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Abs t r ac t . We describe some of the novel aspects and motivations be-
hind the design and implementation of the Ciao multiparadigm pro­
gramming system. An important aspect of Ciao is that it provides the 
programmer with a large number of useful features from different pro­
gramming paradigms and styles, and that the use of each of these fea­
tures can be turned on and off at will for each program module. Thus, a 
given module may be using e.g. higher order functions and constraints, 
while another module may be using objects, predicates, and concurrency. 
Furthermore, the language is designed to be extensible in a simple and 
modular way. Another important aspect of Ciao is its programming en­
vironment, which provides a powerful preprocessor (with an associated 
assertion language) capable of statically finding non-trivial bugs, veri-
fying that programs comply with specifications, and performing many 
types of program optimizations. Such optimizations produce code that 
is highly competitive with other dynamic languages or, when the highest 
levéis of optimization are used, even that of static languages, all while re-
taining the interactive development environment of a dynamic language. 
The environment also includes a powerful auto-documenter. The paper 
provides an informal overview of the language and program development 
environment. It aims at illustrating the design philosophy rather than at 
being exhaustive, which would be impossible in the format of a paper, 
pointing instead to the existing literature on the system. 

1 Origins and Initial Motivations 

Ciao [50,48,5,25,49] is a modern, multiparadigm programming language with 
an advanced programming environment. The ult imate motivation behind the 
system is to develop a combination of programming language and development 
tools tha t together help programmers produce in less time and with less effort 
code which has fewer or no bugs and which also performs very efñciently on 
platforms from small embedded processors to powerful multicore architectures. 
Ciao has its main roots in the <fc-Prolog language and system [51]. <fc-Prolog's 



design was aimed at achieving higher performance trian state of the art sequen-
tial logic programming systems by exploiting (and-)parallelism. This required 
the development of a specialized abstract machine capable of running in parallel 
and very efñciently a large number of (possibly non-deterministic) goals [44,51] 
(the abstract machine was derived from early versions of SICStus Prolog). It 
also required extending the source language to allow expressing parallelism and 
concurrency in programs. This made it possible for the user to parallelize pro-
grams manually in a relatively simple way. The system was later extended to 
support constraint programming, including the concurrent and parallel execu­
tion of such programs [30]. Signiñcant work was done with Ugo Montanari and 
Francesca Rossi in this context through the development of a true concurrency 
semantics tha t implied the possibility of exploiting truly máximum parallelism 
in the execution of constraint programs [68,10,11]. Additional work was also per-
formed to extend the system to support other computat ion rules, such as the 
Andorra principie [90,7,79,9], other sublanguages, etc.1 

The experience of this process of gradual extensión of the capabilities of the 
<fc-Prolog system inspired some of the fundamental concepts underlying the Ciao 
system. In particular, while each of the functionalities mentioned above (Andorra 
execution, constraint programming, concurrent programming, etc.) was typically 
implemented up to tha t time by a sepárate (and complex) system comprising 
compiler, abstract machine, etc. we observed tha t all such extensions could in 
fact be supported efñciently within the same system provided the underlying 
machinery implemented a relatively limited set of basic constructs (a kernel 
language) [50,48], coupled with an easily programmable and modular way of 
deñning new syntax and giving semantics to it in terms of tha t kernel language. 
This approach is, of course, not exclusive to Ciao, but in Ciao the facilities tha t 
enable building from a simple kernel are very explicitly available (and their use 
encouraged) from the system programmer level to the application programmer 
level. 

1 It is interesting to note that a great deal of this initial work on the design and 
implementation of Ciao occurred within the ACCLAIM EU project, in which the 
Andorra Kernel Language (AKL) and its successor, the Oz language [42], were also 
developed. The great group of people involved in the project, including Ugo Mon­
tanari, Seif Haridi, Gert Smolka, Peter VanRoy, David Warren, and many others 
resulted in a very fruitful collaboration that effectively gave birth to modern multi-
paradigm languages. Within this collaborative context, Ciao took different paths to 
AKL and Oz in many aspects, including for example the use of assertions and global 
analysis support, the fact that in Ciao non-determinism (backtracking) is implicit, or 
the use of a (Prolog-derived) syntax aimed at easily supporting meta-programming. 
As another example, in Ciao the language has always been sequential by default, i.e., 
concurrency has to be added explicitly by the user (or the parallelizer), whereas in 
the original Oz and AKL designs the language was concurrent by default (although 
this has been changed in later Oz designs). Interesting aspects of Oz include for 
example the extensive development and use of computational spaces as first-level 
constructs. 



This is one of the fundamental capabilities of the Ciao system, which ef-
fectively allows Ciao to support múltiple programming paradigms and styles. 
In Ciao all operators, "builtins," and most other syntactic and semantic lan-
guage constructs such as conditionals or loops are not part of a predeñned "lan-
guage." Instead they are user-modiñable constructs living in líbraríes which can 
be loaded or unloaded at will thanks to the notion of packages [15]. This is the 
mechanism which allows adding new syntax to the language and giving semantics 
to this syntax. Most importantly, such packages, and thus the restrictions and 
extensions to the language that they provide, can be activated or deactivated 
separately on a per-module/class basis without interfering with each other.2 The 
different source-level constructs (and sub-languages / DSLs) are supported by 
a compilation process deñned within the corresponding package, typically via 
a set of rules deñning source-to-source transformation into the kernel language, 
with the (rather infrequent) help of modules or classes written in an external 
language using one of the several interfaces provided. The approach of compiling 
to a common kernel implies that the programming styles that Ciao implements 
share much at both the semantic and implementation levéis, and they naturally 
reuse signiñcant portions of the compiler, documenter, abstract machine, etc. 

Another fundamental characteristic of the Ciao system is that it provides 
a powerful preprocessor, called CiaoPP [8,52,53], which is capable of statically 
ñnding non-trivial bugs, verifying that the program complies with speciñcations, 
and performing many types of program optimizations. A key ingredient for the 
above task is the Ciao assertion language [82]. While not strictly required for 
developing or compiling programs, the preprocessor and assertion language are 
important and distinctive components of the Ciao design and they also have 
their origin in earlier work stemming from <fc-Prolog. In particular, the <fc-Prolog 
compiler included a parallelizer which was capable of automatically annotating 
programs for parallel execution [51,74,71]. This required developing advanced 
program analysis technology based on abstract interpretation [27] (leading to 
the development of the PLAI analyzer [91,73,55,76]) which allowed inferring 
program properties such as independence among program variables [73,75], ab-
sence of side effects [72], non-failure [36], data structure shape and instantiation 
state ("moded types") [87], or even being able to infer upper and lower bounds 
on the sizes of data structures and the cost of procedures [33,32,37,34], which 
was instrumental for performing automatic granularity control [33,66,65]. Also, 
in addition to automatic parallelization the <fc-Prolog compiler performed other 
optimizations such as múltiple (abstract) specialization [84]. While the <fc-Prolog 
inference technology was aimed at performing program optimizations to maxi-
mize execution speed and minimize resource consumption, interacting with the 
system it soon became clear that the wealth of information inferred by the ana-
lyzers would also be very useful as an aid in the program development process, 
and this led to the idea of the Ciao assertion language and preprocessor, as we 
will discuss later. 

2 In fact, some Ciao packages are intended to be portable so that they can be used 
with little modification in other logic and constraint logic programming systems. 
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Fig. 1. Some examples in Ciao functional notation. 

2 Supporting Múltiple Paradigms 

We will now show some examples of how the extensibiüty of the kernel language 
mentioned before allows Ciao to incorpórate the fundamental constructs from a 
number of programming paradigms. In particular, the system currently offers, as 
a combination of syntactic and semantic extensions, the following programming 
models: 

— Functional Programming: functional notation is provided by a set of packages 
which, besides a convenient syntax to define functions (or predicates using 
a function-like layout), gives support for semantic extensions which include 
higher-order facilities (e.g., function abstractions and applications thereof) 
and, if so required, lazy evaluation. For illustration, Figure 1 lists a number 
of examples using the Ciao functional notation. nrev and conc are written 
by using múltiple :=/2 definitions. fact is written using a disjunction of 
guards (which actually commits the system to the first matching choice). 
The ~ prefix (eval, which can often be omitted) is the opposite of quote and 
states that its argument is a cali (as opposed to a data structure to unify 
with). All of this syntax is defined in the functional package, which is 
loaded into the module (line 1). nums_f rom is declared lazy, which is possible 
thanks to the lazy package, also loaded into the module. An important point 
is that these packages only modify the syntax and semantics of this module, 
and other modules can use any other packages. Finally, nums uses take from 
the library of lazy functions/predicates. 

In general, functional notation is just syntax and thus the following query 
(loading the functional package in the top level allows using functional no­
tation -the top level behaves in this sense exactly as a module): 

: - m o d u l e ( _ , _ , [ f u n c t i o n a l , l a z y ] ) . 

n r e v ( [ ] ) := [] . 
nrev([HIT]) := ~conc(nrev(T), [H]). 

conc( [] , L) := L . 
conc([HIT], K) := [H I conc(T, K)]. 

fact(N) := N=0 ? 1 
I N>0 ? N * fact(--N). 

:- lazy fun_eval nums_from/l. 
nums_from(X) := [X I nums_from(X+l)]. 

:- use_module(1ibrary('lazy/lazy_lib'), [take/3]). 
nums(N) := ~take(N, nums_from(0)). 



:- module(_, _, [functional, hiord, bfall]) 

color := red I blue I green. 

list := [] I [_ I list]. 

list_of(T) := [] | [~T | list_of(T)]. 

:- module(_, _, [hiord, bfall]). 

color(red), color(blue). color(green) . 

list([]). 
list([_|T]) :- list(T). 

list_of(_, []). 
list_of(T, [X|Xs]) :- T(X), list_of(T, Xs). 

Fig. 2 . Examples in Ciao functional notation and state of translation after ap-
plying the f u n c t i o n a l package. 

?- u s e _ p a c k a g e ( f u n c t i o n a l ) . 
? - [ 3 , 2 , 1 ] = ~nrev(X). 

produces the answer: 

X = [ 1 , 2 , 3 ] 

As mentioned before other constructs such as conditionals do commit the 
system to the ñrst matching case. More strictly "functional" behavior (e.g., 
being single moded, in the sense tha t a ñxed set of inputs must always 
be ground and for them a single output is produced, etc.) can be enforced 
using assertíons, to be discussed later. Figure 2 lists more examples using 
f u n c t i o n a l and other packages, and the result after applying just the trans-
formations implied by the f u n c t i o n a l package. Note the use of higher order 
in l i s t . o f . More details on Ciao's functional notation can be found in [21]. 
Logic Programmíng Flavors: a set of packages (which are loaded by default 
when a Prolog module is read in) provide support for full ISO-Prolog and 
a number of other classical "builtins" expected by users to be provided by 
Prolog systems —except tha t of course in Ciao rather than builtins all of 
them are optional features brought in from the libraries.3 This is signaled by 

3 The support of Prolog is done in such a way that Prolog code runs without modifica-
tion, and the system top level comes up by default in Prolog mode. As a result, many 
Ciao users which come to the system looking for a good Prolog implementation do 
get what they expect and, if they do not poke further into the menus and manuals, 
may never realize that Ciao is in fact quite a different beast. 



simply not using the third argument (the one devoted to listing packages) 
in module declarations. 
Alternatively, by avoiding the loading of the Prolog packages the user can 
restrict the module to use only puré logic programming, without any of 
Prolog's impure features. For example, the second listing in Figure 2 is a 
puré logic programming module. If a cali to a Prolog builtin such as a s s e r t 
were to appear within the module it would be signaled by the compiler as 
calling an undeñned predicate. Features such as, for example, declarative 
I /O , can be added to such puré modules, by loading additional libraries. 
This also allows adding individual features of Prolog on a needed basis. 
Higher-order logic programming with predicate abstractions is supported 
through the h iord package. This is also illustrated in the second listing 
in Figure 2. As a further example of the capabilities of the h iord package 
consider the queries: 

?- use_package(h iord) , u s e _ m o d u l e ( l i b r a r y ( h i o r d l i b ) ) . 
? - P = ( _(X,Y) : - Y = f(X) ) , map( [ l , 3 , 2 ] , P, R) . 

where, after loading the higher-order package h iord and instantiating P to 
the predicate abstraction _(X,Y) : - Y = f (X), map( [ l , 3 , 2] , P, R) is 
applied to P producing: 

R = [ f ( D , f ( 3 ) , f ( 2 ) ] 

The (reversed) query: 

?- P = ( _(X,Y) : - Y = f (X) ) , map(M, P, [ f ( D , f ( 3 ) , f ( 2 ) ] ) . 

produces: 

M = [ 1 , 3 , 2] 

— Additional Computation Rules: In addition to the usual depth-ñrst , left-
to-right execution regime of Prolog, and again by loading suitable pack­
ages, other computation rules such as breadth-ñrst , iterative deepening, An­
dorra model, etc. are available. As an example in the second listing in Fig­
ure 2 any calis to co lor , l i s t , and l i s t . o f will be executed breadth-ñrst .4 

4 The possibility of using different control rules has shown useful not only in ap-
plications but also (and very specially) when teaching logic programming. In our 
experience, it is cumbersome to make the first introductory lectures to logic pro­
gramming using Prolog since the particular (albeit often practically useful) quirks 
and the subsequent non-termination of Prolog get in the way of teaching the fun­
damental concepts of logic programming. We have found that it makes perfect 
sense to start with a purer logic language, with better termination and fairness 
characteristics. The Ciao breadth-ñrst mode has proved quite useful for this (see 
h t tp : / /www.c l ip lab .org / loga lg for the slides of our course based on this ap-
proach). Once the beauty of puré logic programming is experienced the student 
is then introduced to the practical and powerful choices made in the design of Pro­
log, and later to topics and functionality beyond Prolog, such as those outlined in 
this document, all within the same system. 

http://www.cliplab.org/logalg


:- module(_,_,[fsyntax,clpqf]). 

fact(.=. 0) := .=. 1. 
fact(N) := .=. N*fact(.=. N-l) :- N .>. 

sorted := [] I [_]. 
sorted([X,Y|Z]) :- X .<. Y, sorted( [Y IZ]). 

0. 

\ 

, 

Fig. 3. Ciao constraints (combined with functional notation). 

Tabling [24] is currently being added using an approach which relies mostly 
on a source-to-source program transformation (which is performed using a 
package) and an external C library which is accessed using one of the avail-
able foreign interfaces [29]. The underlying abstract machine did not have to 
be changed, and therefore sequential execution is left essentially untouched. 

— Constraint Programmíng: several constraint solvers and classes of constraints 
using these solvers are supported including CLP(Q), CLP(72.) (a derivation 
of [57]), and CLP(.FZ?). The constraint languages and solvers, which are built 
on more basic blocks such as attributed variables [56] and/or the higher-level 
Constraint Handling Rules (CHR) [39,88], are also extensible at the user 
level. As an example, Figure 3 provides two examples using Ciao CLP(Q) 
constraints, combined with functional notation. For example, line 3 can be 
read as: if the argument of f act is constrained to 0 then the "output" 
argument is constrained to 1. In the next line if the argument of fact is 
constrained to be greater than 0 then the "output" is constrained to be 
equal to N*fact( . = . N-l ). The two deñnitions (fact and sorted) can 
be called with their arguments in any state of instantiation. For example, 
the query 

?- sor ted(X). 

returns: 

X = 

X = 

X = 
_A 

X = 
_B 
_A 

X = 
_C 

[] ? ; 

[_] ? ; 

LA, _B] 
.<. _B ? 

LA, _B, 

•<• _c, 
.<. _B ? 

LA, _B, 
•<• _D, 



B .< . _C, 
A .< . _B ? 

etc. 
— Object-Oriented Programming: object-oriented programming is provided by 

the O'Ciao c l a s s and o b j e c t packages [80]. These packages provide capabil-
ities for class deñnition, object instantiation, encapsulation and replication of 
state, inheritance, interfaces, etc. These features are designed to be natural 
extensions of the underlying module system. 

— Concurrency, Parallelism, and Distributed Execution: other packages bring 
in extensive capabilities for expressing concurrency (including a concurrent, 
shared versión of the internal fact datábase which can be used for synchro-
nization), distribution, and parallel execution [14,11,23]. A notion of "active 
objects" also allows compiling objects so tha t they are ultimately mapped 
to a standalone process, which can then be transparently accessed by the 
rest of an application. This provides simple ways to implement servers and 
services in general. 

In addition to characteristics tha t are speciñc to certain programming paradigms, 
many other additional features are available through librarles such as, e.g.: 

— Structures with named arguments (feature terms), a trimmed-down versión 
of -i/'-terms [2] which makes it possible to compile statically all s tructure 
uniñcations to Prolog uniñcations, which ensures tha t using them adds no 
overhead to the execution. 

— Persistence, which makes it possible to t ransparently save and restore the 
s tate of selected facts of the dynamic datábase of a program on exit and 
s tar tup . This is the base of a high-level interface with databases [26]. 

— Answer set programming [38], an alternative logic programming model based 
on the stable model semantics [40]. 

— W W W programming, where Ciao provides librarles to easily establish a map-
ping between HTML / XML and Herbrand terms, to easily handle (genérate 
/ transform / inspect / . . . ) them in order to for example, write CGIs (or 
complete web sites) quite easily Ciao [17]. 

Again, all of these can be activated or deactivated on a per-module / class basis. 

3 The Ciao Approach to Assertions 

Many languages (e.g. Mercury [89,43] or Haskell [59,58], to cite some modern, 
well-known examples from the logic and functional programming communities) 
impose certain type-related requirements, e.g., all types (and, when relevant, 
modes) used have to be deñned explicitly or all procedures have to be "well-
typed" and "well-moded". 

One argument in favor of such declarations and restrictions is tha t they 
can be useful to clarify interfaces and meanings, and in general to make large 
programs more maintainable and well documented, facilitating "programming in 



the large." Besides, the compiler may use them to genérate more speciñc code, 
which can be better in several ways (e.g., performance-wise). 

We certainly agree with this! But at the same time we also wanted Ciao to 
be useful (as, say Prolog, Scheme, or, more recently Python) for "programming 
in the small," prototyping, developing simple scripts, or simply experimenting 
while trying to ñnd a solution to a problem, ... and for this we feel type and 
mode declarations and other related restrictions can sometimes get in the way. 

Fortunately we carne up with a unique solution to this apparent conundrum: 
Ciao includes a very rich assertion language (and a methodology for dealing 
with such assertions) [52,82] which allows expressing not only classical types, 
but also a much wider variety of properties (modes, determinacy non-failure, 
cost, ...), but in Ciao these assertions are optíonal. This solution makes Ciao 
very useful both for programming in the small and in the large. We believe that 
Ciao's solution to the issue of assertions combines effectively the advantages of 
the strongly typed and untyped language approaches, bringing the best of both 
worlds to the programmer, but within a broader scope which, as we will see, 
makes it possible to use a uniform language to express more program properties 
(and, therefore, to interact with a tool able to check or infer / reconstruct them). 
This is, in some sense, related to the soft typíng approach, pioneered in [20], but 
it differs from it in that it is not restricted to types. Instead, the framework is 
open regarding the kind of properties that can be expressed in the corresponding 
assertions. As an example, systems which aim at performing automatic compile-
time checking are often rather strict about the properties which the user can 
write in assertions. This is understandable because otherwise, the underlying 
static analyses are of little use for proving the assertions. In our case, we use 
the same assertion language for different purposes, including run-time checking. 
Therefore, the user may use properties which go beyond those which the static 
analyses in the system can prove. Of course, even though such assertions may 
sometimes be useful at compile-time for certain purposes, the user cannot expect 
CiaoPP to automatically always be able to verify such assertions statically. 

As an example, Figure 4 includes the deñnitions of nrev and conc (similarly 
to Figure 1) but also states some program properties expressed using the Ciao 
assertion language (whose syntax and semantics are made available to the mod­
ule by means of the a s se r t ions package). For example, the assertion in line 4 
expresses that when nrev is called (:) the ñrst argument should be a list, and 
the second one should be a list on success (=>). The + ñeld in comp assertions can 
contain a conjunction of global properties of the computatíon of the predicate 
(as the one in line 7). The predicates which are used in such assertions can be in 
librarles (such as the nativeprops library used in the figure) or defined by the 
user. For example, the deñnitions in Figure 2 can be used as types in assertions 
(e.g., line 4 in Figure 4). 
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Fig. 4. Naive reverse with some -partially erroneous- assertions. 

4 Program Documentat ion, Static Debugging, and 
Veriflcation 

One of the most useful characteristics of the assertions used in Ciao is that they 
are designed to serve many purposes. First, any assertions present in programs 
can be processed by an autodocumenter (lpdoc [46]) in order to genérate useful 
documentation. Also, assertions are analyzed interactively during program de-
velopment by the system preprocessor (CiaoPP) which can find non-trivial bugs 
statically verify that the program complies with the assertions, or even genér­
ate automatically proofs of correctness that can be shipped with programs and 
checked easily at the receiving end (using the proof/abstraction carrying code 
approach [3]). Even if a program contains no user-provided assertions, Ciao can 
check the program against the assertions contained in the librarles used by the 
program, thus potentially catching additional bugs at compile time. If the system 
cannot prove ñor disprove some property at compile time, the system can (op-
tionally again) introduce a run-time check for such property in the executable. 
For homogeneity, and to ease information exchange among the autodocumenter 
and the different checkers and analyzers, analysis results are reported using also 
the assertion language —which, since it is readable by humans, can be inspected 
by a programmer, for example to make sure that the results of the analyses agree 
with the intended meaning of the program. 

Interestingly, the same underlying technology (global analysis based on ab-
stract interpretation) that allows the system to obtain useful results even when 
assertions are not present for all predicates, also allows dealing with complex 
properties, beyond classical types, in a safe way. As a result, for example, 

module(_, [nrev/2], [assertions, fsyntax, nativeprops]) 
entry nrev/2 : {list, ground} * var. 

pred nrev(A, B) : list(A) => list(B). 
success nrev(A, B) => size_o(B, length(A)). 
comp nrev(_, _) + (not_fails, is_det). 
comp nrev(A, _) + steps_o(length(A)). 

nrev ( [] ) 
nrev( [H|L]) 

[] . 
~conc(~nrev(L),[H]). 

comp conc(_, _, _) + (terminates, non_det). 
comp conc(A, _, _) + steps_o(length(A)). 

conc( [] , L) 
conc([H|L] , K) 

L. 
[ H | "conc(L,K) ]. 
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Fig. 5. A modular qsort program. 

the programmer has the possibility of stating assertions about the efñciency 
of the program (lower and/or upper bounds on the computational cost of pro-
cedures [37,35]) which the system will try to verify or falsify, thus performing 
automatic debugging and validation of the performance of programs. Many other 
interesting properties of the predicates and literals of the program can be han-
dled, such as data structure shape (including pointer sharing), bounds on data 
structure sizes, and other operational variable instantiation properties, as well 
as procedure-level properties such as determinacy [63], non-failure [12,36], ter-
mination, and bounds on the execution time [67], as well as on the consumption 
a large class user-deñned resources [77]. 

Assertions also allow programmers to describe the relevant properties of mod­
ules or classes which are not yet written or are written in other languages. This 
is also done in other languages but often using different types of assertions for 
each purpose. In contrast in Ciao the same assertion language is used again for 
this task. This, interestingly, makes it possible to run checkers / veriñers / docu-
menters against code which is only partially developed: the traditional "stubs", 
which have to be changed later on for a working versión, can be replaced by an 
assertion declaring how the predicate should behave, with the advantage that 
this declared behavior can effectively be checked against its uses. 

We will now present some examples which illustrate how these capabilities 
are used in practice, and which also help introduce some aspects of the assertion 
language. The ñrst example will illustrate automatic inference of non-trivial code 
properties while the second will focus on the use of assertions in veriñcation and 
debugging, and more speciñcally to detect problems in the expected performance 
of a program. 

m o d u l e ( q s o r t , [ q s o r t / 2 ] , [ a s s e r t i o n s , f s y n t a x ] ) . 
u s e _ m o d u l e ( c o m p a r e , [ g e q / 2 , l t / 2 ] ) . 
e n t r y q s o r t / 2 : { l i s t ( n u m ) , g r o u n d } * v a r . 

q s o r t ( [ ] ) 
q s o r t ( [ X | L ] ) 

[ ] . 
~ a p p e n d ( ~ q s o r t ( L l ) , [ X | ~ q s o r t ( L 2 ) ] ) 
p a r t i t i o n ( L , X, L l , L 2 ) . 

a p p e n d ( [] , X) 
a p p e n d ( [ H | X ] , Y) 

X. 
[H | ~append(X,Y)] 

partition([] , _B ,[],[]) . 
partition ([E|R],C,[E|Leftl],Right) :-

lt (E,C) , partition(R,C,Leftl,Right) 
partition([EIR] ,C,Left , [EIRight1]) :-

geq(E,C) , partition(R,C,Left,Right1) 



As mentioned before, CiaoPP includes a non-failure analysis, based on [36] 
and [12], which can detect procedures and goals that can be guaranteed not 
to fail, Le., to produce at least one solution or not to terminate. It also can 
detect predicates that are "covered", i.e., such that for any input (included in 
the calling type of the predicate), there is at least one clause whose "test" (head 
uniñcation and body builtins) succeeds. CiaoPP also includes a determinacy 
analysis based on [63], which can detect predicates which produce at most one 
solution, or predicates whose clause tests are mutually exclusive, even if they are 
not deterministic (because they cali other predicates that can produce more than 
one solution). We will use the code in Figure 5. The aforementioned analyses 
infer different types of information which include, among others, that expressed 
by the following assertion: 

: - t rue pred qsort(A,B) 
: ( l i s t (A,num), var(B) ) => ( l i s t (A,num), l ist(B,num) ) 
+ ( n o t _ f a i l s , covered, i s_de t , mut_exclusive ) . 

which expresses that, if qsort(A, B) is called with a list of numbers in A and 
a variable in B, then B will on exit be a list of numbers and the predicate will 
not fail, will give at most one solution, and will not perform backtracking at the 
level of its clauses (the + ñeld in pred assertions can contain a conjunction of 
global properties of the computatíon of the predicate.) 

CiaoPP can also infer lower and upper bounds on the sizes of terms and 
the computational cost of predicates [37,35]. The cost bounds are expressed as 
functions on the sizes of the input arguments and yield the number of resolution 
steps. Various measures can be used for the "size" of an input, such as list length, 
term size, term depth, integer valué, etc. Note that obtaining a ñnite upper bound 
on cost also implies proving termínatíon of the predicate. As an example, the 
following assertion is part of the output of the upper bounds analysis: 

: - t rue pred append(A,B,C) 
: ( l i s t (A,num), l i s t l (B ,num) , var(C) ) 

=> ( l i s t (A,num), l i s t l (B ,num) , l i s t l (C ,num) , 
s ize_ub(A,length(A)) , s ize_ub(B, length(B)) , 
size_ub(C,length(B)+length(A)) ) 

+ s teps_ub(length(A)+l) . 

Note that in this example the size measure used is list length. The property 
size_ub(C,length(B)+length(A) means that an (upper) bound on the size of the 
third argument of append/3 is the sum of the sizes of the ñrst and second 
arguments. The inferred upper bound on computational steps is the length of 
the ñrst argument of append/3. 

The following is the output of the lower-bounds analysis: 

: - t rue pred append(A,B,C) 
: ( l i s t (A,num), l i s t l (B ,num) , var(C) ) 

=> ( l i s t (A,num), l i s t l (B ,num) , l i s t l (C ,num) , 
s ize_lb(A, length(A)) , s ize_ lb(B, length(B)) , 
s ize_lb(C,length(B)+length(A)) ) 

+ ( n o t _ f a i l s , covered, s teps_lb( length(A)+l) ) . 



The lower-bounds analysis uses information from the non-failure analysis, with-
out which a trivial lower bound of 0 would be derived. 

As a second example, we illustrate how in CiaoPP it is possible to state 
assertions about the efñciency of the program which the system will t ry to verify 
or falsify, thus implementing a form of performance debugging and validation. 
This is done by specifying lower and/or upper bounds on the computational cost 
of predicates (given in number of execution steps). Consider for example again 
the naive reverse program in Figure 4. The assertion in line 7 states tha t nrev 
should be linear in the length of the (input) argument A. CiaoPP can be used to 
verify (or disprove) this assumption by running the analyzer (as before) to infer 
bounds on costs and then comparing them with the assertion. In fact, nrev is of 
course quadratic. With compile-time error checking turned on, and mode, type, 
non-failure and lower-bound cost analysis selected, CiaoPP issues the following 
error message: 

ERROR: f a l s e comp a s s e r t i o n : 
: - comp nrev(A,B) : t rue => s t e p s _ o ( l e n g t h ( A ) ) 

because i n the computation the f o l l o w i n g h o l d s : 
s t e p s _ l b ( 0 . 5 * e x p ( l e n g t h ( A ) , 2 ) + l . 5 * l e n g t h ( A ) + l ) 

This message states tha t nrev will take at least -2^—^ ' 2———— + 1 reso-
lution steps (which is the cost analysis output ) , while the assertion requires the 
cost to be in 0(length(A)) resolution steps. As a result, the worst case asymp-
totic complexity stated in the user-provided assertion is proved wrong by the 
lower bound cost assertion inferred by the analysis. This allows detecting the 
inconsistency and proving tha t the program does not satisfy the efñciency re-
quirements imposed. Note tha t upper-bound cost assertions can be proved to 
hold by means of upper-bound cost analysis if the bound computed by analysis 
is lower or equal than the upper bound stated by the user in the assertion. The 
converse holds for lower-bound cost assertions [8]. Thanks to this functionality, 
CiaoPP can also certify programs with resource consumption assurances as well 
as efñciently checking such certiñcates [47]. 

5 High Performance with Less Effort 

A potential beneñt of strongly typed languages is performance: the compiler 
can genérate more efñcient code with the additional type and mode information 
that the user provides. Performance is a good thing, of course. However, we do 
not want to put the burden of efñcient compilation on the user by requiring 
the presence of many program declarations: the compiler should certainly take 
advantage of any information given by the user, but if the information is not 
available it should do the work of inferring such program properties. This is the 
approach taken in Ciao: as we have seen before, when assertions are not present 
in the program Ciao's analyzers t ry to ínfer them. Most of these analyses are 



Fig. 6. Headset with a Gumstix processor (left) and 3-D compass (right). 

performed at the kernel language level, so that the same analyzers are used for 
several of the supported programming models. The information inferred by the 
global analyzers is used to perform optimizations, including múltiple abstract 
specialization [85], partial evaluation [81], dead code removal, goal reordering, 
reduction of concurrency / dynamic scheduling [83], low-level optimization (in­
cluding optimized compilation to native code via C), and others [53]. 

The objective is again to achieve the best of both worlds: with no assertions 
or analysis information the low-level Ciao compiler (ciaoc [16]) generates code 
which is highly competitive in speed and size with the best dynamically typed 
systems. And then, when useful information is present (either coming from the 
user or inferred by the system analyzers) the optimizing compiler (see, e.g., [69] 
for an early description) can produce code that is competitive with that coming 
from strongly-typed systems. Ciao's highly optimized compilation has been suc-
cessfully tested for example in applications with tight resource usage constraints 
(including real-time) [19], obtaining a 7-fold speed-up w.r.t. the default byte-
code compilation (the performance of which is similar to that of state of the art 
abstract machine-based systems). The application in hand was real-time spacial 
placement of sound sources for a virtual reality suit and ran in a small ("Gum­
stix") processor embedded within a headset (Figure 6). It is interesting to note 
that this level of performance is only around 20-40% slower than a comparable 
implementation in C of the same application. 

A particularly interesting optimization performed by CiaoPP, and which is 
inherited from the &-Prolog system, is automatic parallelization [45,41]. This is 
specially relevant nowadays given that the wide availability of multicore proces-
sors has made parallel computers mainstream. We illustrate this by means of a 
simple example using goal-level program parallelization [6,22]. This optimization 
is performed as a source-to-source transformation, in which the input program is 
annotated with parallel expressions. The parallelization algorithms, or annota-
tors [71], exploit parallelism under certain independence conditions, which allow 



guaranteeing interesting correctness and no-slowdown properties for the paral-
lelized programs [54,31]. This process is made more complex by the presence 
of variables shared among goals and pointers among data structures at run-
time. Let us consider again the program in Figure 5. A possible parallelization 
(obtained in this case with the "MEL" annotator [71]) is: 

qsort([X|L],R) : -
pa r t i t i on (L ,X ,L l ,L2) , 
( 

indep(Ll, L2) -> 
qsort(L2,R2) k qsort(L1.R1) 

qsort(L2,R2), qsor t (L1.R1) 
) , 
append(Rl, [X|R2] ,R) . 

which indicates that, provided that Ll and L2 do not have variables in common 
at run-time, then the recursive calis to qsort can be run in parallel. Assuming 
that l t / 2 and geq/2 in Figure 5 need their arguments to be ground (note that 
this may be either iníerred by analyzing the implementation oí l t / 2 and geq/2 
or by stated by the user using suitable assertions), the information inferred by 
the abstract interpreter using, e.g., mode and sharing/íreeness analysis, can de­
termine that Ll and L2 are ground aíter partition, and therefore they do not 
have variables to share. As a result, the independence test and the correspond-
ing conditional is simpliñed via abstract executability and the annotator yields 
instead the following code: 

qsort([X|L],R) : -
pa r t i t i on (L ,X ,L l ,L2) , 
qsort(L2,R2) k q s o r t ( L l , R l ) , 
append(Rl, [X|R2] ,R) . 

which is much more efñcient since it has no run-time test. This test simpüñcation 
process is described in detail in [6] where the impact oí abstract interpretation 
in the effectiveness of the resulting parallel expressions is also studied. 

The tests in the above example aim at stríct independent and-parallelism. 
However, the annotators are parametrized on the notion of independence. Dif-
ferent tests can be used for different independence notions: non-strict indepen­
dence [13], constraint-based independence [31], etc. Moreover, all forms of and-
parallelism in logic programs can be seen as independent and-parallelism, pro­
vided the deñnition of independence is applied at the appropriate granularity 
level.5 

The information produced by the CiaoPP cost analyzers is also used to per-
form combined compile-time/run-time resource control. An example of this is 
task granularity control [65] of parallelized code. Such parallel code can be the 
output of the process mentioned above or code parallelized manually. In general, 

5 For example, stream and-parallelism can be seen as independent and-parallelism if 
the independence of "bindings" rather than goals is considered. 



this run-time granularity control process involves computing sizes of terms in-
volved in granularity control, evaluating cost functions, and comparing the result 
with a threshold to decide between parallel and sequential execution. Optimiza-
tions to this general process include cost function simpliñcation and improved 
term size computation [64]. 

6 Incremental Compilation: Other Support for 
Programming in the Small and in the Large 

In addition to all the functionality provided by the preprocessor and assertions, 
programming in the large is further supported again by the module/class sys­
tem [15,80]. This design is the real enabler of Ciao's modular program devel­
opment support tools, effective global program analysis, modular static debug-
ging, and module-based automatic incremental compilation and optimization. 
The analyzers and compiler take advantage of the module system and module 
dependencies to reanalyze / recompile only part of the application modules af-
ter one of them is changed, without any need to define "makefiles" or similar 
dependency-related additional files. 

Application deployment is enhanced beyond the traditional Prolog top-level, 
since the system offers a full-featured interpreter but also supports the use of 
Ciao as a scripting language and a compiled language. Several types of executa-
bles can be easily built, from multiarchitecture bytecode executables to single-
architecture, standalone executables. Múltiple platforms are supported, includ-
ing Windows, Linux, Mac Os X, and many other Un*x-based OSs. 

Modular distribution of user and system code in Ciao, coupled with modular 
analysis, allows the generation of stripped executables, with only those builtins 
and librarles used by the program. Those reduced-size executables permit pro­
gramming in the small when strict space constraints are present. 

Flexible development of applications and librarles that use components writ-
ten in several languages is also allowed, by means of compiler and abstract 
machine support for múltiple bidirectional foreign interfaces to C/C++, Java, 
Tcl/Tk, SQL databases (with a notion of predicate persistence), etc. The in­
terfaces are expressed in (and any necessary glue code automatically generated 
from) descriptions written in the assertion language, as previously stated. 

7 An Advanced Integrated Development Environment 

Another design objective of Ciao has been to provide a truly productive program 
development environment that integrates all of the tools mentioned before in 
order to fulfill the objective of allowing the development of correct and efficient 
programs in as little time and with as little effort as possible. This includes a 
rich graphical development interface, based on the latest, graphical versions of 
Emacs and offering menú and widget-based interfaces with direct access to the 
top-level/debugger, preprocessor, and autodocumenter, as well as an embeddable 
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Fig. 7. A program ñle and the top-level interpreter. 

source-level debugger with breakpoints, and several execution visualization tools. 
In addition, a plugin with very similar functionality is also available for the 
Eclipse environment. 

The programming environment makes it possible to start the top-level, the 
debugger, or the preprocessor, and to load the current module within them by 
pressing a button or via a pair of keystrokes. Figure 7 shows a source ñle (with 
syntax highlighting, top level, menus, buttons, etc.). Tracing the execution in 
the debugger makes the current statement in the program be highlighted in an 
additional buffer containing the debugged ñle (Figure 8). 

The environment provides also automated access to the documentation, ex-
tensive syntax highlighting, auto-completion, or auto-location of errors in the 
source, and is highly customizable (to set, for example, alternative installation 
directories or the location of some binaries). Figure 9 shows the location in the 
source of a simple syntactic error. The direct access to the preprocessor allows 
interactive control of all the static debugging, veriñcation, and program trans-
formation facilities. As an example, Figure 10 shows CiaoPP signaling in the 
source a semantic error (in the same way as the previous simple syntactic er-

http://fact_fl.pl
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Fig. 8. The source debugger in action. 

ror). In particular, it is the cost-related error discussed previously in which the 
compiler detects (statically!) that the deñnition of nrev does not comply with 
the assertion requiring it to be of linear complexity. The direct access to the 
auto-documentation facilities [46] allows using a pair of keystrokes to genérate 
human-readable program documentation from the current ñle in a variety of 
formats from the assertions, directives, and machine-readable comments present 
in the program being developed or in the system's libraries, as well as all other 
program information available to the compiler. This direct access to the docu-
menter and on a per-module basis is very useful in practice in order to build 
documentation incrementally and to make sure that, for example, cross refer-
ences between ñles are are well resolved and that the documentation itself is well 
structured and formatted. As a further example of the different components and 
capabilities of the environment, Figure 11 shows a VisAndOr [18] depiction of 
an and-parallel execution. 
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8 Some Final Thoughts on Parallelism, Dynamic 
Languages, and Mains t ream Programming 

Interestingly many of the motivations behind the development of Ciao over the 
years have acquired presently even more crucial importance. Parallelism capa-
bilities are becoming ubiquitous thanks to the widespread use of multi-core pro-
cessors. Indeed, most laptops on the market contain two cores (typically capable 
of running up to four threads simultaneously) and single-chip, 8-core servers are 
now in widespread use. Furthermore, the trend is that the number of on-chip 
cores will double with each processor generation. In this context, being able to 
exploit such parallel execution capabilities in programs as easily as possible be-
comes more and more a necessity. However, it is well-known [61] that paralleliz-
ing programs is a hard challenge. This has renewed interest in language-related 
designs and tools which can simplify the task of producing parallel programs. 

At the same time, the environment in which much software needs to be 
developed nowadays (decoupled software development, use of components and 
services, increased interoperability constraints, need for dynamic update or self-
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Fig. 10. Error location in the source -a cost error. 

reconñguration, mash-ups) is posing requirements which align with the classical 
arguments for dynamic languages but which in fact go beyond them. Ex ampies 
of often required dynamic features include making it possible to (partially) test 
and verify applications which are partially developed, and which will never be 
"complete" or "final", or which need to have flexibility in their APIs because 
they need to have a variable number of arguments or their "entry points" evolve 
over time in an asynchronous, decentralized fashion (e.g., services, including 
web services). These requirements, coupled with their intrinsic agility in devel-
opment, have made dynamic programming languages (such as Python, Ruby, 
Lúa, JavaScript, Perl, PHP, etc.) a very attractive option in recent years for a 
number of purposes that go well beyond simple scripting. Parts written in these 
languages often become essential components (if not the central implementation 
vehicle) of mainstream applications. The practical relé vanee of dynamic features 
is also illustrated by the many successful languages and frameworks which aim 
at bringing together ideas of both worlds. For example, Objective-C [28], which 
mixes C, object orientation, and the possibility of having dynamically typed 

http://revf_assrt__buq.pl


Fig. 11. VisAndOr depiction of an and-parallel execution of QuickSort. 

variables and messages, is currently used as the base of Mac OS X, and it was 
used before in NextStep. Other frameworks, such as Java and .NET, are in-
tensely working on ensuring and improving the interoperability among dynamic 
and static languages by including support for dynamicity in their virtual ma­
chines. Another example is the future fourth revisión of ECMAScript [1] on 
which the JavaScript and ActionScript languages are based, that will include 
optional (soft-)type declarations to allow the compiler to genérate more efñcient 
code and detect more errors. The Tamarin project [70] intends to use this ad-
ditional information to genérate faster code. For Python, the PyPy project [86] 
designed a language, RPython [4] that imposes constraints on the programs to 
ensure that they can be statically typed. RPython is moving forward as a general 
purpose language. 

At the same, detecting errors at compile-time and inferring properties re-
quired to optimize programs, are still important issues in real-world applications. 
This has also brought the development of safe versions of traditional languages, 
such as, e.g., CCured [78] or Cyclone [60] for C, as well as of systems that offer 
capabilities similar to those of the Ciao assertion preprocessor, such as Necula 
et al.'s Deputy 6 or Leino et al.'s Spec# [62]. 

We believe that Ciao has pioneered and is continuing to push the state of the 
art in these currently very relevant and challenging áreas, and offers a unique 
combination of features which directly address many of these challenges. The 
Ciao approach to exploiting parallelism provides powerful parallelizers and at 
the same time allows programmer and parallelizer to cooperate. Programmers 
can choose between expressing manually the parallelism with high-level con-
structs, letting the compiler discover the parallelism, or a combination of both. 
Parts of a program can be parallelized by hand and other parts automatically. 
Furthermore, the parallelizer also checks manual parallelizations for correctness. 

h t t p : / / d e p u t y . e s . b e r k e l e y . e d u / 
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Finally, the output of the parallelizer is expressed in the same high level lan-
guage, which means that programmers can easily inspect (and improve) the 
parallelizations produced by the compiler. At the heart of these capabilities are 
CiaoPP's powerful, modular, and incremental abstract interpretation-based pro-
gram analyzers. The use of this technology was pioneered by <fc-Prolog and Ciao 
(it was arguably the ñrst use of abstract interpretation in a real compiler) and 
we continué to believe it is the most promising nowadays, and they are being 
adopted or will be adopted by many systems (see, e.g., [45] for further discussion 
of this topic). 

Regarding the conundrum between statically and dynamically checked lan-
guages, Ciao has also pioneered and continúes to push the state of the art of 
what we believe is the most promising approach in order to be able to obtain 
the best of both worlds: the combination of a flexible, multi-purpose assertion 
language with sophisticated assertion processing based on strong program anal-
ysis technology. This allows support for dynamic language features while at the 
same time having the capability of achieving the performance and efñciency of 
static systems. It also allows being able to work in a seamless way with a large 
class of properties, some of them even user-deñned, and which go well beyond 
traditional types. Again, at the heart of these capabilities are CiaoPP's abstract 
interpretation-based analyzers. 

Finally, we also believe that Ciao's language design offers unique possibilities 
due to its simple and powerful extensibility features, which not only allow to 
selectively bring in the constructs of múltiple programming paradigms, but also 
make it possible for the programmer to easily extend (and restrict) the language 
as needed, syntactically and semantically, and to quickly design domain-speciñc 
languages. 

Probing Further 
The reader is encouraged to explore the system, its documentation, and the 
tutorial papers that have been published on it. We are currently working on the 
new 1.14 system versión which includes signiñcant enhancements with respect 
to the previous versión (1.10). In addition to the autodocumenter, we plan to 
include a beta versión of the preprocessor in the default Ciao distribution (up 
to now, CiaoPP was only distributed on demand and installed separately). Ciao 
1.14 is available already on demand from the Ciao subversión repository. 

But, Why is it Called Ciao? 

After reading the previous paragraphs the reader may have already seen the logic 
behind the "Ciao Prolog" phrase. Ciao is an interesting word which is used both 
to say helio and goodbye. Ciao intends to be a truly excellent, high-performance, 
and freely available ISO-Prolog system which can be used as a classical Prolog, 
in both academic and industrial environments (and, in particular, to introduce 
users to Prolog and to constraint and logic programming -the helio Prolog part). 
But Ciao is also a new-generation, multiparadigm programming language and 



sophisticated program development environment for large, complex applications 
which goes well beyond Prolog and other classical logic programming languages 
- t h e goodbye Prolog part . And it has the advantage (when compared to other 
modern systems tha t support different forms of logic programming) tha t it does 
so while keeping full Prolog compatibility when desired. 

Contac t / d o w n l o a d info 

http: / /www.ciaohome.org The Ciao Development Team 
h t t p : / / w w w . c l i p l a b . o r g Technical U. of Madrid, Spain 
c i a o Q c l i p . d i a . f i . u p m . e s U. of New México, USA 

U. Complutense de Madrid, Spain 
IMDEA-Inst i tute for Software Development 
Technology 

Ciao is free software protected to remain so by the GNU LGPL license. It can 
be used freely to develop both free and commercial applications. 
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