A suitable design pattern [7] had to be selected in order to perform the model-to-
code transformation. This implied reviewing some of the architectural patterns that
could cope with the run-to-completion semantics associated to the state-machine
artifacts. After a careful reviewing process, the Reactor Pattern [8] was finally
selected, as it will be further justified in section 3.1.

• Finally, a new MOFScript [9] model-to-code transformation was implemented in
order to generate thread-safe Ada code from any input state-machine model. This
transformation, which implements the selected Reactor Pattern, is detailed in
section 3.2.

After covering these goals, the paper will present some conclusions and future
research lines.

2 StateML+: Improving FSM Modeling Capabilities

As stated in the introduction, this paper presents StateML+, which is an improved
version of StateML, already presented in [4]. The state-machine meta-model included
in StateML was designed as a quite simplified version of the UML 2.x [10]
counterpart.

In StateML, designers could model state-machines consisting of states linked by
transitions, which could be external or internal, depending on whether the state was
actually exited or not. Designers could also include in their models one initial pseudo-
state (to initialize the state-machine and to mark the first state to be executed) and one
or more final states (to mark the state-machine execution end). The StateML meta-
model was enriched with a complete set of OCL constraints in order to assert that
models built from it were syntactically and semantically correct.

In spite of the good results obtained by the StateML tools, it was quite clear that its
modeling capabilities were very limited, particularly to modeling real world system

behavior. As already stated, one of the biggest limitations of StateML was the lack of
macro-states and orthogonal regions, since (1) macro-states help avoiding state
explosion in state-machines [11], and (2) orthogonal regions make it possible to
model the concurrent aspects of a state.

The new StateML+, presented in this paper, tries to overcome the limitations of the
previous version, extending the underlying state-machine meta-model with orthogonal
regions (among other modeling elements), and, thus, providing extended modeling
capabilities. Accordingly, the graphical modeling tool (see section 2.2), and the
automatic model-to-Ada transformation (see section 3) have also been extended to
support the new StateML+ extended meta-model.

2.1 The StateML+ Extended Meta-Model

The StateML+ extended meta-model is shown in Fig. 1. As justified before, when
compared to the previous version (StateML meta-model [4]), the main difference is
the inclusion of the Region concept, which now plays a central role. The elements
included in the meta-model and the relationships existing between them are briefly
described next.

• Region. As previously stated, this concept has been newly added to the meta-
model. Each Region is contained in a State, but a special one, called
topRegion, which is contained in the StateMachine itself. In this new
version, Regions contain Vertexes and Transitions, which were directly
stored in the StateMachine in the previous StateML version.

• StateMachine. As already explained, in this new version of the meta-model,
the StateMachine contains a topRegion instead of directly containing the
Vertexes and Transitions that constitute the state machine. Besides, it has a
unexpectedTransitionPolicy property which can take values {IGNORE,
NOTIFY_ERROR}. According to the value of this property, the StateMachine
will react differently when it receives an event which does not trigger any of the
outgoing transitions of the current state. Specifically, the StateMachine will
ignore the unexpected event if the IGNORE value has been selected, and it will call
an error handler otherwise (NOTIFY_ERROR value selected). This fact is
considered as a “semantic variation point” in the UML 2.x specification and was
outlined in [4] as a future improvement of StateML.

• State. In this extended version of the meta-model it is possible to create States
containing Regions which may contain other States (and Transitions), up
to any nesting level. Thus, this structure allows for creating macro-states. The
State element has also been enriched with three boolean properties named
hasOnEntry, hasDo, and hasOnExit, which allow designers to establish
whether the implementation of the State will have any of these operations. These
boolean properties are parsed during the model-to-Ada transformation step, as it
will be widely explained in section 3.2.

Fig. 1. The StateML+ extended meta-model.

• Transition. This element remains similar to the one included in the previous
version. It keeps the kind property, which can take values {INTERNAL,
EXTERNAL} as before, and includes two new boolean properties
requiresGuard and hasFire, which control whether the designer wants a
Transition to have a guard and a fire operation. These boolean properties,
together with those added to the State element, are used during the model-to-
Ada transformation step.

• Pseudostate. This element remains identical to the one included in StateML,
i.e. it only includes a property kind of type PseudostateKind. However, as
shown in Fig. 1, the PseudostateKind enumerated type has been enriched
with new elements to cope with the new needs derived from the inclusion of
Regions in the meta-model. Thus, the property kind can now take values
{INITIAL_STATE, HISTORY_STATE, JOIN_STATE, FORK_STATE}. The
syntax, and the semantics of these pseudo-states has been taken form the one
defined in the UML 2.x specification [10], and it is summarized next.
» INITIAL_STATE / HISTORY_STATE. Initial vertexes represent a default

vertex that is the source for a single Transition to the default State of a
Region. In the case of HISTORY_STATEs, they have the ability to
“remember” the last active State the Region was in before exiting (the
Region). Thus, when the Region is entered again, the HISTORY_STATE re-
starts the last active State execution again. There can be at most one initial
vertex (either INITIAL_STATEs or HISTORY_STATEs) in a Region. The
outgoing Transition from the initial vertex can not have either a fire
operation or a guard.

» JOIN_STATE. JOIN_STATE Pseudostates allow to merge several
Transitions emanating from source States belonging to orthogonal
Regions, enabling their synchronization. The Transitions entering a
JOIN_STATE Pseudostate cannot have either guards or fire operations.

» FORK_STATE. FORK_STATE Pseudostates allow to split an incoming
Transition into two or more Transitions terminating on orthogonal

target States (i.e., States in different Regions of a macro-state). The
Transitions outgoing from a FORK_STATE Pseudostate must not have
guards or fire operations.

The StateML+ meta-model extension made arise many additional syntactic and
semantic constraints, which could not be directly expressed in the meta-model, given
the limitations of using a MOF [12] meta-class diagram. As a consequence, a
comprehensive set of OCL [6] constraints had to be implemented to cope with the
new modeling restrictions. For space reasons, only two of these constraints are
included in this paper (see Table 1).

Next section presents the new graphical model editor built to support the new
modeling capabilities of StateML+, together with a robotic system case study
developed using this new tool.

Table 1. Two of the OCL constraints included to complete the formal syntax of StateML+

Target domain element: Transition
Description: Pseudostates cannot have internal transitions
OCL rule:

self.kind=TransitionKind::INTERNAL

 implies not(self.source.oclIsTypeOf(Pseudostate))

Target domain element: Transition

Description: External Transitions from INITIAL, HISTORY, and FORK and to JOIN
Pseudostates must have requiresGuard=false and hasFire =false

OCL rule:

 ((self.kind=TransitionKind::EXTERNAL) and

 ((self.source.oclIsTypeOf(Pseudostate))
or
 (self.target.oclIsTypeOf(Pseudostate))) and

 ((self.source.oclAsType(Pseudostate).kind=
 PseudostateKind::INITIAL_STATE)
or (self.source.oclAsType(Pseudostate).kind=
 PseudostateKind::HISTORY_STATE)
or (self.source.oclAsType(Pseudostate).kind=
 PseudostateKind::FORK_STATE)
or (self.target.oclAsType(Pseudostate).kind=
 PseudostateKind::JOIN_STATE)))
implies
 (self.requiresGuard=false and self.hasFire=false)

2.2 Building Graphical StateML+ Models: A Case Study on Robotics

A new graphical modeling tool has been developed to support the new modeling
capabilities of StateML+ and also the new restrictions needed to complete the meta-
model specification, as previously introduced in section 2.1.

As the previous version of the tool, the StateML+ graphical model editor was
implemented using the Eclipse Graphical Modeling Framework (GMF). Thus, we
followed a similar approach as the one described in [4] but, in this case, the new
elements included in the StateML+meta-model and the new OCL constraints were
taken into account.

As shown in Fig. 2, the new tool offers a richer palette, where the user can now
select new elements such as Region or the new different kinds of pseudo-states.
Besides, users can validate their models both against the meta-model and against the
newly added set of additional OCL constraints, thus assuring that their models are
totally correct before proceeding to the model-to-code transformation step.

In order to test both the new modeling capabilities of the StateML+ meta-model,
the graphical modeling tool built on top of it, and the automatic model-to-Ada code
transformation implemented afterwards, we needed a simple yet real-world case
study. Given that, as stated in the introduction, our application domain is very related
to robotics, we decided to use the state machine model proposed in [13] and depicted
in Fig. 2.

Fig. 2. State-machine model depicted using the StateML+ graphical modeling tool.
This state machine models the behavior of the robotic arm used as the case study in this paper.

The state-machine model shown in Fig. 2 models the behavior of a robotic arm

which holds a tool (e.g. a gripper, a welder, etc.). As the movement of the arm and the
movement of the tool are independent of each other, they have been modeled with
two orthogonal regions (toolRegion and armRegion) to show this
independence. Each of these regions contains the states in which the tool or the arm
can be in, independently of the current state of the other region. The rest of the states

(i.e. Ready, Error, EmergencyStop and Finished) are directly contained in
the topRegion of the state-machine. In addition:

• An initial pseudo-state has been added to each region to mark its default initial
state, i.e. where the region starts its execution. This restriction is checked by an
OCL expression.

• A fork pseudo-state has been included in the topRegion to split the contCmd
transition from the Ready state to two states included in the orthogonal regions
defined in the Moving state.

• A join pseudo-state has also been added to the topRegion to synchronize the
outgoing transition from the Moving state, i.e. from two of the internal states
belonging to its internal regions.

This case study uses all the new elements added to StateML+, showing a simple yet
rich enough case study. This case study has served also as the input to test our model-
to-Ada code transformation that is explained in the following section.

3 From StateML+ Models to Thread-Safe Ada Code

The meta-model of a system plays a central and fundamental role in the MDE
paradigm, since it is the basis that supports the rest of the MDE development process,
namely: model creation and model transformations [14]. Therefore, changing the
meta-model implies updating the graphical model editor and the model-to-Ada
transformation that were previously developed for the StateML tool.

The model-to-Ada transformation, which is described in section 3.2, has suffered a
deep modification and now generates Ada code that can cope not only with the new
modeling capabilities of StateML+ but that is also ready to be included in any multi-
tasking application. Besides, we have seized the fact that we should update the model
transformation to include some of the characteristics that were outlined as “future
work” in the previous StateML tool [4].

Section 3.1 briefly describes some of the architectural design pattern that could
have been used to implement the concurrency aspects derived as a consequence of the
improvement of the StateML tool, together with the main characteristic of the chosen
implementation pattern: the Reactor/Dispatcher pattern.

3.1 Decoupling State Activities Execution from State-Machine Management:
Using the Reactor Pattern.

One of the main challenges of the model-to-code transformation of the state machine
artifact resides in the run-to-completion semantics associated to the state machine.
The run-to-completion semantics, as appears in the UML superstructure (see [10],
chapter 13) specifies that:

 “An event occurrence can only be taken from the pool and dispatched if the
processing of the previous event occurrence is fully completed. Before
commencing on a run-to-completion step, a state machine is in a stable state

configuration, with all entry/exit/internal activities (but not necessarily state (do)
activities) completed. The same conditions apply after the run-to-completion step
is completed. Thus, an event occurrence will never be processed while the state
machine is in some intermediate and inconsistent situation. The run-to-completion
step is the passage between two state configurations of the state machine. The
run-to-completion assumption simplifies the transition function of the state
machine, since concurrency conflicts are avoided during the processing of event,
allowing the state machine to safely complete its run-to-completion step”.

This run-to-completion requirement was not a problem in the previous StateML
tool, as it does not allow the creation of regions, and thus there is always one and only
one active state. But, in StateML+, the presence of regions breaks this rule, as there
may be many active states inside any given macro-states. A possible alternative
consists of the execution of every active state in its own thread. But using multi-
threading in such an uncontrolled way has the following drawbacks:

• Threading may be inefficient and non-scalable.
• Threading may require the use of complex concurrency control schemes

throughout the state machine code.
• Concurrency usually implies longer development times, as it has its own problems.

In our case, it was very advisable to come up with a scalable solution according to
the number of states appearing in the model, and that could shorten implementation
time from the former model-to-Ada transformation.

The Reactor/Dispatcher architectural pattern [8] provides a solution that
accomplish this requirement. This pattern allows event-driven applications to de-
multiplex and dispatch service requests that are delivered to an application from one
or more clients. The handlers of these service requests are registered within a reactor
thread that runs an infinite loop in which the registered handlers are run sequentially.
The reactor thread provides a way to add and remove event handlers at run-time, so
the application can adapt itself to changing requirements. The use of the Reactor
pattern has allowed us to:

• Achieve “concurrency” for the states contained in orthogonal regions, eliminating
the need of complex synchronization mechanisms and shortening in this way the
implementation time of the transformations.

• Decouple the state machine management and the short duration activities involved
in the run-to-completion semantics of the state-machine (transitions, entry and exit
actions execution) from the long duration activities that may be associated to
states.

However, the Reactor pattern is not suitable for long duration activities, as they are
executed sequentially by the Reactor. Thus, the main liability has been the need of
constraint the duration of the activities associated to states. Activities should be of
short duration, though they are repeated every time the Reactor executes its cycle
while the state machine remains in the given state. In this case, the reactor pattern can
be seen as a cyclic executive scheduler. Long duration activities are more effectively
handled using separate threads. This can be achieved via other patterns, such as

Active Object or Half Sync/Half Async [8]. In general, the Reactor pattern is difficult
to test and debug, but in our case simplicity helps avoiding these drawbacks.

3.2 Model-To-Ada Transformation: Implementing the Reactor Pattern

As said before, the Reactor pattern will be use to embed the run-to-completion
semantics of the state-machine artifact in the resulting Ada code implementation of a
StateML+ model. In this case, the handlers executed by the reactor task are the
Do_Activity associated to each state, while the events that trigger their execution
are the transitions of the state-machine. When a transition occurs, the activity
associated to the new state is registered in the reactor while the activity associated to
the old state is removed from it. The same happens when entering or exiting a macro-
state with orthogonal regions.

Fig. 3 shows the UML package diagram that describes the structure of the Ada
code generated after the model-to-code transformation, which generates:

• A main procedure, called Simulator, which contains a command-line program that
can command and control the generated state machine. This program is used only
for different testing purposes. The state-machine is completely usable on itself
without this procedure.

• A package, which name depends on the name of the state-machine model name
(Main_Fsm in Fig. 3), implements all the structure and control logic of the state
machine. This package contains: (1) the private child packages (depicted in Fig. 3
with a thicker border) that implement the different modules of the Reactor pattern
as it will be explained in the following items, (2) the parameter-less procedures that
signal the event occurrence that may trigger the fire of a transition of the state-
machine, (3) a function to get the state machine current state and the corresponding
types to correctly deal with it, and (4) the procedures that notify that an unexpected
event has happened (these procedures are created when using the
NOTIFY_ERROR value in the unexpectedTransitionPolicy property of
the State-machine, see section 2.1).

• A private child package, named Main_Fsm.Fsm_Task, which contains a protected
buffer to store event signaling and the task that controls the flow of states. The
protected buffer accomplishes two main objectives: (1) it decouples event signaling
from event processing, just as the Reactor pattern specifies, by using the Command
design pattern [7], and (2) it makes the use of StateML+ state-machines in multi-
threaded applications possible. The task created in this package is in charge of

Fig. 3. UML package diagram showing the structure of the generated Ada code.
Highlighted packages (those with a thicker border) are private childs of the outer package.

controlling the state-machine and changing its state, depending on the received
event. This task embodies the run-to-completion semantics that is associated to the
state-machine execution, which includes event processing, entry/exit/fire activities
execution and state change, but not do_activity execution.

• Another private child package, named Main_Fsm.Reactor_Task, that plays the
role of the reactor that corresponds to its name. This package contains the list of
currently active states (those whose Do_Activity has to be executed), together
with the reactor task in charge of sequentially executing them. The list of activities
to be executed is maintained and updated by the Main_Fsm.Fsm_Task when it
processes an event that changes state. This design decision frees the Fsm_Task
from executing the Do_Activity, so it can process the next event as soon as it
completes the run-to-completion step.

• The private child package Main_Fsm.Transitions contains the specification and
empty bodies of (1) the procedures that describe the activity that should be
executed when a transition is fired (named Fire_XXX_Transition), and
(2) the functions that check whether the transition should be executed or not, that
is, the guard of the transition (Can_Fire_XXX_Transition). All of these

subprograms are automatically generated if the corresponding attribute of the
Transition is set (hasFire for generating the fire procedure and
requiresGuard for the guard function). Of course, all these subprograms must
be filled-in by the developer of the final application. Besides generating the
specification of these subprograms, the transformation also generates the
corresponding calls to these subprograms inside the procedures that control the
state machine flow (implemented in the Main_Fsm.Fsm_Task package). This
design decision eliminates the generation of unneeded code and reduces the
number of subprogram calls, making the application smaller and more efficient.

• Another private child package, named Main_Fsm.States, contains the definition of
all the states of the state-machine as well as the specification of the procedures that
should be executed when entering (On_Entry procedure), exiting (On_Exit
procedure) or when staying (Do_Activity procedure) in the state. As in the case
of the Transition concept above, the specification, empty body and
corresponding subprogram invocations are generated depending on the value of the
hasOnEntry, hasOnExit and hasDo properties of the States.

The body of the reactor task contains a select statement to perform an Asynchronous
Transfer Control (ATC) [15] back to the reactor. In the case in which the reactor is
executing the Do_Activity of the state that is going to be exited as a consequence
of the received event, this ATC will abort the corresponding procedure, as the
execution of the state machine artifact demands.

Finally, to end this section about the model-to-Ada transformation of a StateML+
model, it only remains to explain the implementation of the different values of the
unexpectedTransitionPolicy attribute of the State-Machine concept.
As was said in section 2, UML 2.x says that the behavior of the state machine after
receiving an event that does not trigger the fire of any of the transitions of the current
state is undefined (UML calls this a “semantic variation point”). The StateML+
completes this lack definition by offering the designer two possible alternative
behaviors when state machine receives such a transition: it may silently ignore the
unexpected transition or it may call a registered procedure to notify other parts of the
program the occurrence of this condition.

In the later case, two new procedures, named Subscribe_Handler and
Erase_Handler, are added to the generated Main_Fsm.Fsm_Task package in
order to allow interested units to subscribe to the occurrence of unexpected
transitions. These handlers will be sequentially called by the state machine when it
detects such an unexpected transition.

4 Conclusions and Future Research

State-machines have been used in software system design since the early 1970s, being
part of many software applications and, for their characteristics they are particularly
useful in the embedded system domain. As a consequence, many tools have been
developed to describe and generate executable code for these artifacts. Among these
tools, probably one of the most widely used is STATEMATE [11].

The OMG adopted state-machines to describe the behavior of the elements that
appear in their UML standard. As a consequence, new UML-compliant tools appeared
in the marketplace allowing designers to use this artifact in their designs. However, as
the scope of these tools is wider than just generating code for state-machines, they
commonly produce complex and cumbersome code, making it difficult to extract the
state machine code. In this sense, the main advantage of the MDE approach is that
developers can decide the abstraction level, the scope of their applications and the
way models are transformed into code, having full control over the development
process.

This paper has presented an extended version of the previously developed StateML
tool, aimed at designing non-hierarchical state-machines and generating the
corresponding Ada code implementation. According to the research objectives
outlined in the introduction of the paper, the improved StateML+ meta-model now
allows designers to model the behavior of the ACRoSeT abstract components and to
generate the corresponding Ada implementation. Therefore, the work presented in this
paper represents a first and decided step in the road to implementing a full MDE
process for generating robotic applications.

The extended StateML+ meta-model and tools now include many improvements
over the previous versions, being these the most important: (1) the addition of regions,
which enable the creation of hierarchical and concurrent state-machines, (2) a better
implementation of the run-to-completion semantics associated to the state-machine
artifact, and (3) the generated Ada code is thread-safe and ready for working in a
multi-tasking environment. We are still working on some additional improvements in
the following directions:

• To allow designers to define different concurrency policies for each state. This
would allow them to decide whether the do_activity of a state should be
executed in the Reactor or in a new thread created for this purpose.

• To implement and test alternative design patterns, such as the Proactor or the
Active Object [8] ones, which may help improving the overall system flexibility, as
explained in section 3.1.

• To define additional model-to-text transformations to different target languages.
Finding alternatives to Ada can be a tough work, as there are not many languages
providing such a good multi-task support.

References

1. Schmidt, D.: Model-Driven Engineering. IEEE Computer 39 (2006) 25-31
2. Bézivin, J.: On the Unification Power of Models. Software and Systems Modeling 4 (2005)

171-188.
3. Álvarez, B., Sánchez, P., Pastor, J.Á., Ortiz, F.J.: An architectural framework for modeling

teleoperated service robots. Robotica 24 (2006) 411-418
4. Alonso, D., Vicente-Chicote, C., Sánchez, P., Álvarez, B., Losilla, F.: Automatic Ada Code

Generation Using a Model-Driven Engineering Approach. In: 12th International Conference
on Reliable Software Technologies, Ada Europe 2007, Vol. 4498. Springer, Geneva,
Switzerland (2007) 168-179.

5. Szyperski, C.: Component Software - Beyond Object-Oriented Programming. Addison-
Wesley / ACM Press (2002).

6. OMG: Object Constraint Language (OCL) Specification v2.0. The Object Management
Group (2006).

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional (1995).

8. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects. Wiley (2000).

9. The Eclipse MOFScript subproject. Available at: http://www.eclipse.org/gmt/mofscript/.
10. OMG: Unified Modeling Language: Superstructure v 2.0. The Object Management Group

(2005).
11. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Transactions on

Software Engineering Methodology 5 (1996) 293–333.
12. OMG: Meta-Object Facility Specification v2.0. The Object Management Group (2004)
13. Douglass, B.P.: Real Time UML: Advances in the UML for Real-Time Systems. Addison-

Wesley Professional (2004).
14. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-driven

software development. IEEE Software 20 (2003) 42- 45
15. Burns, A., Wellings, A.: Concurrent and Real-time Programming in Ada 2005. Cambridge

University Press (2007).

http://www.eclipse.org/gmt/mofscript/

