
An Overview of the Ciao Multiparadigm
Language and Program Development

Environment and its Design Philosophy

M. V. Hermenegildo F. Bueno M. Carro
P. López J.F. Morales G. Puebla

IMDEA Insti tute íor Software Development Technology
Universidad Politécnica de Madrid

University oí New México
Universidad Complutense de Madrid

Abs t r ac t . We describe some of the novel aspects and motivations be-
hind the design and implementation of the Ciao multiparadigm pro­
gramming system. An important aspect of Ciao is that it provides the
programmer with a large number of useful features from different pro­
gramming paradigms and styles, and that the use of each of these fea­
tures can be turned on and off at will for each program module. Thus, a
given module may be using e.g. higher order functions and constraints,
while another module may be using objects, predicates, and concurrency.
Furthermore, the language is designed to be extensible in a simple and
modular way. Another important aspect of Ciao is its programming en­
vironment, which provides a powerful preprocessor (with an associated
assertion language) capable of statically finding non-trivial bugs, veri-
fying that programs comply with specifications, and performing many
types of program optimizations. Such optimizations produce code that
is highly competitive with other dynamic languages or, when the highest
levéis of optimization are used, even that of static languages, all while re-
taining the interactive development environment of a dynamic language.
The environment also includes a powerful auto-documenter. The paper
provides an informal overview of the language and program development
environment. It aims at illustrating the design philosophy rather than at
being exhaustive, which would be impossible in the format of a paper,
pointing instead to the existing literature on the system.

1 Origins and Initial Motivations

Ciao [50,48,5,25,49] is a modern, multiparadigm programming language with
an advanced programming environment. The ult imate motivation behind the
system is to develop a combination of programming language and development
tools tha t together help programmers produce in less time and with less effort
code which has fewer or no bugs and which also performs very efñciently on
platforms from small embedded processors to powerful multicore architectures.
Ciao has its main roots in the <fc-Prolog language and system [51]. <fc-Prolog's

design was aimed at achieving higher performance trian state of the art sequen-
tial logic programming systems by exploiting (and-)parallelism. This required
the development of a specialized abstract machine capable of running in parallel
and very efñciently a large number of (possibly non-deterministic) goals [44,51]
(the abstract machine was derived from early versions of SICStus Prolog). It
also required extending the source language to allow expressing parallelism and
concurrency in programs. This made it possible for the user to parallelize pro-
grams manually in a relatively simple way. The system was later extended to
support constraint programming, including the concurrent and parallel execu­
tion of such programs [30]. Signiñcant work was done with Ugo Montanari and
Francesca Rossi in this context through the development of a true concurrency
semantics tha t implied the possibility of exploiting truly máximum parallelism
in the execution of constraint programs [68,10,11]. Additional work was also per-
formed to extend the system to support other computat ion rules, such as the
Andorra principie [90,7,79,9], other sublanguages, etc.1

The experience of this process of gradual extensión of the capabilities of the
<fc-Prolog system inspired some of the fundamental concepts underlying the Ciao
system. In particular, while each of the functionalities mentioned above (Andorra
execution, constraint programming, concurrent programming, etc.) was typically
implemented up to tha t time by a sepárate (and complex) system comprising
compiler, abstract machine, etc. we observed tha t all such extensions could in
fact be supported efñciently within the same system provided the underlying
machinery implemented a relatively limited set of basic constructs (a kernel
language) [50,48], coupled with an easily programmable and modular way of
deñning new syntax and giving semantics to it in terms of tha t kernel language.
This approach is, of course, not exclusive to Ciao, but in Ciao the facilities tha t
enable building from a simple kernel are very explicitly available (and their use
encouraged) from the system programmer level to the application programmer
level.

1 It is interesting to note that a great deal of this initial work on the design and
implementation of Ciao occurred within the ACCLAIM EU project, in which the
Andorra Kernel Language (AKL) and its successor, the Oz language [42], were also
developed. The great group of people involved in the project, including Ugo Mon­
tanari, Seif Haridi, Gert Smolka, Peter VanRoy, David Warren, and many others
resulted in a very fruitful collaboration that effectively gave birth to modern multi-
paradigm languages. Within this collaborative context, Ciao took different paths to
AKL and Oz in many aspects, including for example the use of assertions and global
analysis support, the fact that in Ciao non-determinism (backtracking) is implicit, or
the use of a (Prolog-derived) syntax aimed at easily supporting meta-programming.
As another example, in Ciao the language has always been sequential by default, i.e.,
concurrency has to be added explicitly by the user (or the parallelizer), whereas in
the original Oz and AKL designs the language was concurrent by default (although
this has been changed in later Oz designs). Interesting aspects of Oz include for
example the extensive development and use of computational spaces as first-level
constructs.

This is one of the fundamental capabilities of the Ciao system, which ef-
fectively allows Ciao to support múltiple programming paradigms and styles.
In Ciao all operators, "builtins," and most other syntactic and semantic lan-
guage constructs such as conditionals or loops are not part of a predeñned "lan-
guage." Instead they are user-modiñable constructs living in líbraríes which can
be loaded or unloaded at will thanks to the notion of packages [15]. This is the
mechanism which allows adding new syntax to the language and giving semantics
to this syntax. Most importantly, such packages, and thus the restrictions and
extensions to the language that they provide, can be activated or deactivated
separately on a per-module/class basis without interfering with each other.2 The
different source-level constructs (and sub-languages / DSLs) are supported by
a compilation process deñned within the corresponding package, typically via
a set of rules deñning source-to-source transformation into the kernel language,
with the (rather infrequent) help of modules or classes written in an external
language using one of the several interfaces provided. The approach of compiling
to a common kernel implies that the programming styles that Ciao implements
share much at both the semantic and implementation levéis, and they naturally
reuse signiñcant portions of the compiler, documenter, abstract machine, etc.

Another fundamental characteristic of the Ciao system is that it provides
a powerful preprocessor, called CiaoPP [8,52,53], which is capable of statically
ñnding non-trivial bugs, verifying that the program complies with speciñcations,
and performing many types of program optimizations. A key ingredient for the
above task is the Ciao assertion language [82]. While not strictly required for
developing or compiling programs, the preprocessor and assertion language are
important and distinctive components of the Ciao design and they also have
their origin in earlier work stemming from <fc-Prolog. In particular, the <fc-Prolog
compiler included a parallelizer which was capable of automatically annotating
programs for parallel execution [51,74,71]. This required developing advanced
program analysis technology based on abstract interpretation [27] (leading to
the development of the PLAI analyzer [91,73,55,76]) which allowed inferring
program properties such as independence among program variables [73,75], ab-
sence of side effects [72], non-failure [36], data structure shape and instantiation
state ("moded types") [87], or even being able to infer upper and lower bounds
on the sizes of data structures and the cost of procedures [33,32,37,34], which
was instrumental for performing automatic granularity control [33,66,65]. Also,
in addition to automatic parallelization the <fc-Prolog compiler performed other
optimizations such as múltiple (abstract) specialization [84]. While the <fc-Prolog
inference technology was aimed at performing program optimizations to maxi-
mize execution speed and minimize resource consumption, interacting with the
system it soon became clear that the wealth of information inferred by the ana-
lyzers would also be very useful as an aid in the program development process,
and this led to the idea of the Ciao assertion language and preprocessor, as we
will discuss later.

2 In fact, some Ciao packages are intended to be portable so that they can be used
with little modification in other logic and constraint logic programming systems.

4

5

6

7

8

9

10

11

12

13

14

15

16

Fig. 1. Some examples in Ciao functional notation.

2 Supporting Múltiple Paradigms

We will now show some examples of how the extensibiüty of the kernel language
mentioned before allows Ciao to incorpórate the fundamental constructs from a
number of programming paradigms. In particular, the system currently offers, as
a combination of syntactic and semantic extensions, the following programming
models:

— Functional Programming: functional notation is provided by a set of packages
which, besides a convenient syntax to define functions (or predicates using
a function-like layout), gives support for semantic extensions which include
higher-order facilities (e.g., function abstractions and applications thereof)
and, if so required, lazy evaluation. For illustration, Figure 1 lists a number
of examples using the Ciao functional notation. nrev and conc are written
by using múltiple :=/2 definitions. fact is written using a disjunction of
guards (which actually commits the system to the first matching choice).
The ~ prefix (eval, which can often be omitted) is the opposite of quote and
states that its argument is a cali (as opposed to a data structure to unify
with). All of this syntax is defined in the functional package, which is
loaded into the module (line 1). nums_f rom is declared lazy, which is possible
thanks to the lazy package, also loaded into the module. An important point
is that these packages only modify the syntax and semantics of this module,
and other modules can use any other packages. Finally, nums uses take from
the library of lazy functions/predicates.

In general, functional notation is just syntax and thus the following query
(loading the functional package in the top level allows using functional no­
tation -the top level behaves in this sense exactly as a module):

: - m o d u l e (_ , _ , [f u n c t i o n a l , l a z y]) .

n r e v ([]) := [] .
nrev([HIT]) := ~conc(nrev(T), [H]).

conc([] , L) := L .
conc([HIT], K) := [H I conc(T, K)].

fact(N) := N=0 ? 1
I N>0 ? N * fact(--N).

:- lazy fun_eval nums_from/l.
nums_from(X) := [X I nums_from(X+l)].

:- use_module(1ibrary('lazy/lazy_lib'), [take/3]).
nums(N) := ~take(N, nums_from(0)).

:- module(_, _, [functional, hiord, bfall])

color := red I blue I green.

list := [] I [_ I list].

list_of(T) := [] | [~T | list_of(T)].

:- module(_, _, [hiord, bfall]).

color(red), color(blue). color(green) .

list([]).
list([_|T]) :- list(T).

list_of(_, []).
list_of(T, [X|Xs]) :- T(X), list_of(T, Xs).

Fig. 2 . Examples in Ciao functional notation and state of translation after ap-
plying the f u n c t i o n a l package.

?- u s e _ p a c k a g e (f u n c t i o n a l) .
? - [3 , 2 , 1] = ~nrev(X).

produces the answer:

X = [1 , 2 , 3]

As mentioned before other constructs such as conditionals do commit the
system to the ñrst matching case. More strictly "functional" behavior (e.g.,
being single moded, in the sense tha t a ñxed set of inputs must always
be ground and for them a single output is produced, etc.) can be enforced
using assertíons, to be discussed later. Figure 2 lists more examples using
f u n c t i o n a l and other packages, and the result after applying just the trans-
formations implied by the f u n c t i o n a l package. Note the use of higher order
in l i s t . o f . More details on Ciao's functional notation can be found in [21].
Logic Programmíng Flavors: a set of packages (which are loaded by default
when a Prolog module is read in) provide support for full ISO-Prolog and
a number of other classical "builtins" expected by users to be provided by
Prolog systems —except tha t of course in Ciao rather than builtins all of
them are optional features brought in from the libraries.3 This is signaled by

3 The support of Prolog is done in such a way that Prolog code runs without modifica-
tion, and the system top level comes up by default in Prolog mode. As a result, many
Ciao users which come to the system looking for a good Prolog implementation do
get what they expect and, if they do not poke further into the menus and manuals,
may never realize that Ciao is in fact quite a different beast.

simply not using the third argument (the one devoted to listing packages)
in module declarations.
Alternatively, by avoiding the loading of the Prolog packages the user can
restrict the module to use only puré logic programming, without any of
Prolog's impure features. For example, the second listing in Figure 2 is a
puré logic programming module. If a cali to a Prolog builtin such as a s s e r t
were to appear within the module it would be signaled by the compiler as
calling an undeñned predicate. Features such as, for example, declarative
I /O , can be added to such puré modules, by loading additional libraries.
This also allows adding individual features of Prolog on a needed basis.
Higher-order logic programming with predicate abstractions is supported
through the h iord package. This is also illustrated in the second listing
in Figure 2. As a further example of the capabilities of the h iord package
consider the queries:

?- use_package(h iord) , u s e _ m o d u l e (l i b r a r y (h i o r d l i b)) .
? - P = (_(X,Y) : - Y = f(X)) , map([l , 3 , 2] , P, R) .

where, after loading the higher-order package h iord and instantiating P to
the predicate abstraction _(X,Y) : - Y = f (X), map([l , 3 , 2] , P, R) is
applied to P producing:

R = [f (D , f (3) , f (2)]

The (reversed) query:

?- P = (_(X,Y) : - Y = f (X)) , map(M, P, [f (D , f (3) , f (2)]) .

produces:

M = [1 , 3 , 2]

— Additional Computation Rules: In addition to the usual depth-ñrst , left-
to-right execution regime of Prolog, and again by loading suitable pack­
ages, other computation rules such as breadth-ñrst , iterative deepening, An­
dorra model, etc. are available. As an example in the second listing in Fig­
ure 2 any calis to co lor , l i s t , and l i s t . o f will be executed breadth-ñrst .4

4 The possibility of using different control rules has shown useful not only in ap-
plications but also (and very specially) when teaching logic programming. In our
experience, it is cumbersome to make the first introductory lectures to logic pro­
gramming using Prolog since the particular (albeit often practically useful) quirks
and the subsequent non-termination of Prolog get in the way of teaching the fun­
damental concepts of logic programming. We have found that it makes perfect
sense to start with a purer logic language, with better termination and fairness
characteristics. The Ciao breadth-ñrst mode has proved quite useful for this (see
h t tp : / /www.c l ip lab .org / loga lg for the slides of our course based on this ap-
proach). Once the beauty of puré logic programming is experienced the student
is then introduced to the practical and powerful choices made in the design of Pro­
log, and later to topics and functionality beyond Prolog, such as those outlined in
this document, all within the same system.

http://www.cliplab.org/logalg

:- module(_,_,[fsyntax,clpqf]).

fact(.=. 0) := .=. 1.
fact(N) := .=. N*fact(.=. N-l) :- N .>.

sorted := [] I [_].
sorted([X,Y|Z]) :- X .<. Y, sorted([Y IZ]).

0.

\

,

Fig. 3. Ciao constraints (combined with functional notation).

Tabling [24] is currently being added using an approach which relies mostly
on a source-to-source program transformation (which is performed using a
package) and an external C library which is accessed using one of the avail-
able foreign interfaces [29]. The underlying abstract machine did not have to
be changed, and therefore sequential execution is left essentially untouched.

— Constraint Programmíng: several constraint solvers and classes of constraints
using these solvers are supported including CLP(Q), CLP(72.) (a derivation
of [57]), and CLP(.FZ?). The constraint languages and solvers, which are built
on more basic blocks such as attributed variables [56] and/or the higher-level
Constraint Handling Rules (CHR) [39,88], are also extensible at the user
level. As an example, Figure 3 provides two examples using Ciao CLP(Q)
constraints, combined with functional notation. For example, line 3 can be
read as: if the argument of f act is constrained to 0 then the "output"
argument is constrained to 1. In the next line if the argument of fact is
constrained to be greater than 0 then the "output" is constrained to be
equal to N*fact(. = . N-l). The two deñnitions (fact and sorted) can
be called with their arguments in any state of instantiation. For example,
the query

?- sor ted(X).

returns:

X =

X =

X =
_A

X =
_B
_A

X =
_C

[] ? ;

[_] ? ;

LA, _B]
.<. _B ?

LA, _B,

•<• _c,
.<. _B ?

LA, _B,
•<• _D,

B .< . _C,
A .< . _B ?

etc.
— Object-Oriented Programming: object-oriented programming is provided by

the O'Ciao c l a s s and o b j e c t packages [80]. These packages provide capabil-
ities for class deñnition, object instantiation, encapsulation and replication of
state, inheritance, interfaces, etc. These features are designed to be natural
extensions of the underlying module system.

— Concurrency, Parallelism, and Distributed Execution: other packages bring
in extensive capabilities for expressing concurrency (including a concurrent,
shared versión of the internal fact datábase which can be used for synchro-
nization), distribution, and parallel execution [14,11,23]. A notion of "active
objects" also allows compiling objects so tha t they are ultimately mapped
to a standalone process, which can then be transparently accessed by the
rest of an application. This provides simple ways to implement servers and
services in general.

In addition to characteristics tha t are speciñc to certain programming paradigms,
many other additional features are available through librarles such as, e.g.:

— Structures with named arguments (feature terms), a trimmed-down versión
of -i/'-terms [2] which makes it possible to compile statically all s tructure
uniñcations to Prolog uniñcations, which ensures tha t using them adds no
overhead to the execution.

— Persistence, which makes it possible to t ransparently save and restore the
s tate of selected facts of the dynamic datábase of a program on exit and
s tar tup . This is the base of a high-level interface with databases [26].

— Answer set programming [38], an alternative logic programming model based
on the stable model semantics [40].

— W W W programming, where Ciao provides librarles to easily establish a map-
ping between HTML / XML and Herbrand terms, to easily handle (genérate
/ transform / inspect / . . .) them in order to for example, write CGIs (or
complete web sites) quite easily Ciao [17].

Again, all of these can be activated or deactivated on a per-module / class basis.

3 The Ciao Approach to Assertions

Many languages (e.g. Mercury [89,43] or Haskell [59,58], to cite some modern,
well-known examples from the logic and functional programming communities)
impose certain type-related requirements, e.g., all types (and, when relevant,
modes) used have to be deñned explicitly or all procedures have to be "well-
typed" and "well-moded".

One argument in favor of such declarations and restrictions is tha t they
can be useful to clarify interfaces and meanings, and in general to make large
programs more maintainable and well documented, facilitating "programming in

the large." Besides, the compiler may use them to genérate more speciñc code,
which can be better in several ways (e.g., performance-wise).

We certainly agree with this! But at the same time we also wanted Ciao to
be useful (as, say Prolog, Scheme, or, more recently Python) for "programming
in the small," prototyping, developing simple scripts, or simply experimenting
while trying to ñnd a solution to a problem, ... and for this we feel type and
mode declarations and other related restrictions can sometimes get in the way.

Fortunately we carne up with a unique solution to this apparent conundrum:
Ciao includes a very rich assertion language (and a methodology for dealing
with such assertions) [52,82] which allows expressing not only classical types,
but also a much wider variety of properties (modes, determinacy non-failure,
cost, ...), but in Ciao these assertions are optíonal. This solution makes Ciao
very useful both for programming in the small and in the large. We believe that
Ciao's solution to the issue of assertions combines effectively the advantages of
the strongly typed and untyped language approaches, bringing the best of both
worlds to the programmer, but within a broader scope which, as we will see,
makes it possible to use a uniform language to express more program properties
(and, therefore, to interact with a tool able to check or infer / reconstruct them).
This is, in some sense, related to the soft typíng approach, pioneered in [20], but
it differs from it in that it is not restricted to types. Instead, the framework is
open regarding the kind of properties that can be expressed in the corresponding
assertions. As an example, systems which aim at performing automatic compile-
time checking are often rather strict about the properties which the user can
write in assertions. This is understandable because otherwise, the underlying
static analyses are of little use for proving the assertions. In our case, we use
the same assertion language for different purposes, including run-time checking.
Therefore, the user may use properties which go beyond those which the static
analyses in the system can prove. Of course, even though such assertions may
sometimes be useful at compile-time for certain purposes, the user cannot expect
CiaoPP to automatically always be able to verify such assertions statically.

As an example, Figure 4 includes the deñnitions of nrev and conc (similarly
to Figure 1) but also states some program properties expressed using the Ciao
assertion language (whose syntax and semantics are made available to the mod­
ule by means of the a s se r t ions package). For example, the assertion in line 4
expresses that when nrev is called (:) the ñrst argument should be a list, and
the second one should be a list on success (=>). The + ñeld in comp assertions can
contain a conjunction of global properties of the computatíon of the predicate
(as the one in line 7). The predicates which are used in such assertions can be in
librarles (such as the nativeprops library used in the figure) or defined by the
user. For example, the deñnitions in Figure 2 can be used as types in assertions
(e.g., line 4 in Figure 4).

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Fig. 4. Naive reverse with some -partially erroneous- assertions.

4 Program Documentat ion, Static Debugging, and
Veriflcation

One of the most useful characteristics of the assertions used in Ciao is that they
are designed to serve many purposes. First, any assertions present in programs
can be processed by an autodocumenter (lpdoc [46]) in order to genérate useful
documentation. Also, assertions are analyzed interactively during program de-
velopment by the system preprocessor (CiaoPP) which can find non-trivial bugs
statically verify that the program complies with the assertions, or even genér­
ate automatically proofs of correctness that can be shipped with programs and
checked easily at the receiving end (using the proof/abstraction carrying code
approach [3]). Even if a program contains no user-provided assertions, Ciao can
check the program against the assertions contained in the librarles used by the
program, thus potentially catching additional bugs at compile time. If the system
cannot prove ñor disprove some property at compile time, the system can (op-
tionally again) introduce a run-time check for such property in the executable.
For homogeneity, and to ease information exchange among the autodocumenter
and the different checkers and analyzers, analysis results are reported using also
the assertion language —which, since it is readable by humans, can be inspected
by a programmer, for example to make sure that the results of the analyses agree
with the intended meaning of the program.

Interestingly, the same underlying technology (global analysis based on ab-
stract interpretation) that allows the system to obtain useful results even when
assertions are not present for all predicates, also allows dealing with complex
properties, beyond classical types, in a safe way. As a result, for example,

module(_, [nrev/2], [assertions, fsyntax, nativeprops])
entry nrev/2 : {list, ground} * var.

pred nrev(A, B) : list(A) => list(B).
success nrev(A, B) => size_o(B, length(A)).
comp nrev(_, _) + (not_fails, is_det).
comp nrev(A, _) + steps_o(length(A)).

nrev ([])
nrev([H|L])

[] .
~conc(~nrev(L),[H]).

comp conc(_, _, _) + (terminates, non_det).
comp conc(A, _, _) + steps_o(length(A)).

conc([] , L)
conc([H|L] , K)

L.
[H | "conc(L,K)].

4

5

6

7

8

9

10

11

12

13

14

15

16

Fig. 5. A modular qsort program.

the programmer has the possibility of stating assertions about the efñciency
of the program (lower and/or upper bounds on the computational cost of pro-
cedures [37,35]) which the system will try to verify or falsify, thus performing
automatic debugging and validation of the performance of programs. Many other
interesting properties of the predicates and literals of the program can be han-
dled, such as data structure shape (including pointer sharing), bounds on data
structure sizes, and other operational variable instantiation properties, as well
as procedure-level properties such as determinacy [63], non-failure [12,36], ter-
mination, and bounds on the execution time [67], as well as on the consumption
a large class user-deñned resources [77].

Assertions also allow programmers to describe the relevant properties of mod­
ules or classes which are not yet written or are written in other languages. This
is also done in other languages but often using different types of assertions for
each purpose. In contrast in Ciao the same assertion language is used again for
this task. This, interestingly, makes it possible to run checkers / veriñers / docu-
menters against code which is only partially developed: the traditional "stubs",
which have to be changed later on for a working versión, can be replaced by an
assertion declaring how the predicate should behave, with the advantage that
this declared behavior can effectively be checked against its uses.

We will now present some examples which illustrate how these capabilities
are used in practice, and which also help introduce some aspects of the assertion
language. The ñrst example will illustrate automatic inference of non-trivial code
properties while the second will focus on the use of assertions in veriñcation and
debugging, and more speciñcally to detect problems in the expected performance
of a program.

m o d u l e (q s o r t , [q s o r t / 2] , [a s s e r t i o n s , f s y n t a x]) .
u s e _ m o d u l e (c o m p a r e , [g e q / 2 , l t / 2]) .
e n t r y q s o r t / 2 : { l i s t (n u m) , g r o u n d } * v a r .

q s o r t ([])
q s o r t ([X | L])

[] .
~ a p p e n d (~ q s o r t (L l) , [X | ~ q s o r t (L 2)])
p a r t i t i o n (L , X, L l , L 2) .

a p p e n d ([] , X)
a p p e n d ([H | X] , Y)

X.
[H | ~append(X,Y)]

partition([] , _B ,[],[]) .
partition ([E|R],C,[E|Leftl],Right) :-

lt (E,C) , partition(R,C,Leftl,Right)
partition([EIR] ,C,Left , [EIRight1]) :-

geq(E,C) , partition(R,C,Left,Right1)

As mentioned before, CiaoPP includes a non-failure analysis, based on [36]
and [12], which can detect procedures and goals that can be guaranteed not
to fail, Le., to produce at least one solution or not to terminate. It also can
detect predicates that are "covered", i.e., such that for any input (included in
the calling type of the predicate), there is at least one clause whose "test" (head
uniñcation and body builtins) succeeds. CiaoPP also includes a determinacy
analysis based on [63], which can detect predicates which produce at most one
solution, or predicates whose clause tests are mutually exclusive, even if they are
not deterministic (because they cali other predicates that can produce more than
one solution). We will use the code in Figure 5. The aforementioned analyses
infer different types of information which include, among others, that expressed
by the following assertion:

: - t rue pred qsort(A,B)
: (l i s t (A,num), var(B)) => (l i s t (A,num), l ist(B,num))
+ (n o t _ f a i l s , covered, i s_de t , mut_exclusive) .

which expresses that, if qsort(A, B) is called with a list of numbers in A and
a variable in B, then B will on exit be a list of numbers and the predicate will
not fail, will give at most one solution, and will not perform backtracking at the
level of its clauses (the + ñeld in pred assertions can contain a conjunction of
global properties of the computatíon of the predicate.)

CiaoPP can also infer lower and upper bounds on the sizes of terms and
the computational cost of predicates [37,35]. The cost bounds are expressed as
functions on the sizes of the input arguments and yield the number of resolution
steps. Various measures can be used for the "size" of an input, such as list length,
term size, term depth, integer valué, etc. Note that obtaining a ñnite upper bound
on cost also implies proving termínatíon of the predicate. As an example, the
following assertion is part of the output of the upper bounds analysis:

: - t rue pred append(A,B,C)
: (l i s t (A,num), l i s t l (B ,num) , var(C))

=> (l i s t (A,num), l i s t l (B ,num) , l i s t l (C ,num) ,
s ize_ub(A,length(A)) , s ize_ub(B, length(B)) ,
size_ub(C,length(B)+length(A)))

+ s teps_ub(length(A)+l) .

Note that in this example the size measure used is list length. The property
size_ub(C,length(B)+length(A) means that an (upper) bound on the size of the
third argument of append/3 is the sum of the sizes of the ñrst and second
arguments. The inferred upper bound on computational steps is the length of
the ñrst argument of append/3.

The following is the output of the lower-bounds analysis:

: - t rue pred append(A,B,C)
: (l i s t (A,num), l i s t l (B ,num) , var(C))

=> (l i s t (A,num), l i s t l (B ,num) , l i s t l (C ,num) ,
s ize_lb(A, length(A)) , s ize_ lb(B, length(B)) ,
s ize_lb(C,length(B)+length(A)))

+ (n o t _ f a i l s , covered, s teps_lb(length(A)+l)) .

The lower-bounds analysis uses information from the non-failure analysis, with-
out which a trivial lower bound of 0 would be derived.

As a second example, we illustrate how in CiaoPP it is possible to state
assertions about the efñciency of the program which the system will t ry to verify
or falsify, thus implementing a form of performance debugging and validation.
This is done by specifying lower and/or upper bounds on the computational cost
of predicates (given in number of execution steps). Consider for example again
the naive reverse program in Figure 4. The assertion in line 7 states tha t nrev
should be linear in the length of the (input) argument A. CiaoPP can be used to
verify (or disprove) this assumption by running the analyzer (as before) to infer
bounds on costs and then comparing them with the assertion. In fact, nrev is of
course quadratic. With compile-time error checking turned on, and mode, type,
non-failure and lower-bound cost analysis selected, CiaoPP issues the following
error message:

ERROR: f a l s e comp a s s e r t i o n :
: - comp nrev(A,B) : t rue => s t e p s _ o (l e n g t h (A))

because i n the computation the f o l l o w i n g h o l d s :
s t e p s _ l b (0 . 5 * e x p (l e n g t h (A) , 2) + l . 5 * l e n g t h (A) + l)

This message states tha t nrev will take at least -2^—^ ' 2———— + 1 reso-
lution steps (which is the cost analysis output) , while the assertion requires the
cost to be in 0(length(A)) resolution steps. As a result, the worst case asymp-
totic complexity stated in the user-provided assertion is proved wrong by the
lower bound cost assertion inferred by the analysis. This allows detecting the
inconsistency and proving tha t the program does not satisfy the efñciency re-
quirements imposed. Note tha t upper-bound cost assertions can be proved to
hold by means of upper-bound cost analysis if the bound computed by analysis
is lower or equal than the upper bound stated by the user in the assertion. The
converse holds for lower-bound cost assertions [8]. Thanks to this functionality,
CiaoPP can also certify programs with resource consumption assurances as well
as efñciently checking such certiñcates [47].

5 High Performance with Less Effort

A potential beneñt of strongly typed languages is performance: the compiler
can genérate more efñcient code with the additional type and mode information
that the user provides. Performance is a good thing, of course. However, we do
not want to put the burden of efñcient compilation on the user by requiring
the presence of many program declarations: the compiler should certainly take
advantage of any information given by the user, but if the information is not
available it should do the work of inferring such program properties. This is the
approach taken in Ciao: as we have seen before, when assertions are not present
in the program Ciao's analyzers t ry to ínfer them. Most of these analyses are

Fig. 6. Headset with a Gumstix processor (left) and 3-D compass (right).

performed at the kernel language level, so that the same analyzers are used for
several of the supported programming models. The information inferred by the
global analyzers is used to perform optimizations, including múltiple abstract
specialization [85], partial evaluation [81], dead code removal, goal reordering,
reduction of concurrency / dynamic scheduling [83], low-level optimization (in­
cluding optimized compilation to native code via C), and others [53].

The objective is again to achieve the best of both worlds: with no assertions
or analysis information the low-level Ciao compiler (ciaoc [16]) generates code
which is highly competitive in speed and size with the best dynamically typed
systems. And then, when useful information is present (either coming from the
user or inferred by the system analyzers) the optimizing compiler (see, e.g., [69]
for an early description) can produce code that is competitive with that coming
from strongly-typed systems. Ciao's highly optimized compilation has been suc-
cessfully tested for example in applications with tight resource usage constraints
(including real-time) [19], obtaining a 7-fold speed-up w.r.t. the default byte-
code compilation (the performance of which is similar to that of state of the art
abstract machine-based systems). The application in hand was real-time spacial
placement of sound sources for a virtual reality suit and ran in a small ("Gum­
stix") processor embedded within a headset (Figure 6). It is interesting to note
that this level of performance is only around 20-40% slower than a comparable
implementation in C of the same application.

A particularly interesting optimization performed by CiaoPP, and which is
inherited from the &-Prolog system, is automatic parallelization [45,41]. This is
specially relevant nowadays given that the wide availability of multicore proces-
sors has made parallel computers mainstream. We illustrate this by means of a
simple example using goal-level program parallelization [6,22]. This optimization
is performed as a source-to-source transformation, in which the input program is
annotated with parallel expressions. The parallelization algorithms, or annota-
tors [71], exploit parallelism under certain independence conditions, which allow

guaranteeing interesting correctness and no-slowdown properties for the paral-
lelized programs [54,31]. This process is made more complex by the presence
of variables shared among goals and pointers among data structures at run-
time. Let us consider again the program in Figure 5. A possible parallelization
(obtained in this case with the "MEL" annotator [71]) is:

qsort([X|L],R) : -
pa r t i t i on (L ,X ,L l ,L2) ,
(

indep(Ll, L2) ->
qsort(L2,R2) k qsort(L1.R1)

qsort(L2,R2), qsor t (L1.R1)
) ,
append(Rl, [X|R2] ,R) .

which indicates that, provided that Ll and L2 do not have variables in common
at run-time, then the recursive calis to qsort can be run in parallel. Assuming
that l t / 2 and geq/2 in Figure 5 need their arguments to be ground (note that
this may be either iníerred by analyzing the implementation oí l t / 2 and geq/2
or by stated by the user using suitable assertions), the information inferred by
the abstract interpreter using, e.g., mode and sharing/íreeness analysis, can de­
termine that Ll and L2 are ground aíter partition, and therefore they do not
have variables to share. As a result, the independence test and the correspond-
ing conditional is simpliñed via abstract executability and the annotator yields
instead the following code:

qsort([X|L],R) : -
pa r t i t i on (L ,X ,L l ,L2) ,
qsort(L2,R2) k q s o r t (L l , R l) ,
append(Rl, [X|R2] ,R) .

which is much more efñcient since it has no run-time test. This test simpüñcation
process is described in detail in [6] where the impact oí abstract interpretation
in the effectiveness of the resulting parallel expressions is also studied.

The tests in the above example aim at stríct independent and-parallelism.
However, the annotators are parametrized on the notion of independence. Dif-
ferent tests can be used for different independence notions: non-strict indepen­
dence [13], constraint-based independence [31], etc. Moreover, all forms of and-
parallelism in logic programs can be seen as independent and-parallelism, pro­
vided the deñnition of independence is applied at the appropriate granularity
level.5

The information produced by the CiaoPP cost analyzers is also used to per-
form combined compile-time/run-time resource control. An example of this is
task granularity control [65] of parallelized code. Such parallel code can be the
output of the process mentioned above or code parallelized manually. In general,

5 For example, stream and-parallelism can be seen as independent and-parallelism if
the independence of "bindings" rather than goals is considered.

this run-time granularity control process involves computing sizes of terms in-
volved in granularity control, evaluating cost functions, and comparing the result
with a threshold to decide between parallel and sequential execution. Optimiza-
tions to this general process include cost function simpliñcation and improved
term size computation [64].

6 Incremental Compilation: Other Support for
Programming in the Small and in the Large

In addition to all the functionality provided by the preprocessor and assertions,
programming in the large is further supported again by the module/class sys­
tem [15,80]. This design is the real enabler of Ciao's modular program devel­
opment support tools, effective global program analysis, modular static debug-
ging, and module-based automatic incremental compilation and optimization.
The analyzers and compiler take advantage of the module system and module
dependencies to reanalyze / recompile only part of the application modules af-
ter one of them is changed, without any need to define "makefiles" or similar
dependency-related additional files.

Application deployment is enhanced beyond the traditional Prolog top-level,
since the system offers a full-featured interpreter but also supports the use of
Ciao as a scripting language and a compiled language. Several types of executa-
bles can be easily built, from multiarchitecture bytecode executables to single-
architecture, standalone executables. Múltiple platforms are supported, includ-
ing Windows, Linux, Mac Os X, and many other Un*x-based OSs.

Modular distribution of user and system code in Ciao, coupled with modular
analysis, allows the generation of stripped executables, with only those builtins
and librarles used by the program. Those reduced-size executables permit pro­
gramming in the small when strict space constraints are present.

Flexible development of applications and librarles that use components writ-
ten in several languages is also allowed, by means of compiler and abstract
machine support for múltiple bidirectional foreign interfaces to C/C++, Java,
Tcl/Tk, SQL databases (with a notion of predicate persistence), etc. The in­
terfaces are expressed in (and any necessary glue code automatically generated
from) descriptions written in the assertion language, as previously stated.

7 An Advanced Integrated Development Environment

Another design objective of Ciao has been to provide a truly productive program
development environment that integrates all of the tools mentioned before in
order to fulfill the objective of allowing the development of correct and efficient
programs in as little time and with as little effort as possible. This includes a
rich graphical development interface, based on the latest, graphical versions of
Emacs and offering menú and widget-based interfaces with direct access to the
top-level/debugger, preprocessor, and autodocumenter, as well as an embeddable

viMi im

File Edil Qplioris Buffers Tools CiaoSys CiaoDüg CiaoPP LPdoc CiaoOpts CiaoHelp Help

C_ 0? i f i -¥*• ígf

1 :- module(_,_,[functions,clpq]).

% fi function
fact(O) := 1.
fact(N) :- N * ~factt—N) :- N > 0.

% A predícate
append([].X.X) .
append([Xm,Z,:XIH:) :-

append(Y.Z.H) .

% Using constrainta (CLP(Q))
¡jibCX.Y) :- X . = . 0. Y .= . 0.
fibtX.Y) :- X .=. 1, Y .=. 1.
fib(N.F) :- N .>. 1,

NI .=. N - 1,
N2 .=. N - 2.
fibíNl. Fl).
fib(N2. F2>.
F .-. F1+F2.

-:«H fact_fl.pl (Ciao/ProloR)—L13—Top 1

{Including /home/herme/.ciaorc
(lnclud¡ng/home/herme/local/lib/.iaopp/ciaopp-1.0/pathjn¡tpl
}
}
Ciao 1.11 #308: Mon Mar 14 15:23:07 CET2005

?-D
u
-:«» *CÍao/ProlQR:* (Ciao/ProloR/LPdoc Llatener : run)—L9—flll 1
i p Qult

Fig. 7. A program ñle and the top-level interpreter.

source-level debugger with breakpoints, and several execution visualization tools.
In addition, a plugin with very similar functionality is also available for the
Eclipse environment.

The programming environment makes it possible to start the top-level, the
debugger, or the preprocessor, and to load the current module within them by
pressing a button or via a pair of keystrokes. Figure 7 shows a source ñle (with
syntax highlighting, top level, menus, buttons, etc.). Tracing the execution in
the debugger makes the current statement in the program be highlighted in an
additional buffer containing the debugged ñle (Figure 8).

The environment provides also automated access to the documentation, ex-
tensive syntax highlighting, auto-completion, or auto-location of errors in the
source, and is highly customizable (to set, for example, alternative installation
directories or the location of some binaries). Figure 9 shows the location in the
source of a simple syntactic error. The direct access to the preprocessor allows
interactive control of all the static debugging, veriñcation, and program trans-
formation facilities. As an example, Figure 10 shows CiaoPP signaling in the
source a semantic error (in the same way as the previous simple syntactic er-

http://fact_fl.pl

File Edil Oplions Buffers Tools Ciao CiaoOpts CiaoHelp Complete In/Out Signáis Help

7¡ñ¡x

e3 f * <& *> -» 3» ts ©¡ COÍ-) © ^ ^ s » ^ ^ ? - ? ' • < > t í < ^
:- module(_,[fact/2],[assertions,regtypes]).

:- entry fact/2 : num * var.

fact(O.l).
fact(N.R) :-

N>0.
NI is N-l.

r

R

fact.pl (Ciao/Prolog)—1_9—Top-

L

fact(8,Y).
1 1 Cali
2 2 Cali
2 2 Exit
3 2 Cali
3 2 Exit
4 2 Cali

fact:fact(8
8>0 ?
8>0 ?
363 is 8-1
7 is 8-1 ?
fact:fact(7

_157) ?

?

_382) ?

- :«» *CÍao/ProloR:* (Ciao/ProloR/LPdoc Listener : run)-L64—Bot 1

Fig. 8. The source debugger in action.

ror). In particular, it is the cost-related error discussed previously in which the
compiler detects (statically!) that the deñnition of nrev does not comply with
the assertion requiring it to be of linear complexity. The direct access to the
auto-documentation facilities [46] allows using a pair of keystrokes to genérate
human-readable program documentation from the current ñle in a variety of
formats from the assertions, directives, and machine-readable comments present
in the program being developed or in the system's libraries, as well as all other
program information available to the compiler. This direct access to the docu-
menter and on a per-module basis is very useful in practice in order to build
documentation incrementally and to make sure that, for example, cross refer-
ences between ñles are are well resolved and that the documentation itself is well
structured and formatted. As a further example of the different components and
capabilities of the environment, Figure 11 shows a VisAndOr [18] depiction of
an and-parallel execution.

File Edil Oplions Buffers Tools Ciao CiaoOpts CiaoHelp Complete In/Out Signáis Help

7¡ñ¡x

e3 f * <& *> -» 3» ts ©¡ COÍ-) © ^ ^ s » ^ ^ ? - ? ' • < > t í < ^
:- module(_,[fact/2],[assertions,regtypes]).

^}- entry fact/2 : num * var.

fact(O.l).
fact(N.R) :-

N>0.
NI is N-l.
fact(Nl.R2).
R is R1*N.

F
fact.pl (Ciao/Prolog)—L3—Top-

{Reading/home/clip/public_html/Projects/ASAP/Software/Ciao2/screenshots/factpl
WARNING: (Ins 6-10) [R1.R2] - singleton variables in facÜ2

-:** ^Ciao/ProlQR;* (Ciao/ProloR/LPdoc Listener: run)—L83—Bot 1

L
Fig. 9. Error location in the source -a simple syntactic error.

8 Some Final Thoughts on Parallelism, Dynamic
Languages, and Mains t ream Programming

Interestingly many of the motivations behind the development of Ciao over the
years have acquired presently even more crucial importance. Parallelism capa-
bilities are becoming ubiquitous thanks to the widespread use of multi-core pro-
cessors. Indeed, most laptops on the market contain two cores (typically capable
of running up to four threads simultaneously) and single-chip, 8-core servers are
now in widespread use. Furthermore, the trend is that the number of on-chip
cores will double with each processor generation. In this context, being able to
exploit such parallel execution capabilities in programs as easily as possible be-
comes more and more a necessity. However, it is well-known [61] that paralleliz-
ing programs is a hard challenge. This has renewed interest in language-related
designs and tools which can simplify the task of producing parallel programs.

At the same time, the environment in which much software needs to be
developed nowadays (decoupled software development, use of components and
services, increased interoperability constraints, need for dynamic update or self-

j>y¿j2=tll=*

File Edit Options Buffers Tools Ciao CiaoOpts CiaoHelp Complete In/Out Si

& s s a « > ^ % E ^ i 4 caí?) e i -
Q]- module(_, [nrev/2] , [assertians,functianal,regt__)es,riativeprops]) .

:- entry nrev/2 : { l i s t , ground} * var.

pred nrev(A,B) : l i s t (A) => nurn(B).
success nrevCAjB) => size_o(BJleiigth(A)).
comp nrev(_,_) + (not_fails., is_det) .
comp nrev(A,_) + steps_o(lengthíA)) .

nrev([]) := [] .
nrev([H|L]) := -conc (nrev(L), [H]) .

comp come(_,_,_) + (terminates, nan_det) .
comp comc(A,_,_) + steps_o(lengtli(A)) .

conc ([], L)
revf_assrt__buq.pl Top Ll ~ (Ciao)

{ERROR (ctchecksjjredmessages): (Ins 9-9) False assertion:
:- check comp nrev(A, _1)

+ steps_o (Length(A)) .

because
on comp revf_assrt_buo;:nrev(A, _)

[generic_com.p] : steps_ub (0. 5+exp (lencfth(A), 2) +1. 5+length(A) +1),
steps_Lb (0. 5+exp (length(A), 2) +1. 5+length(A) +1), n.üt_f a i l s , covered,
mu^exclusive, is_det

}
{ERROR (ctchecksjiredmessages): (Ins 5-6) False assertion:
:- check success nrev(A, E)

: List(A)
= > num(B) .

. because
U:**- *Ciao-Preprocessor* 62» L40 (Ciao/CiaoPP/LPdoc Listener: run) 1

Fig. 10. Error location in the source -a cost error.

reconñguration, mash-ups) is posing requirements which align with the classical
arguments for dynamic languages but which in fact go beyond them. Ex ampies
of often required dynamic features include making it possible to (partially) test
and verify applications which are partially developed, and which will never be
"complete" or "final", or which need to have flexibility in their APIs because
they need to have a variable number of arguments or their "entry points" evolve
over time in an asynchronous, decentralized fashion (e.g., services, including
web services). These requirements, coupled with their intrinsic agility in devel-
opment, have made dynamic programming languages (such as Python, Ruby,
Lúa, JavaScript, Perl, PHP, etc.) a very attractive option in recent years for a
number of purposes that go well beyond simple scripting. Parts written in these
languages often become essential components (if not the central implementation
vehicle) of mainstream applications. The practical relé vanee of dynamic features
is also illustrated by the many successful languages and frameworks which aim
at bringing together ideas of both worlds. For example, Objective-C [28], which
mixes C, object orientation, and the possibility of having dynamically typed

http://revf_assrt__buq.pl

Fig. 11. VisAndOr depiction of an and-parallel execution of QuickSort.

variables and messages, is currently used as the base of Mac OS X, and it was
used before in NextStep. Other frameworks, such as Java and .NET, are in-
tensely working on ensuring and improving the interoperability among dynamic
and static languages by including support for dynamicity in their virtual ma­
chines. Another example is the future fourth revisión of ECMAScript [1] on
which the JavaScript and ActionScript languages are based, that will include
optional (soft-)type declarations to allow the compiler to genérate more efñcient
code and detect more errors. The Tamarin project [70] intends to use this ad-
ditional information to genérate faster code. For Python, the PyPy project [86]
designed a language, RPython [4] that imposes constraints on the programs to
ensure that they can be statically typed. RPython is moving forward as a general
purpose language.

At the same, detecting errors at compile-time and inferring properties re-
quired to optimize programs, are still important issues in real-world applications.
This has also brought the development of safe versions of traditional languages,
such as, e.g., CCured [78] or Cyclone [60] for C, as well as of systems that offer
capabilities similar to those of the Ciao assertion preprocessor, such as Necula
et al.'s Deputy 6 or Leino et al.'s Spec# [62].

We believe that Ciao has pioneered and is continuing to push the state of the
art in these currently very relevant and challenging áreas, and offers a unique
combination of features which directly address many of these challenges. The
Ciao approach to exploiting parallelism provides powerful parallelizers and at
the same time allows programmer and parallelizer to cooperate. Programmers
can choose between expressing manually the parallelism with high-level con-
structs, letting the compiler discover the parallelism, or a combination of both.
Parts of a program can be parallelized by hand and other parts automatically.
Furthermore, the parallelizer also checks manual parallelizations for correctness.

h t t p : / / d e p u t y . e s . b e r k e l e y . e d u /

http://deputy.es.berkeley.edu/

Finally, the output of the parallelizer is expressed in the same high level lan-
guage, which means that programmers can easily inspect (and improve) the
parallelizations produced by the compiler. At the heart of these capabilities are
CiaoPP's powerful, modular, and incremental abstract interpretation-based pro-
gram analyzers. The use of this technology was pioneered by <fc-Prolog and Ciao
(it was arguably the ñrst use of abstract interpretation in a real compiler) and
we continué to believe it is the most promising nowadays, and they are being
adopted or will be adopted by many systems (see, e.g., [45] for further discussion
of this topic).

Regarding the conundrum between statically and dynamically checked lan-
guages, Ciao has also pioneered and continúes to push the state of the art of
what we believe is the most promising approach in order to be able to obtain
the best of both worlds: the combination of a flexible, multi-purpose assertion
language with sophisticated assertion processing based on strong program anal-
ysis technology. This allows support for dynamic language features while at the
same time having the capability of achieving the performance and efñciency of
static systems. It also allows being able to work in a seamless way with a large
class of properties, some of them even user-deñned, and which go well beyond
traditional types. Again, at the heart of these capabilities are CiaoPP's abstract
interpretation-based analyzers.

Finally, we also believe that Ciao's language design offers unique possibilities
due to its simple and powerful extensibility features, which not only allow to
selectively bring in the constructs of múltiple programming paradigms, but also
make it possible for the programmer to easily extend (and restrict) the language
as needed, syntactically and semantically, and to quickly design domain-speciñc
languages.

Probing Further
The reader is encouraged to explore the system, its documentation, and the
tutorial papers that have been published on it. We are currently working on the
new 1.14 system versión which includes signiñcant enhancements with respect
to the previous versión (1.10). In addition to the autodocumenter, we plan to
include a beta versión of the preprocessor in the default Ciao distribution (up
to now, CiaoPP was only distributed on demand and installed separately). Ciao
1.14 is available already on demand from the Ciao subversión repository.

But, Why is it Called Ciao?

After reading the previous paragraphs the reader may have already seen the logic
behind the "Ciao Prolog" phrase. Ciao is an interesting word which is used both
to say helio and goodbye. Ciao intends to be a truly excellent, high-performance,
and freely available ISO-Prolog system which can be used as a classical Prolog,
in both academic and industrial environments (and, in particular, to introduce
users to Prolog and to constraint and logic programming -the helio Prolog part).
But Ciao is also a new-generation, multiparadigm programming language and

sophisticated program development environment for large, complex applications
which goes well beyond Prolog and other classical logic programming languages
- t h e goodbye Prolog part . And it has the advantage (when compared to other
modern systems tha t support different forms of logic programming) tha t it does
so while keeping full Prolog compatibility when desired.

Contac t / d o w n l o a d info

http: / /www.ciaohome.org The Ciao Development Team
h t t p : / / w w w . c l i p l a b . o r g Technical U. of Madrid, Spain
c i a o Q c l i p . d i a . f i . u p m . e s U. of New México, USA

U. Complutense de Madrid, Spain
IMDEA-Inst i tute for Software Development
Technology

Ciao is free software protected to remain so by the GNU LGPL license. It can
be used freely to develop both free and commercial applications.

References

1. ECMA 2008. ECMAscript Edition 4 Specification Wiki, 2008. Available at h t t p :
/ /wik i .ecmascr ip t .o rg .

2. Hassan Aít-Kaci. An Introduction to LIFE - Programming with Logic, Inheritance,
Functions and Equations. In Proceedings of the 1993 International Symposium on
Logic Programming, 1993.

3. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc.
ofLPAR'04, volume 3452 of LNAI. Springer, 2005.

http://www.ciaohome.org
http://www.cliplab.org
http://ciaoQclip.dia.fi.upm.es

4. Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis.
RPython: a Step towards Reconciling Dynamically and Statically Typed OO Lan-
guages. In DLS '07: Proceedings of the 2007 Symposium on Dynamic Languages,
pages 53-64, New York, NY, USA, 2007. ACM.

5. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla
(Eds.). The Ciao System. Ref. Manual (vi.13). Technical report, C. S. School
(UPM), 2006. Available at http://www.ciaohome.org.

6. F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM TOPLAS, 21(2):189-238, March 1999.

7. F. Bueno, S. K. Debray, M. García de la Banda, and M. Hermenegildo.
Transformation-based Implementation and Optimization of Programs Exploiting
the Basic Andorra Model. Technical Report CLIP11/95.0, Facultad de Informática,
UPM, May 1995.

8. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int 'l Workshop on Au-
tomated Debugging-AADEBUG'97, pages 155-170, Linkoping, Sweden, May 1997.
U. of Linkoping Press.

9. F. Bueno and M. Hermenegildo. An Automatic Translation Scheme from Prolog
to the Andorra Kernel Language. In Proc. of the 1992 International Conference on
Fifth Generation Computer Systems, volume 2, pages 759-769. Institute for New
Generation Computer Technology (ICOT), June 1992.

10. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. From Eventual to Atomic
and Locally Atomic CC Programs: A Concurrent Semantics. In Fourth Interna­
tional Conference on Algebraic and Logic Programming, number 850 in LNCS,
pages 114-132. Springer-Verlag, September 1994.

11. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. Partial Order and Con-
textual Net Semantics for Atomic and Locally Atomic CC Programs. Science of
Computer Programming, 30:51-82, January 1998. Special CCP95 Workshop issue.

12. F. Bueno, P. López-García, and M. Hermenegildo. Multivariant Non-Failure Anal-
ysis via Standard Abstract Interpretation. In FLOPS'04), pages 100-116. Springer
LNCS 2998, 2004.

13. D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-
parallelism Using Sharing and Freeness Information. In 1994 International Static
Analysis Symposium, number 864 in LNCS, pages 297-313, Namur, Belgium,
September 1994. Springer-Verlag.

14. D. Cabeza and M. Hermenegildo. Distributed Concurrent Constraint Execution in
the CIAO System. In Proc. of the 1995 COMPULOG-NET Workshop on Paral-
lelism and Implementation Technologies, Utrecht, NL, September 1995. U. Utrecht
/ T.U. Madrid. Available from h t tp : / /www.c l ip lab .org / .

15. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In Interna­
tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages
131-148. Springer-Verlag, July 2000.

16. D. Cabeza and M. Hermenegildo. The Ciao Modular, Standalone Compiler and
Its Generic Program Processing Library. In Special Issue on Parallelism and Im­
plementation of (C)LP Systems, volume 30(3) of Electronic Notes in Theoretical
Computer Science. Elsevier - North Holland, March 2000.

17. D. Cabeza and M. Hermenegildo. Distributed WWW Programming using (Ciao-
)Prolog and the PiLLoW Library. Theory and Practice of Logic Programming,
l(3):251-282, May 2001.

http://www.ciaohome.org
http://www.cliplab.org/

18. M. Carro, L. Gómez, and M. Hermenegildo. Some Paradigms for Visualizing Par-
allel Execution of Logic Programs. In 1993 International Conference on Logic
Programming, pages 184-201. MIT Press, June 1993.

19. M. Carro, J. Morales, H.L. Muller, G. Puebla, and M. Hermenegildo. High-Level
Languages for Small Devices: A Case Study. In Krisztian Flautner and Taewhan
Kim, editors, Compilers, Architecture, and Synthesis for Embedded Systems, pages
271-281. ACM Press / Sheridan, October 2006.

20. Robert Cartwright and Mike Fagan. Soft Typing. In Programming Language
Design and Implementation (PLDI1991), pages 278-292. SIGPLAN, ACM, 1991.

21. A. Casas, D. Cabeza, and M. Hermenegildo. A Syntactic Approach to Combin-
ing Functional Notation, Lazy Evaluation and Higher-Order in LP Systems. In
FLOPS'06, Fuji Susono (Japan), April 2006.

22. A. Casas, M. Carro, and M. Hermenegildo. Annotation Algorithms for Unre-
stricted Independent And-Parallelism in Logic Programs. In 17th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR'07),
number 4915 in LNCS, pages 138-153, The Technical University of Denmark, Au-
gust 2007. Springer-Verlag.

23. A. Casas, M. Carro, and M. Hermenegildo. Towards a High-Level Implementation
of Execution Primitives for Non-restricted, Independent And-parallelism. In D.S.
Warren and P. Hudak, editors, lOth International Symposium on Practica! As-
pects of Declarative Languages (PADL'08), volume 4902 oí LNCS, pages 230-247.
Springer-Verlag, January 2008.

24. Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General
Logic Programs. Journal of the ACM, 43(l):20-74, January 1996.

25. The Ciao Developnient Team. The Ciao Multiparadigm Language and Program
Developnient Environment, November 2006. The ALP Newsletter 19(3). The As-
sociation for Logic Programming. Available fromhttp://www.logicprogramming.
org/newslet ter /nov06/index.html.

26. J. Correas, J. M. Gómez, M. Carro, D. Cabeza, and M. Hermenegildo. A Generic
Persistence Model for CLP Systems (And Two Useful Implementations). In Pro-
ceedings of the Sixth International Symposium on Practica! Aspects of Declarative
Languages, number 3057 in LNCS, pages 104-119, Heidelberg, Germany, June
2004. Springer-Verlag.

27. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL'77, pages 238-252, 1977.

28. Brad J. Cox. Object Oriented Programming: An Evolutionary Ap­
proach. Addison Wesley, 1991. Additional information available at
h t t p : / / d e v e l o p e r . apple . com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf.

29. P. Chico de Guzmán, M. Carro, M. Hermenegildo, Claudio Silva, and Ricardo
Rocha. An Improved Continuation Call-Based Implementation of Tabling. In
D.S. Warren and P. Hudak, editors, lOth International Symposium on Practica!
Aspects of Declarative Languages (PADL'08), volume 4902 of LNCS, pages 198-
213. Springer-Verlag, January 2008.

30. M. García de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent
And-Parallelism in CLP. In Programming Languages: Implementation, Logics, and
Programs, number 1140 in LNCS, pages 77-91, Aachen, Germany, September 1996.
Springer-Verlag.

31. M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence in
CLP Languages. ACM Transactions on Programming Languages and Systems,
22(2):269-339, March 2000.

http://www.logicprogramming
http://developer

32. S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS, 15(5),
1993.

33. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in
Logic Programs. In Proc. PLDI'90, pages 174-188. ACM, June 1990.

34. S. K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

35. S. K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In ILPS'97. MIT Press, 1997.

36. S.K. Debray, P. López-García, and M. Hermenegildo. Non-Failure Analysis for
Logic Programs. In ICLP'97, pages 48-62. MIT Press, 1997.

37. S.K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Estimating the
Computational Cost of Logic Programs. In Static Analysis Symposium, SAS'94,
number 864 in LNCS, pages 255-265, Namur, Belgium, September 1994. Springer-
Verlag.

38. Ornar El-Khatib, Enrico Pontelli, and Tran Cao Son. Integrating an Answer Set
Solver into Prolog: ASP-PROLOG. In LPNMR, pages 399-404, 2005.

39. Thom Frühwirth. Theory and Practice of Constraint Handling Rules. Journal
of Logic Programming, Special Issue on Constraint Logic Programming, 37(1-3),
October 1998.

40. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In International Conference on Logic Programming 1988, pages
1070-1080, 1988.

41. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu­
tion of Prolog Programs: a Survey. A CM Transactions on Programming Languages
and Systems, 23(4):472-602, July 2001.

42. S. Haridi and N. Franzén. The Oz Tutorial. DFKI, Febmary 2000. Available from
http://www.mozart-oz.org.

43. F. Henderson, Z. Somogyi, and T. Conway. Determinism Analysis in the Mer-
cury Compiler. In Proc. Australian Computer Science Conference, pages 337-346,
Melbourne, Australia, January 1996.

44. M. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution
of Logic Programs. In Third International Conference on Logic Programming,
number 225 in Lecture Notes in Computer Science, pages 25-40. Imperial College,
Springer-Verlag, July 1986.

45. M. Hermenegildo. Automatic Parallelization of Irregular and Pointer-Based Com-
putations: Perspectives from Logic and Constraint Programming. In Proceedings of
EUROPAR'97, volume 1300 oí LNCS, pages 31-46. Springer-Verlag, August 1997.

46. M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Interna­
tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages
1345-1361. Springer-Verlag, July 2000.

47. M. Hermenegildo, E. Albert, P. López-García, and G. Puebla. Some Techniques
for Automated, Resource-Aware Distributed and Mobile Computing in a Multi-
Paradigm Programming System. In Proc. of EURO-PAR 2004, number 3149 in
LNCS, pages 21-37. Springer-Verlag, August 2004.

48. M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. García de la Banda,
P. López-García, and G. Puebla. The CIAO Multi-Dialect Compiler and System:
An Experimentation Workbench for Future (C)LP Systems. In Parallelism and
Implementation of Logic and Constraint Logic Programming, pages 65-85. Nova
Science, Commack, NY, USA, April 1999.

http://www.mozart-oz.org

49. M. Hermenegildo and The Ciao Developnient Team. Why Ciao? -An Overview of
the Ciao System's Design Philosophy. Technical Report CLIP7/2006.0, Technical
University of Madrid (UPM), School of Computer Science, UPM, December 2006.
Available from: h t t p : / / c l i p l a b . o rg /papers /c iao-ph i losophy-no te - t r .pdf.

50. M. Hermenegildo and The CLIP Group. Some Methodological Issues in the De­
sign of CIAO - A Generic, Parallel, Concurrent Constraint System. In Principies
and Practice of Constraint Programming, number 874 in LNCS, pages 123-133.
Springer-Verlag, May 1994.

51. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

52. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Specifi-
cations, and an Extensible Assertion Language for Program Validation and Debug-
ging. In The Logic Programming Paradigm: a 25-Year Perspective, pages 161-192.
Springer-Verlag, 1999.

53. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2):115-140,
October 2005.

54. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efñciency, and Compile-Time Conditions. Journal
of Logic Programming, 22(l):l-45, 1995.

55. M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Prac-
tical Compilation Tool. Journal of Logic Programming, 13(4):349-367, August
1992.

56. C. Holzbaur. Metastructures vs. Attributed Variables in the Context of Exten­
sible Unification. In 1992 International Symposium on Programming Language
Implementation and Logic Programming, pages 260-268. LNCS631, Springer Ver-
lag, August 1992.

57. C. Holzbaur. SICStus 2.1/DMCAI Clp 2.1.1 User's Manual. University of Vienna,
1994.

58. P. Hudak, S. Peyton-Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.
Guzman, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Par-
tain, and J. Peterson. Report on the Programming Language Haskell. Haskell
Special Issue, ACM Sigplan Notices, 27(5), 1992.

59. Paul Hudak, John Hughes, Simón Peyton Jones, and Philip Wadler. A History
of Haskell: Being Lazy with Class. In HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages, pages 12-1-12-55,
New York, NY, USA, 2007. ACM.

60. Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of c. In Carla Schlatter El-
lis, editor, USENIX Annual Technical Conference, General Track, pages 275-288.
USENIX, 2002.

61. A.H. Karp and R.C. Babb. A Comparison of 12 Parallel Fortran Dialects. IEEE
Software, September 1988.

62. Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verifi­
cation challenges for sequential object-oriented programs. Formal Asp. Comput.,
19(2):159-189, 2007.

63. P. López-García, F. Bueno, and M. Hermenegildo. Determinacy Analysis for Logic
Programs Using Mode and Type Information. In LOPSTR'04, pages 19-35, 2005.

64. P. López-García and M. Hermenegildo. Efñcient Term Size Computation for Gran-
ularity Control. In Proc. of ICLP'95, 1995.

65. P. López-García, M. Hermenegildo, and S. K. Debray. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs. J. of Symbolic Computation,
Special Issue on Parallel Symbolic Computation, 21:715-734, 1996.

66. P. López-García, M. Hermenegildo, and S.K. Debray. Towards Granularity Based
Control of Parallelism in Logic Programs. In Proc. of First International Sympo-
sium on Parallel Symbolic Computation, PASCO'94, 1994.

67. E. Mera, P. López-García, G. Puebla, M. Carro, and M. Hermenegildo. Combin-
ing Static Analysis and Profiling for Estimating Execution Times. In PADL'07,
number 4354 in LNCS. Springer-Verlag, 2007.

68. U. Montanari, F. Rossi, F. Bueno, M. García de la Banda, and M. Hermenegildo.
Towards a Concurrent Semantics-based Analysis of CC and CLP. In Principies
and Practice of Constraint Programming, number 874 in LNCS, pages 151-161.
Springer-Verlag, May 1994.

69. J. Morales, M. Carro, and M. Hermenegildo. Improving the Compilation of Prolog
to C Using Moded Types and Determinism Information. In Proceedings of the Sixth
International Symposium on Practica! Aspects of Declarative Languages, number
3057 in LNCS, pages 86-103, Heidelberg, Germany, June 2004. Springer-Verlag.

70. Mozilla. Tamarin Project, 2008. Available at h t tp: / /www.mozi l la .org/
p ro jec t s / t amar in / .

71. K. Muthukumar, F. Bueno, M. García de la Banda, and M. Hermenegildo. Au­
tomatic Compile-time Parallelization of Logic Programs for Restricted, Goal-
level, Independent And-parallelism. Journal of Logic Programming, 38(2):165-218,
February 1999.

72. K. Muthukumar and M. Hermenegildo. Complete and Efñcient Methods for Sup-
porting Side Effects in Independent/Restricted And-parallelism. In 1989 Interna­
tional Conference on Logic Programming, pages 80-101. MIT Press, June 1989.

73. K. Muthukumar and M. Hermenegildo. Deterniination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. In 1989 North
American Conference on Logic Programming, pages 166-189. MIT Press, October
1989.

74. K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for
Automatic Compile-time Parallelization of Logic Programs for Independent And-
parallelism. In Int'l. Conference on Logic Programming, pages 221-237. MIT Press,
June 1990.

75. K. Muthukumar and M. Hermenegildo. Combined Deterniination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In ICLP, 1991.

76. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable De-
pendency Using Abstract Interpretation. JLP, 13(2/3):315-347, 1992.

77. J. Navas, E. Mera, P. López-García, and M. Hermenegildo. User-definable resource
bounds analysis for logic programs. In ICLP, LNCS, 2007.

78. George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. Ccured: type-safe retrofitting of legacy software. A CM Trans. Program.
Lang. Syst, 27(3):477-526, 2005.

79. M. Olmedilla, F. Bueno, and M. Hermenegildo. Automatic Exploitation of Non-
Determinate Independent And-Parallelism in the Basic Andorra Model. In Logic
Program Synthesis and Transformation, 1993, Workshops in Computing, pages
177-195. Springer-Verlag, July 1993.

80. A. Pineda and F. Bueno. The O'Ciao Approach to Object Oriented Logic Program­
ming. In Colloquium on Implementation of Constraint and LOgic Programming
Systems (ICLP associated workshop), Copenhagen, July 2002.

http://www.mozilla.org/

81. G. Puebla, E. Albert, and M. Hermenegildo. Abstract Interpretation with Special-
ized Definitions. In Proc. of SAS'06, number 4134 in LNCS. Springer, 2006.

82. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23-61. Springer LNCS 1870, 2000.

83. G. Puebla, M. García de la Banda, K. Marriott, and P. Stuckey. Optimization of
Logic Programs with Dynamic Scheduling. In 1997 International Conference on
Logic Programming, pages 93-107, Cambridge, MA, June 1997. MIT Press.

84. G. Puebla and M. Hermenegildo. Implementation of Múltiple Specialization in
Logic Programs. In Proc. of PEPM'95, pages 77-87. ACM Press, June 1995.

85. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Appli­
cation to Program Parallelization. JLP, 41(2&3):279-316, November 1999.

86. A. Rigo and S. Pedroni. PyPy's Approach to Virtual Machine Construction. In
Dynamic Languages Symposium 2006. ACM Press, October 2006.

87. H. Saglam and J. Gallagher. Approximating constraint logic programs using poly-
morphic types and regular descriptions. Technical Report CSTR-95-17, Depart­
ment of Computer Science, University of Bristol, Bristol BS8 1TR, 1995.

88. Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling
Rules. PhD thesis, K.U.Leuven, Belgium, June 2005.

89. Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of Mer-
cury: an Efñcient Purely Declarative Logic Programming Language. JLP, 29(1-3),
October 1996.

90. D.H.D. Warren. Logic Programming Languages, Parallel Implementations, and
the Andorra Model. Invited talk, slides presented at ICLP'93, 1993.

91. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming, pages 684-699. MIT Press, August 1988.

