

Edinburgh Research Explorer

Observability Concepts in Abstract Data Type Specification, 30
Years Later

Citation for published version:
Sannella, D & Tarlecki, A 2008, Observability Concepts in Abstract Data Type Specification, 30 Years Later.
in P Degano, R Nicola & J Meseguer (eds), Concurrency, Graphs and Models: Essays Dedicated to Ugo
Montanari on the Occasion of His 65th Birthday. Lecture Notes in Computer Science, vol. 5065, Springer-
Verlag GmbH, pp. 593-617. https://doi.org/10.1007/978-3-540-68679-8_37

Digital Object Identifier (DOI):
10.1007/978-3-540-68679-8_37

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Concurrency, Graphs and Models

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1007/978-3-540-68679-8_37
https://doi.org/10.1007/978-3-540-68679-8_37
https://www.research.ed.ac.uk/en/publications/618d35b6-4d92-430f-becd-042ff64ecb49

Observability concepts in abstract data type
specification, 30 years later?

Donald Sannella1 and Andrzej Tarlecki2,3

1 Laboratory for Foundations of Computer Science, University of Edinburgh
2 Institute of Informatics, Warsaw University

3 Institute of Computer Science, Polish Academy of Sciences

Abstract. We recall the contribution of Montanari’s paper [GGM76]
and sketch a framework for observable behaviour specification that blends
some of these early ideas, seen from a more modern perspective, with our
own approach.

1 Introduction

The starting point for this work is a brief paper [GGM76] coauthored by Ugo
Montanari and published in 1976. This appears to be the first of many papers to
study observational aspects of the algebraic approach to software specification
and development, where the overall idea is that one should regard a specification
of a system as constraining its observable behaviour, and nothing more. Such
a view is required to cope with many examples. However, it adds significant
technical complexities to the simple and elegant algebraic approach. Some of
these remain unresolved today, even after 30 years of research.

[GGM76] starts by challenging the initial algebra approach to specifications
of abstract data types, then recently introduced by early versions of [GTW78].
Most importantly, [GGM76] points out that not all sorts of data in a data type
play the same role: one should separate the given, “old” sorts from the “new”
ones, to be specified and implemented. What really matters then is the behaviour
of the data type as viewed via these old sorts only; the implementation details of
the new sorts play a secondary role. Such observable behaviour is captured by the
evaluation function restricted to terms that are of old sorts, but in general use
the new operations and involve new sorts internally. Another crucial insight in
[GGM76] is that in general there are many non-isomorphic algebras that display
the same observable behaviour. They show that the set of isomorphism classes of
such algebras (limited to the ones generated by the old sorts) forms a complete
lattice — a nice technical result which, however, is not used to insist that any
such specific algebra is always chosen (as in the initial [GTW78] or final [Wan79]
algebra approaches) since all of them are equally adequate implementations of
the given observable behaviour. Such behaviours are specified in [GGM76] by

? This work has been partially supported by European projects IST-2005-015905 MO-
BIUS (DS, AT) and IST-2005-016004 SENSORIA (AT).

giving a partial evaluation function, which assigns values to some terms of old
sorts only, marking the others as “don’t care” cases (indicated by assigning to
them a special “value” α, a notation that we will maintain here). The latter
captures the situation where the specifier permits the behaviour to be chosen
arbitrarily (but consistently with other choices) in any particular implementa-
tion. Particular implementations for such a behaviour specification in [GGM76]
are captured as (generated) algebras that conform to the specification in the
obvious sense.

Quite a few points made in [GGM76] were very insightful in their historical
context. This is the first place we know of where several key ideas appear, in-
cluding some that underlie most of our own contributions to the area. First, the
stress on the need for loose specifications, which need not determine behaviour
unambiguously (up to isomorphism) was of key importance. The results on the
lattice properties of the class of models for a given observable behaviour initi-
ated a line of research in this direction, including a debate on the issue of initial
vs. final interpretation of algebraic specifications. One aspect which disappeared
in later work was the method of presenting specifications by using an explicitly
given set of data on which the data type is based, with behaviour specified by
indicating the results of evaluation of some terms, while explicitly marking oth-
ers as “don’t care” cases. The authors’ techniques turn out to be very close to
“abstract model specifications” in the style of VDM [Jon80]. The main contribu-
tion though is the idea of limiting specifications to observable parts of behaviour
only, thus introducing observability aspects to algebraic specification.

The pioneering role of [GGM76] is underlined by the fact that it cites just
12 references, some of them unpublished, with only a few concerning algebraic
specifications. Hardly any other papers in the field could have been mentioned
then: at the time, this is essentially all that there was! This has to be contrasted
with the outburst of work in the area in the following years, as for instance
summarised in the bibliography [BKL+91] some 15 years later, or in the overview
presentations of the field in [Wir90] or the more recent [AKKB99]. One important
line of activity concerned observability aspects, with an extensive literature of its
own, including [Rei81] and numerous papers presenting further developments in
various directions, at diverse levels of abstraction. This includes for instance the
popular hidden algebra framework [GM00] and our own work [ST87] aimed at
bringing this closer to logical characterisation via elementary equivalence, with
[BH06] offering a recent elegant approach benefiting from all this experience.

We reiterate some of the ideas presented in [GGM76] here, looking back at
more than 30 years of work on algebraic specification, and trying to blend what
happened with these ideas with our current personal perspective. We sketch a
framework for observable behaviour specification and development, reconsidering
some of the work presented earlier [ST88b,BST02,BST08] in a different techni-
cal setting. It is reassuring that, after shifting to quite a different specification
technology, inspired by [GGM76], our basic ideas on system specification, archi-
tectural design and development under an observational view of specifications
still stand.

2 Algebraic preliminaries

Signatures and signature morphisms are as usual, except for the treatment of
the distinguished sort bool .

Definition 2.1. A signature Σ = 〈S, Ω〉 consists of a set S of sort names and
an S∗ × S-indexed set Ω of operation names, where f ∈ Ω〈s1···sn,s〉 is written
f : s1 × · · · × sn → s. We require that bool ∈ S and that no operations in Ω
take arguments in bool . If A is an S-sorted set, then Σ(A) denotes the signature
obtained from Σ by adding the elements of A to Ω as constants.

If Σ′ = 〈S′, Ω′〉, then a signature morphism σ : Σ → Σ′ consists of a map-
ping of sort names, σ : S → S′, and an S∗ × S-sorted mapping of operation
names, with σ〈s1···sn,s〉 : Ω〈s1···sn,s〉 → Ω′

〈σ(s1)···σ(sn),σ(s)〉, such that σ(s) = bool
iff s is bool .

We regard bool as the sort of logical meta-values, where operations that deliver
results in bool are like predicates. Forbidding operations taking arguments in
bool corresponds to the fact that applying a predicate to a tuple of terms would
normally yield an atomic formula, not a term. We treat predicates here as op-
erations, with this restriction, rather than as relations, for the sake of technical
convenience. Observations (see Sect. 4) will be terms of sort bool .

Algebras and their homomorphisms are defined as usual, except that we fix
the interpretation of the distinguished sort bool to be the set B = {true, false}.
Definition 2.2. Given a signature Σ = 〈S, Ω〉, a Σ-algebra A consists of an
S-sorted carrier set A and, for each operation name f : s1 × · · · × sn → s, a
function fA : As1 × · · · ×Asn → As. We require that Abool = B.

A Σ-homomorphism m : A → B between Σ-algebras A and B is an S-sorted
family of functions ms : As → Bs, s ∈ S, that preserve the values of operations,
as usual. We require that mbool is the identity on B.

Given a signature morphism σ : Σ → Σ′, for any Σ′-algebra A′, its σ-reduct
is the Σ-algebra A = A′|σ given by As = A′

σ(s) for s ∈ S, and fA = σ(f)A′

for f ∈ Ω. Reducts of Σ′-homomorphisms and of S′-sorted sets as well as of
(S′-sorted) functions and relations between them are defined analogously.

Signatures and their morphisms form a category, which is cocomplete. Σ-
algebras and homomorphisms between them form a category (which is also co-
complete, with the algebra TΣ of ground Σ-terms as the initial object). For
any signature morphism σ : Σ → Σ′, σ-reduct is a functor. Moreover, the as-
signments of the categories of algebras to signatures, and of reduct functors to
signature morphisms form a (contravariant) functor from the category of signa-
tures to the category of “all” categories. This functor is continuous, so that in
particular the following amalgamation lemma holds:

Lemma 2.3. Consider a pushout in the category of signatures.

Σ

Σ1

Σ2

Σ′

6
σ1

-
σ2

-
σ′

2

6
σ′

1

Then for any Σ1-algebra A1 and Σ2-algebra A2

with common Σ-reduct A1|σ1 = A2|σ2 , there exists
a unique Σ′-algebra A′ such that A′|σ′2 = A1 and
A′|σ′1 = A2; and similarly for homomorphisms.

Given a signature Σ = 〈S, Ω〉 and an S-sorted set A, we will consider the
set TΣ(A) of Σ-terms with “variables” in A (when A is empty, we write TΣ for
TΣ(A)). Equivalently we could take TΣ(A), where elements of A are considered as
additional constants. The distinction will be disregarded whenever convenient.
Terms that are in A will be referred to as data; the others as non-data.

Given a signature morphism σ : Σ → Σ′, S-sorted set A and S′-sorted set
A′ such that A ⊆ A′|σ, σ induces the translation σ : TΣ(A) → TΣ′(A′) in the
obvious way: σ(a) = a for data terms a ∈ A, and extending this to non-data
terms by replacing each Σ-operation name f with Σ′-operation name σ(f).

By a Σ(A)-context we mean any Σ-term t that in addition to the operation
names from Σ and data from A may contain an occurrence of a special variable
2. Then, for any term t′ ∈ TΣ(A), we write t(t′) for the term in TΣ(A) obtained
by substituting t′ for 2 in t.1

3 Behaviours and behaviour specifications

Inspired by the notion of a (complete) specification in [GGM76] as a “black-
box” view of models, we will not deal explicitly with algebras here, but rather
concentrate on the study of their behaviours. Let Σ = 〈S, Ω〉.

Definition 3.1. A Σ-behaviour is an S-sorted carrier set A together with an
S-sorted evaluation function ev : TΣ(A) → A such that: ev(a) = a for all data
a ∈ A; if ev(t′) = a′ then ev(t(a′)) = ev(t(t′)) for all terms t′ ∈ TΣ(A) and
Σ(A)-contexts t; and Abool = B. We will use evaluation functions ev to refer to
behaviours, with carriers left implicit.

A knowledgeable reader will recognise the notion of an algebra for the monad TΣ .
In this definition, it suffices to consider contexts t of the form f(a1, . . . ,2, . . . , an)
for a1, . . . , an ∈ A. Examples for this and other definitions will come in Sect. 5.

Definition 3.2. Given Σ-behaviours ev1 : TΣ(A1) → A1 and ev2 : TΣ(A2) →
A2, a homomorphism m : ev1 → ev2 is an S-sorted function m : A1 → A2,
such that mbool is the identity function on B, and if m(ev1(t1)) = ev2(t2) then
m(ev1(t(t1))) = ev2(t̂(t2)) for all Σ(A1)-contexts t, Σ(A1)-terms t1 and Σ(A2)-
terms t2, where t̂ results from t by replacing data a ∈ A1 by m(a) ∈ A2.

In this definition, it is once again sufficient to consider contexts t of the form
f(a1, . . . ,2, . . . , an) for a1, . . . , an ∈ A1, and t1 and t2 that are data terms.

As usual, semantics (behaviours) can be translated along signature mor-
phisms in the opposite direction to the translation of syntax (terms):

Definition 3.3. Consider a signature morphism σ : Σ → Σ′ and Σ′-behaviour
ev ′ : TΣ′(A′) → A′. The σ-reduct of ev ′ is the Σ-behaviour ev ′|σ : TΣ(A) → A
where A = A′|σ and for t ∈ TΣ(A), (ev ′|σ)(t) = ev ′(σ(t)).
1 To be precise, this requires a careful identification of the sort for the variable 2 and

the term t′ — whenever convenient, we will continue omitting such details here.

Proposition 3.4. Given a signature morphism σ : Σ → Σ′, the σ-reduct m|σ
of any homomorphism m : ev ′

1 → ev ′
2 between Σ′-behaviours is a homomorphism

between their σ-reducts, m|σ : ev ′
1|σ → ev ′

2|σ.

There is a 1–1 correspondence between Σ-behaviours and Σ-algebras, and
between homomorphisms as above and ordinary homomorphisms on algebras,
as recalled in Sect. 2. This gives an isomorphism between the category of Σ-
behaviours and the category of Σ-algebras, and carries over to the reduct func-
tors determined by signature morphisms.

Σ-behaviours are specified by indicating what the values of certain terms
should be, while explicitly indicating that the values of other terms are not
constrained. We use α for the latter “don’t care” case, following [GGM76].

Definition 3.5. A Σ-behaviour specification is an S-sorted carrier set A to-
gether with an S-sorted function h : TΣ(A) → A ∪ {α} such that: h(a) = a for
all data a ∈ A; if h(t′) = a′ then h(t(a′)) = h(t(t′)) for all terms t′ ∈ TΣ(A) and
Σ(A)-contexts t; and Abool = B. We will use functions h to refer to behaviour
specifications, leaving their carriers implicit.

It is important to understand that α (“don’t care”) does not mean that any
choice of value will do; as we will see, the choice taken needs to respect the
values of those terms that are specified as non-α.

There are two natural orderings on behaviour specifications, both reflecting
the degree to which behaviour is constrained.

Definition 3.6. Let h1 : TΣ(A1) → A1 ∪ {α} and h2 : TΣ(A2) → A2 ∪ {α} be
Σ-behaviour specifications, and let ev : TΣ(A) → A be a Σ-behaviour.

1. h2 refines h1, written h1ó h2, if A1 ⊆ A2 and h2 conforms to h1, that is:
for each t ∈ TΣ(A1), h2(t) = h1(t) whenever h1(t) 6= α. Then ev satisfies h1

if ev (viewed as a behaviour specification) refines h1. We write Mod(h1) for
the class of all Σ-behaviours that satisfy h1.

2. h2 strongly refines h1 if h2 refines h1 and A1 = A2. Then ev : TΣ(A) → A
strongly satisfies h1 if ev strongly refines h1, which requires A1 = A.

For any Σ-behaviour specification h : TΣ(A) → A ∪ {α} we define its free
extension by adding a new value for each of the “don’t care” cases. It corresponds
to the “initial symbolic representation” of h from [GGM76] (with all sorts viewed
as “old”) and is constructed as follows. Let I extend A by all non-data terms
t ∈ TΣ(A) such that all subterms t′ of t with h(t′) 6= α are data. This not
only requires that h(t) = α, but also that all subterms of t are evaluated as
far as determined by h. Then, the free extension of h is the only function ev I :
TΣ(I) → I such that ev I(t) = h(t) for all terms t ∈ TΣ(A) with h(t) 6= α,
ev I(t) = t for all terms t in I \A, and ev I(t(t′)) = ev I(t(ev I(t′))) for all contexts
t and terms t′. Now, ev I is not necessarily a Σ-behaviour, because Ibool need not
be B. However, we can obtain a Σ-behaviour from ev I by choosing a function
f : Ibool → B that extends identity on B. Let then f̂ extend f to an S-sorted
function that is the identity on all sorts other than bool , and let Î be an S-sorted

set such that Îs = Is for all sorts s 6= bool and Îbool = B. Then evf
h : TΣ(Î) → Î,

such that evf
h(t) = f̂(ev I(t)) for t ∈ TΣ(Î), is a Σ-behaviour that satisfies h.

This proves the following:

Lemma 3.7. Every Σ-behaviour specification h : TΣ(A) → A∪{α} is satisfiable.

It is not the case that any behaviour specification h is strongly satisfiable, unless
we add the requirement that whenever h(t1) = α then there exists some a ∈ A
such that if h(t(t1)) 6= α then h(t(a)) = h(t(t1)). (See condition (c) in the
definition of specification in [GGM76].)

Lemma 3.8. For Σ-behaviour specifications h1 and h2, h1ó h2 iff Mod(h2) ⊆
Mod(h1).

For technical convenience, let us introduce an additional special specification
∅ that is not satisfied by any behaviour, Mod(∅) = ∅. We extend our definition
of refinement to cover ∅ in the natural way, so that Lemma 3.8 still holds.

Complex behaviour specifications can be built in a structured way from
simpler specifications, using standard specification-building operations such as
derive (reduct), translate, union, defined in terms of their model classes in
[ST88a]. For behaviour specifications of the form considered here, these kernel
specification-building operations may be defined “internally”.

Definition 3.9. Reduct, translation and union of behaviour specifications are
defined as follows:

1. Given a signature morphism σ : Σ → Σ′ and Σ′-behaviour specification
h′ : TΣ(A′) → A′ ∪ {α}, its σ-reduct h′|σ is the Σ-behaviour specification
h : TΣ(A|σ) → A|σ ∪ {α} defined by h(t) = h′(σ(t)) for all t ∈ TΣ(A|σ).

2. Given a signature morphism σ : Σ → Σ′ and a Σ-behaviour specification
h : TΣ(A) → A ∪ {α}, let A′

s′ =
⋃
{As | σ(s) = s′} for all sorts s′ in Σ′.

First, we define an auxiliary relation between terms t′ ∈ TΣ′(A′) and data
a′ ∈ A′, written h via σ forces t′ to a′, as the least relation such that
(a) if h(t) = a then h via σ forces σ(t) to a, and
(b) if h via σ forces t′′ to a′′ and h via σ forces t′(a′′) to a′ then h via σ

forces t′(t′′) to a′.
Then the σ-translation σ(h) of h is ∅ if for some term t′ ∈ TΣ′(A′) and two
distinct data a′, a′′ ∈ A′, h via σ forces t′ to a′ and h via σ forces t′ to a′′.
Otherwise, σ(h) is the Σ′-behaviour specification h′ : TΣ(A′) → A′ ∪ {α}
such that for each term t′ ∈ TΣ′(A′), h′(t′) = a′ if h via σ forces t′ to a′ and
h′(t′) = α if such a′ ∈ A′ does not exist.

3. Given Σ-behaviour specifications h1 : TΣ(A1) → A1∪{α} and h2 : TΣ(A2) →
A2 ∪ {α}, first define an auxiliary relation between terms t ∈ TΣ(A1 ∪ A2)
and data a ∈ (A1 ∪ A2), written {h1, h2} forces t to a, as the least relation
such that
(a) if h1(t) = a or h2(t) = a then {h1, h2} forces t to a and
(b) if {h1, h2} forces t0 to a0 and {h1, h2} forces t(a0) to a then {h1, h2}

forces t(t0) to a.

Then, the union h1 +h2 of h1 and h2 is ∅ if for some term t ∈ TΣ(A1∪A2)
and two distinct data a, a′ ∈ (A1 ∪ A2), {h1, h2} forces t to a and {h1, h2}
forces t to a′. Otherwise, h1+h2 is the Σ-behaviour specification h : TΣ(A1∪
A2) → (A1 ∪ A2) ∪ {α} such that for each term t ∈ TΣ(A1 ∪ A2), h(t) = a
if {h1, h2} forces t to a and h(t) = α if such a ∈ (A1 ∪A2) does not exist.

Theorem 3.10. 1. Given a signature morphism σ : Σ → Σ′ and Σ′-behaviour
specification h′, Mod(h′|σ) ⊇ Mod(h′)|σ, where Mod(h′)|σ is the class of all
σ-reducts of Σ′-behaviours in Mod(h′).

2. Given a signature morphism σ : Σ → Σ′ and Σ-behaviour specification h,
Mod(σ(h)) = Mod(h)|−1

σ , where Mod(h)|−1
σ is the class of all Σ′-behaviours

with σ-reducts in Mod(h).
3. Given two Σ-behaviour specifications h1 and h2, we have Mod(h1 + h2) =

Mod(h1) ∩Mod(h2).

Note that for some (even injective) signature morphisms σ : Σ → Σ′ and Σ′-
behaviour specifications h′ there may be no Σ-behaviour specification h such
that Mod(h) = Mod(h′)|σ.

As usual, the above are just “kernel” operations on specifications, which
underly more complex ones that are closer to what will be used in practical
examples. For instance, if h is a Σ-behaviour specification, then we can write
behaviour specifications over signatures extending Σ as follows (also permitting
self-explanatory notational variants whenever convenient):

h then signature-extension with sort-definitions and behaviour-definition

Here, signature-extension is an extension of Σ, possibly contributing new sort
names S′ and operation names over (S ∪ S′)∗ × (S ∪ S′), resulting in a new
signature Σ′, sort-definitions provides carrier definitions for the sorts in S′, and
behaviour-definition defines the functions hs for all sorts s ∈ S ∪ S′ excluding
those in S for which no new terms arise. In all the examples below, it will be
the case that the resulting specification is equivalent to a behaviour specification
h′ : TΣ′(A′) → A′ where for each sort s in Σ′, A′

s and h′
s are either inherited from

h or defined explicitly in sort-definitions and behaviour-definition, respectively,
and moreover, if h′

s is defined in behaviour-definition then it extends hs. In
fact, such a behaviour specification may be defined explicitly referring to the
operations introduced by Def. 3.9, similarly as the standard enrich operation is
defined in terms of translation and union [ST88a].

4 Observable behaviour

We now begin to focus on the main theme of this work, and look at what happens
when we consider only observable behaviour. As usual, we regard values of some
sorts as directly observable while the remaining sorts are treated as internal,
with properties of their elements made visible only via observations, which are
terms producing a result of observable sort. However, the technical means used

to achieve this are somewhat different, at least superficially, from much previous
work in this area. Without loss of generality, we take bool to be the only observ-
able sort. In view of our earlier discussion on the role of bool , this means that we
observe only the results of predicate applications, and take none of the ordinary
“data” sorts as observable. This departs from standard approaches (a recent ex-
ception being [BST08]), where choosing a non-empty set of observable data sorts
is crucial to have any observations at all and it is appropriate for this set to vary
in the process of modular development (e.g. the parameter sorts in specifications
of local constructions must be locally considered as observable). The former is
taken care of by assuming that appropriate predicates are introduced into the
specifications considered; the latter will be achieved in a technically different
way here, see Def. 7.7 below.

Definition 4.1. An observable Σ-behaviour is a function ev : (TΣ)bool → B.
The observable part of a Σ-behaviour ev : TΣ(A) → A is the restriction of evbool

to (TΣ)bool , written as Obs(ev) : (TΣ)bool → B.

The domain of the observable behaviour Obs(ev) is properly included in the
domain of the bool component of the behaviour ev : the latter also includes ob-
servations on non-ground terms, as well as the constants true and false. Including
true and false would do no harm, but it is inappropriate to regard observations
on unreachable values of non-observable sort as relevant to observable behaviour.

When producing a specification, we are actually interested in specifying ob-
servable behaviour; what happens with non-observable components is of no in-
terest, except insofar as they affect the observable behaviour. The definition of
observable behaviour specification is analogous to the definition of behaviour
specification above and is inspired by the notion of “specification” in [GGM76],
which is highlighted as their key definition.

Definition 4.2. An observable Σ-behaviour specification is a function
h : (TΣ)bool → B ∪ {α}. An observable Σ-behaviour ev : (TΣ)bool → B satisfies
h if ev(t) = h(t) whenever h(t) 6= α. A Σ-behaviour ev : TΣ(A) → A (obser-
vationally) satisfies h if its observable part Obs(ev) : (TΣ)bool → B satisfies h.
We write ModObs(h) for the class of all such behaviours. Finally, the observable
part of a Σ-behaviour specification h : TΣ(A) → A ∪ {α} is the restriction of h
to the set (TΣ)bool ; we write this as Obs(h) : (TΣ)bool → B ∪ {α}.

Lemma 4.3. Let h : TΣ(A) → A ∪ {α} be a Σ-behaviour specification. Then
Mod(h) ⊆ ModObs(Obs(h)), that is, for all Σ-behaviours ev, if ev satisfies h
then ev observationally satisfies Obs(h).

Any observable Σ-behaviour specification h : (TΣ)bool → B ∪ {α} may be
equivalently considered as the behaviour specification h+ : TΣ(B+) → B+ ∪ {α}
that adds empty carriers for all sorts other than bool and maps all terms of these
sorts to α.

Lemma 4.4. Let h : (TΣ)bool → B ∪ {α} be an observable Σ-behaviour spec-
ification. Then ModObs(h) = Mod(h+), that is, for all Σ-behaviours ev, ev
observationally satisfies h iff ev satisfies h+.

Any notion of observable behaviour gives rise to an equivalence between
behaviours, whereby two behaviours are equivalent iff their observable parts co-
incide. This equivalence, methods for proving it, and conditions under which it is
preserved by constructions on behaviours, is central to the study of observability
concepts in specifications.

Definition 4.5. Two Σ-behaviours, ev : TΣ(A) → A and ev ′ : TΣ(A′) → A′,
are observationally equivalent, written ev ≡ ev ′, if Obs(ev) = Obs(ev ′).

The following definition, and its use in the sequel, is derived from Schoett’s
notion of correspondence for Σ-algebras in [Sch87].

Definition 4.6. Let ev : TΣ(A) → A and ev ′ : TΣ(A′) → A′ be Σ-behaviours. A
Σ-correspondence ρ : ev ./ ev ′ is an S-sorted relation ρ ⊆ A×A′ such that ρbool

is the identity relation on B, and ρ is preserved by operations: for any operation
name f : s1×· · · .×sn → s and terms t1, . . . , tn ∈ TΣ(A) and t′1, . . . , t

′
n ∈ TΣ(A′)

of the respective argument sorts, if ev(t1) ρs1 ev ′(t′1) and · · · and ev(tn) ρsn

ev ′(t′n) then ev(f(t1, . . . , tn)) ρs ev ′(f(t′1, . . . , t
′
n)).

In fact, it is enough to consider here t1, . . . , tn and t′1, . . . , t
′
n to be constants in

A and A′ respectively.
Σ-correspondences can also be presented as spans of Σ-behaviour homomor-

phisms, see e.g. [BST08].

Proposition 4.7. Let ev : TΣ(A) → A and ev ′ : TΣ(A′) → A′ be Σ-behaviours.
Then ev ≡ ev ′ iff there is a Σ-correspondence ρ : ev ./ ev ′.

Proposition 4.8. Consider any Σ-behaviour specification h : TΣ(A) → A∪{α}
and its observable part Obs(h) : (TΣ)bool → B ∪ {α}. For every Σ-behaviour
ev : TΣ(B) → B that observationally satisfies Obs(h), there exists a Σ-behaviour
ev ′ : TΣ(C) → C such that ev ′ satisfies h, and ev ≡ ev ′.

5 Examples

The following examples illustrate the definitions above. Examples in the sequel
will build on these and will provide further illustrations.

We give an observable behaviour specification of symbol tables for a pro-
gramming language with block structure and local variable declarations. This
builds on the following specification of identifiers as strings.

Ident =
eqsort ident = string
opns “a”, “b”, . . . , “any string you like”, . . . : string

The notion of eqsort is borrowed from Standard ML’s “eqtypes” (equality types).
Since ident is an eqsort, it comes with an implicit operation =: ident × ident →
bool such that hIdentbool (i = j) = true iff i and j are identical strings. We allow
ourselves to write i = j below in place of hIdentbool (i = j) = true for brevity.

We use an informal notation for extending observable behaviour specifica-
tions, with a meaning that is analogous to that defined above for the case of
behaviour specifications. According to the following specification, a symbol ta-
ble records identifiers without associating any information to them. Identifiers
that are added after entering a block are forgotten once the end of the block is
reached, since identifiers within the block are no longer in scope at that point.

Symtab = Ident then
sort symtab
opns empty : symtab

add : ident × symtab → symtab
enter : symtab → symtab
leave : symtab → symtab
isin : ident × symtab → bool

with

hSymtabbool (isin(i, empty)) = false
hSymtabbool (isin(i, add(i′, t))) = α if t is unbalanced

else true if i = i′

else hSymtabbool (isin(i, t))
hSymtabbool (isin(i, enter(t))) = α if t is unbalanced

else hSymtabbool (isin(i, t))
hSymtabbool (isin(i, leave(t))) = α if leave(t) is unbalanced

else hSymtabbool (isin(i, L(t)))

where a (ground) term t is unbalanced if there is a subterm of t containing more
occurrences of leave than enter . Informally, such a t is erroneous in the sense
that it indicates an attempt to exit a block that has not been entered. Otherwise
we say that t is well-balanced. Then L is an auxiliary function that for each t
such that leave(t) is well-balanced yields the term immediately inside the first
use of enter that is not matched by a preceding leave (formally: L(add(i, t)) =
L(t), L(enter(t)) = t, and L(leave(t)) = L(L(t))). The meaning of an equation
like hSymtabbool (isin(i, empty)) = false above is that it holds for all of its ground
instances. (That is the reason why we needed constants in Ident.)

Symtab is then an observable behaviour specification over the indicated
signature (i.e., the signature of Ident, including =, together with the sort symtab
and the operations listed above).

A refinement of Symtab is Symtab′, given by the following function, which
specifies choices for the cases that Symtab leaves open. It makes no use of α, and
so it determines a single observable behaviour; all of the behaviours that satisfy it
are observationally equivalent. We have decided here that for unbalanced terms
t, isin(i, t) yields true for any identifier i.

hSymtab
′

bool (isin(i, empty)) = false
hSymtab

′

bool (isin(i, add(i′, t))) = true if i = i′

else hSymtab
′

bool (isin(i, t))
hSymtab

′

bool (isin(i, enter(t))) = hSymtab
′

bool (isin(i, t))
hSymtab

′

bool (isin(i, leave(t))) = true if leave(t) is unbalanced
else hSymtab

′

bool (isin(i, L(t)))

Examples of behaviours over the signature of Symtab are given below in
the form of SML structures. When no partiality, exceptions, polymorphism etc.
arises, as below, this amounts to a definition of an algebra and therefore of a
behaviour in our sense. Given such a structure definition Str, we will write
Str.s for its carrier of sort s, and evStr for its behaviour function.

The definitions below build on the definition of ident as the eqsort (or in
SML, eqtype) string with constants as above.

structure LST =

struct

type symtab = (ident list) list

val empty = [[]] : (ident list) list

fun add(i,[]) = []

| add(i,l::st) = (i::l)::st

fun enter [] = []

| enter st = []::st

fun leave [] = []

| leave(l::st) = st

fun isin(i,[]) = false

| isin(i,[]::st) = isin(i,st)

| isin(i,(j::l)::st) = (i=j) orelse isin(i,l::st)

end

Here, symbol tables are represented as lists of lists of identifiers. A list of iden-
tifiers represents the set of identifiers declared in a given block. A list of these
lists is used to record block structure; this works because of the way that blocks
can be nested. The behaviour determined by Lst satisfies Symtab but does not
satisfy Symtab

′.
A different behaviour Lst′ is obtained by making the isin function yield true

for unbalanced symbol tables. In the code for Lst, we just replace the definition
of isin by

fun isin(i,[]) = true

| isin(i,[[]]) = false

| isin(i,[]::st) = isin(i,st)

| isin(i,(j::l)::st) = (i=j) orelse isin(i,l::st)

(Note that the order of clauses matters in SML: the third clause only applies to
non-empty st .) Lst′ satisfies Symtab′ and so also satisfies Symtab.

A different behaviour with the same observable part as Lst is given by the
following structure, in which symbol tables are represented using functions. The

set of identifiers within a given block is represented by its characteristic function,
of type ident → bool , and a stack of these (represented as an “array” of sets,
int → (ident → bool) together with an integer “pointer” to the top of the stack)
is used to record block structure.

structure SST =

struct

type symtab = int -> (ident -> bool) * int

val empty = (fn n => if n=0 then (fn i => false)

else (fn i => true) ,

0)

fun add(i,(st,m)) =

(fn n => if n=m

then fn j => (i=j) orelse st(n)(j)

else st(n) ,

m)

fun enter(st,m) =

if m<0 then (st,m)

else (fn n => if n>m then fn j=>false else st(n) ,

m+1)

fun leave(st,m) = (st,m-1)

fun isin(i,(st,m)) = if m<0 then false

else if m=0 then st(m)(i)

else st(m)(i) orelse isin(i,(st,m-1))

end

Now, Lst and Sst are observationally equivalent but there is no homomor-
phism from either to the other, even if we restrict their carriers to the values of
ground terms. However, there are correspondences ρ : evSst ./ evLst that witness
the behavioural equivalence. One such correspondence relates all pairs 〈st ,m〉
for m < 0 with the empty list, and then for m ≥ 0 it relates 〈st ,m〉 with all lists
[l0, . . . , lm] such that st(i)(j) = true iff j occurs at least once in li.

6 Implementations

We write specifications because we are interested in developing programs that
implement them. One way of proceeding is top-down, by stepwise refinement:
we refine the original specification of requirements to another one that is easier
to implement by filling in design decisions such as choosing between the options
of behaviour left open in “don’t care” cases.

The issue of implementing specifications by programs is not mentioned in
[GGM76]. An elegant approach to this issue has been developed in the years
since then, coping with both observational and non-observational views of spec-
ifications. In this section and the next one we adapt this existing approach to
the present framework, using our own work [ST88b,BST02,BST08] as a basis.

To produce a program from a specification, we proceed in stages by reducing
the problem to a simpler one. At each stage, we postulate a solution to the

simpler problem, and show by construction how to turn such a solution into a
solution to the overall problem.

Definition 6.1. Let Σ and Σ′ be signatures. A construction from Σ to Σ′,
written κ : Σ ⇒ Σ′, is a function mapping any Σ-behaviour to a Σ′-behaviour.2

Given a Σ-behaviour specification h : TΣ(A) → A ∪ {α} and a Σ′-behaviour
specification h′ : TΣ′(A′) → A′∪{α}, we say that h implements h′ via κ, written
h′

κó h, if κ maps each Σ-behaviour satisfying h to a Σ′-behaviour satisfying
h′, i.e. κ(Mod(h)) ⊆ Mod(h′), where κ(Mod(h)) denotes the image of Mod(h)
under κ. When we want to emphasize correctness of κ in relating h and h′ rather
than the relationship between h and h′, we say that κ is correct w.r.t. h and h′.

Although the definition says that a construction κ : Σ ⇒ Σ′ is a mathematical
function, it is best viewed as the semantic function underlying a parameterised
program [Gog96], or in SML terms a functor, which produces the components
(sorts and operations) required by Σ′ when supplied with the components re-
quired by Σ. Then h′

κó h amounts to a reduction of the task of implementing
h′ to the task of implementing h, where κ supplies code to fill in the gap.

We can easily compose successive implementations. Then, once we have re-
duced the problem to one we have already solved, we obtain a solution to the
original problem.

Proposition 6.2. If h1 κ1
ô h2 κ2
ô h3 then h1 κ2;κ1

ö h3. Thus, if h1 κ1
ô

· · · κn−1
ö hn and evn satisfies hn, then κ1(· · · (κn−1(evn)) · · ·) satisfies h1.

If we regard each construction as supplying some code, then composing a chain
of constructions combines all of these program fragments into a single program.

This picture can be considerably enhanced to accommodate architectural
system design [AG97] using multi-argument constructions to combine smaller
components into a larger system — see [SST92,BST02].

A more sophisticated version of Def. 6.1 is needed to deal with the distinc-
tion between ordinary and observable behaviours. Since only observable aspects
should determine correctness of implementations, in an implementation step
h′

κó h it is too restrictive to require κ to deliver behaviours that “strictly”
satisfy h′. We weaken this to satisfaction of only the observable part of h′.

Definition 6.3. Given a Σ-behaviour specification h : TΣ(A) → A ∪ {α} and a
Σ′-behaviour specification h′ : TΣ′(A′) → A′∪{α}, we say that h observationally
implements h′ via κ, written h′ Obs

κó h, if κ maps each Σ-behaviour satisfying h
to a Σ′-behaviour satisfying Obs(h′), i.e. κ(Mod(h)) ⊆ ModObs(Obs(h′)). Again,
when we want to emphasize correctness of κ in relating h and h′, we say that κ
is observationally correct w.r.t. h and h′.

This definition may be phrased in terms of observational equivalence: h′ Obs
κó

h if for every Σ-behaviour ev satisfying h, there is a Σ′-behaviour ev ′ satisfying
h′ such that κ(ev) ≡ ev ′. By Lemma 4.3, if h′

κó h then h′ Obs
κó h.

2 Constructions involved in practical examples may turn out to be partial functions;
this may be dealt with similarly as in [BST02,BST08], so we disregard this issue
here for the sake of simplicity.

But now composition of correctness is not so straightforward! Since observa-
tionally correct constructions build results that observationally satisfy the result
specification given arguments that satisfy the argument specification “strictly”,
the following additional property is required to ensure that no problems arise
when constructions are composed.

Definition 6.4. A construction κ : Σ ⇒ Σ′ is stable if it preserves observa-
tional equivalence, that is, for all Σ-behaviours ev1 and ev2, ev1 ≡ ev2 implies
κ(ev1) ≡ κ(ev2).

Proposition 6.5. If h1
Obs
κ1
ô h2

Obs
κ2
ô h3 and κ1 is stable then h1

Obs
κ2;κ1
ö h3.

This suggests that in order to compose observational implementations, we must
check that constructions are stable as well as checking that the implementing
specification of one matches the implemented specification of the other. The
definition of stability of κ : Σ ⇒ Σ′ involves quantification over all pairs of Σ-
behaviours, so that could be difficult. But when constructions are determined
by parameterised programs in a programming language, e.g. functors in SML,
then it is possible to shift the burden of proof to the programming language
designers by requiring that all expressible constructions be stable. This is entirely
reasonable since it corresponds to requiring that parameterised programs respect
abstraction boundaries: κ may freely use the components of its parameter that
are listed in Σ, but may not take advantage of their particular internal properties.

6.1 Examples

A possible implementation of symbol tables as specified in Sect. 5, in terms of
identifiers, proceeds in three steps. We implement Symtab by LBunch, then
LBunch by Bunch, and finally Bunch by Ident. The intermediate specifica-
tions Bunch and LBunch are as follows.

Bunch = Ident then
sort bunch
opns emptybunch : bunch

defaultbunch : bunch
addid : ident × bunch → bunch
isinbunch : ident × bunch → bool

with
bunch = ident list

and

hBunchbunch (emptybunch) = []
hBunchbunch (defaultbunch) = α

hBunchbunch (addid(i, b)) = α if hBunchbunch (b) = α
else i::hBunchbunch (b)

hBunchbool (isinbunch(i, b)) = α if hBunchbunch (b) = α
else case hBunchbunch (b) of [] ⇒ false

j::b′ ⇒ true if i = j
else isinbunch(i, b′)

LBunch = Bunch then
sort lb
opns emptylb : lb

addbunch : bunch ∗ lb → lb
popbunch : lb → lb
topbunch : lb → bunch
isemptylb : lb → bool

with
lb = bunch list

and

hLBunchlb (emptylb) = []
hLBunchlb (addbunch(b, l)) = α if hLBunchlb (l) = α or hLBunchbunch (b) = α

else b::hLBunchlb (l)
hLBunchlb (popbunch(l)) = α if hLBunchlb (l) = α

else case hLBunchlb (l) of [] ⇒ α
b::l′ ⇒ l′

hLBunchbunch (topbunch(l)) = α if hLBunchlb (l) = α
else case hLBunchlb (l) of [] ⇒ α

b::l′ ⇒ b
hLBunchbool (isemptylb(l)) = α if hLBunchlb (l) = α

else case hLBunchlb (l) of [] ⇒ true
b::l′ ⇒ false

hLBunchbunch (addid(i, b)) = α if hLBunchbunch (b) = α
else i::hLBunchbunch (b)

hLBunchbool (isinbunch(i, b)) = α if hLBunchbunch (b) = α
else case hLBunchbunch (b)

of [] ⇒ false
j::b′ ⇒ true if i = j

else isinbunch(i, b′)

Bunch describes an abstract data type for a collection of identifiers with
membership. LBunch, short for “layered bunch”, comes from the recognition
that a stack-like structure is relevant to dealing with entering and leaving blocks.

Note that the last two clauses of LBunch need to be included, although
they are essentially repeated from Bunch: here b ranges over a larger set of
terms. A full-blown specification language for writing specifications in this style
would include notational conventions for circumventing this kind of boring and
error-prone repetition, as well as other inconveniences of the notation above.

Now we give the constructions, which are functions from behaviours to be-
haviours, in a number of variants, as SML functors. We proceed bottom-up,
starting with two variants of the implementation of Bunch by Ident.

functor FB(structure I : IDENT) : BUNCH =

struct

open I

type bunch = ident list

val emptybunch = []

val defaultbunch = []

fun addid(i,b) = i::b

fun isinbunch(i,[]) = false

| isinbunch(i,j::b) = (i=j) orelse isinbunch(i,b)

end

Clearly, for any behaviour Id that satisfies Ident, Fb(Id) yields a behaviour
that satisfies Bunch, and so Fb (the semantic function underlying the functor
FB) is correct w.r.t. Ident and Bunch, i.e. Bunch

Fb
ô Ident.

functor FB’(structure I : IDENT) : BUNCH =

struct

open I

type bunch = ident -> bool

val emptybunch = fn i => false

val defaultbunch = fn i => true

fun addid(i,f) = fn j => (i=j) orelse f(j)

fun isinbunch(i,f) = f(i)

end

Given any behaviour Id that satisfies Ident, Fb′(Id) yields a behaviour that
does not satisfy Bunch. However, it does observationally satisfy the observable
part of Bunch and so Fb

′ is observationally correct w.r.t. Ident and Bunch,
i.e. Bunch Obs

Fb
′õ Ident.

Now we consider two ways of implementing LBunch by Bunch.

functor FLB(structure B : BUNCH) : LBUNCH =

struct

open B

type lb = bunch list

val emptylb = []

fun addbunch(b,l) = b::l

fun popbunch [] = []

| popbunch(b::l) = l

fun topbunch [] = defaultbunch

| topbunch(b::l) = b

fun isemptylb [] = true

| isemptylb(b::l) = false

end

For any behaviour B that satisfies Bunch, Flb(B) yields a behaviour that
satisfies LBunch, and thus LBunch

Flb
õ Bunch.

functor FLB’(structure B : BUNCH) : LBUNCH =

struct

open B

type lb = (int -> bunch) * int

val emptylb = (fn n => defaultbunch , ~1)

fun addbunch(b,(f,m)) = (fn n => if n>m then b else f(n) , m+1)

fun popbunch(f,m) = (f,m-1)

fun topbunch(f,m) = f(m)

fun isemptylb(f,m) = m<0

end

For any behaviour B that satisfies Bunch, Flb′(B) yields a behaviour that
satisfies the observable part of LBunch, and so LBunch Obs

Flb
′ö Bunch.

Finally, we give two ways of implementing Symtab by LBunch.

functor FST(structure LB : LBUNCH) : SYMTAB =

struct

eqtype ident = LB.ident

val "a" = LB."a" val "b" = LB."b" ...

type symtab = LB.lb

val empty = LB.addbunch(LB.emptybunch,LB.emptylb)

fun add(i,st) =

if LB.isemptylb(st) then st

else LB.addbunch(LB.addid(i,LB.topbunch(st)),LB.popbunch(st))

fun enter(st) = if LB.isemptylb(st) then st

else LB.addbunch(LB.emptybunch,st)

val leave = LB.popbunch

fun isin(i,st) =

if LB.isemptylb(st) then false

else if LB.isemptylb(LB.popbunch(st))

then LB.isinbunch(i,LB.topbunch(st))

else LB.isinbunch(i,LB.topbunch(st))

orelse LB.isin(i,LB.popbunch(st))

end

functor FST’(structure LB : LBUNCH) : SYMTAB =

struct

eqtype ident = LB.ident

val "a" = LB."a" val "b" = LB."b" ...

type symtab = LB.lb

val empty = LB.addbunch(LB.emptybunch,LB.emptylb)

fun add(i,st) =

if LB.isemptylb(st) then st

else LB.addbunch(LB.addid(i,LB.topbunch(st)),LB.popbunch(st))

fun enter(st) =

if LB.isemptylb(st) then st

else LB.addbunch(LB.emptybunch,st)

val leave = LB.popbunch

fun isin(i,st) =

LB.isemptylb(st) orelse

LB.isinbunch(i,LB.topbunch(st)) orelse

LB.isin(i,LB.popbunch(st))

end

For any behaviour Lb that satisfies LBunch, each of Fst(Lb) and Fst
′(Lb)

yields a behaviour that satisfies Symtab, and thus we have Symtab
Fst
õ

LBunch and Symtab
Fst

′ö LBunch. And so, for each of these, we also have

an observational implementation, Symtab Obs

Fst
õ LBunch etc.

All of these constructions are stable; since they are coded as closed SML
functors, under the very plausible conjecture that all closed SML-expressible
functors are stable. (Actually proving this result would be very tedious, as the
proof would need to consider the entire definition of SML. But it would only need
to be done once, thereafter freeing implementors from the obligation to check
stability case by case.) Consequently, the obvious compositions of these construc-
tions yield behaviours that observationally satisfy Symtab. In particular, for
any behaviour Id that satisfies Ident, Fst(Flb(Fb(Id))) corresponds to Lst,
Fst

′(Flb(Fb(Id))) corresponds to Lst
′ and Fst(Flb′(Fb′(Id))) corresponds

to Sst. Other combinations, like Fst(Flb′(Fb(Id))) and Fst
′(Flb(Fb′(Id))),

yield still different structures.
Now consider the following modification to FST:

functor FSTBAD(structure LB : LBUNCH) : SYMTAB =

struct

eqtype ident = LB.ident

...

fun isin(i,st) =

if (st = LB.emptylb) then false

else if LB.popbunch(st) = LB.emptylb

then LB.isinbunch(i,LB.topbunch(st))

else LB.isinbunch(i,LB.topbunch(st))

orelse LB.isin(i,LB.popbunch(st))

end

(This is not valid in SML: the type LB.lb is not required to admit equality and
so st = LB.emptylb does not typecheck.)

FstBad is still observationally correct: for every behaviour that satisfies
LBunch, FstBad builds a behaviour that observationally satisfies Symtab

(since for each Lb satisfying LBunch, for all well-balanced terms t of type
symtab, the values of isin(i, t) in FstBad(Lb) and in Fst(Lb) coincide). But
FstBad is not stable. So, if we take Flb

′(Fb′(Id)), which does not satisfy
LBunch (even though it satisfies the observable part of it), and then apply
FstBad to buildBad = FstBad(Flb′(Fb′(Id))),Bad need not satisfy Symtab.
Indeed, it does not: evaluating the term isin(j, leave(add(i, enter(empty)))) in
Bad gives true, and this is incorrect according to Symtab.

7 Local constructions in global contexts

Very informally, constructions as discussed in Sect. 6 were considered at the
“global” level of the entire system under development: they build a behaviour
that implements the overall requirements specification given any argument be-
haviour satisfying a specification of the part of the system yet to be implemented.
But in each development step the construction typically uses only a relatively

small part of its argument to add a new part of the result, and just passes most
of the argument over to the result without using or touching it in any way.

We will now have a closer look at one aspect of modular development, namely
at the use of local constructions, which take as argument only as much of the
behaviour as is necessary to build some new part of the result. Such local con-
structions give rise to constructions at the “global” level, whereby the required
argument is cut out of the global context and the result combined with the same
global context, thus extending it by new parts and contributing to the overall
system implementation. We capture this idea using the pushout technique and
amalgamation, as is standard in algebraic specifications [EM85].

A technical tool we need is an extension of Lemma 2.3 to behaviours and
correspondences.

Lemma 7.1. Consider a pushout in the category of signatures.

Σ

Σ1

Σ2

Σ′

6
σ1

-
σ2

-
σ′

2

6
σ′

1

Then for any Σ1-behaviour ev1 and Σ2-behaviour
ev2 with common Σ-reduct ev1|σ1 = ev2|σ2 , there ex-
ists a unique Σ′-behaviour ev ′ such that ev ′|σ′2 = ev1

and ev ′|σ′1 = ev2. Similarly for correspondences: for
any Σ1-correspondence ρ1 : ev1,1 ./ ev1,2 and Σ2-
correspondence ρ2 : ev2,1 ./ ev2,2 with common Σ-

reducts ev1,1|σ1 = ev2,1|σ2 , ev1,2|σ1 = ev2,2|σ2 , and ρ1|σ1 = ρ2|σ2 , there exists
a unique Σ′-correspondence ρ′ : ev ′

1 ./ ev ′
2 such that ρ′|σ′2 = ρ1 and ρ′|σ′1 = ρ2,

where ev ′
1|σ′2 = ev1,1, ev ′

1|σ′1 = ev2,1, ev ′
2|σ′2 = ev1,2, ev ′

2|σ′1 = ev2,2.

We are ready now to state the main definitions for this section:

Definition 7.2. Given a signature morphism ι : Σ → Σ′, a (local) construction
along ι is a function κ that maps any Σ-behaviour ev to a Σ′-behaviour κ(ev)
such that κ(ev)|ι = ev.

Then, given a (“global context”) signature ΣG and
a (“fitting”) morphism γ : Σ → ΣG, the construc-
tion κγ along ι′ : ΣG → Σ′

G induced by κ via γ (or
the γ-lifting κγ of κ) is defined for any ΣG-behaviour
evG so that κγ(evG) is the Σ′

G-behaviour such that
κγ(evG)|ι′ = evG and κγ(evG)|γ′ = κ(evG|γ), where

Σ

ΣG

Σ′

Σ′
G

6
γ

-
ι

-ι′

6
γ′

Σ′
G and morphisms ι′ : ΣG → Σ′

G, γ′ : Σ′ → Σ′
G are given by a pushout of

ι : Σ → Σ′ and γ : Σ → ΣG.

As argued in Sect. 6, the key property of (global) constructions is stability.
Unfortunately, since enlarging the context of use typically expands observable
behaviour, stability of a local construction will not ensure that its lifting along
a fitting morphism is stable as well. Following [Sch87] we introduce a stronger
property, which is preserved by lifting along any morphism.

Definition 7.3. A construction κ along a signature morphism ι : Σ → Σ′ is
locally stable if it extends correspondences, that is, for any Σ-behaviours ev1

and ev2, any Σ-correspondence ρ : ev1 ./ ev2 extends to a Σ′-correspondence
ρ′ : κ(ev1) ./ κ(ev2) such that ρ′|ι = ρ.

Theorem 7.4. A construction κ along a signature morphism ι : Σ → Σ′ is
locally stable if and only if for all signatures ΣG and fitting morphisms γ : Σ →
ΣG, the γ-lifting κγ of κ is stable.

The “only if” part of this theorem is what we need: local stability of a local
construction ensures its stability in any context of use; the “if” part shows that
no weaker condition can be given.

We now turn to the issue of specifying local constructions and using their
specifications to justify correctness of global implementation steps. The standard
approach would be that to specify local constructions along ι′ : Σ → Σ′, one
gives a Σ-behaviour specification that determines the arguments intended for
the construction, and a Σ′-behaviour specification that describes the results
built. Unfortunately, this doesn’t work in the framework discussed in this paper.
Any behaviour specification constrains the behaviour only on elements that are
in the specification’s carrier, since behaviours which satisfy that specification are
required to conform on such elements only, not on additional elements that may
also be present in their carriers. When a local construction is used in a global
context, the set of data for which the behaviour is of importance may grow
beyond what we can take explicit account of when writing a single specification.
We accommodate this by making the result specification depend on the carriers
of the argument supplied.3

Definition 7.5. A specification of local constructions along ι : Σ → Σ′ consists
of a Σ-behaviour specification h : TΣ(A) → A ∪ {α} and a function that maps
any set X ⊇ A to a Σ′-behaviour specification h′

X : TΣ(X ′) → X ′∪{α}.We write
such a specification as ΠX:h→h′

X .
A local construction κ along ι : Σ → Σ′ strictly satisfies (or, is strictly correct

w.r.t.) ΠX:h→h′
X if for any Σ-behaviour ev : TΣ(X) → X that satisfies h, κ(ev)

is a Σ′-behaviour that satisfies h′
X .

The conditions to ensure that a strictly correct local construction lifts to a
strictly correct construction in a global context are now rather natural:

Theorem 7.6. Let κ be a local construction along ι : Σ → Σ′ that strictly sat-
isfies ΠX:h→h′

X .
Consider a signature ΣG with a fitting morphism

γ : Σ → ΣG and the usual pushout. Let hG : TΣG
(AG) →

AG ∪ {α} and h′
G : TΣ′

G
(A′

G) → A′
G ∪ {α} be be-

haviour specifications. If γ(h) refines hG, and for each
X ⊇ AG|γ , h′

G refines ι′(h) + γ′(h′
X) then the γ-lifting

κγ of κ is strictly correct w.r.t. hG and h′
G.

Σ

ΣG

Σ′

Σ′
G

6
γ

-
ι

-ι′

6
γ′

Let us now turn to observational correctness. As with stability, observational
correctness for (global) constructions would be too weak for local constructions:

3 Allowing, more generally, the result specification to depend on the entire argument
behaviour, not just its carriers, should not cause extra technical difficulties.

when such a local construction is used in a global context, where more observa-
tions are available, correctness would be lost in general. The following definition
strengthens the requirements appropriately:

Definition 7.7. A local construction κ along ι : Σ → Σ′ locally satisfies (or, is
locally correct w.r.t.) ΠX:h→h′

X if for any Σ-behaviour ev : TΣ(X) → X that
satisfies h, there is a Σ′-behaviour ev ′ that satisfies h′

X and a Σ′-correspondence
ρ′ : ev ′ ./ κ(ev) such that ρ′|ι is the identity (which implies ev ′|ι = ev).

Local correctness is stronger than observational correctness of κ, which would
just state that κ(ev) observationally satisfies h′

X . By requiring that this is “wit-
nessed” by a correspondence that is identity on the argument sorts, we “locally”
fix the argument sorts as observable, thus allowing arbitrary observations for
them to be added in the context of use, as the following key theorem shows.

Theorem 7.8. Let κ be a local construction along ι : Σ → Σ′ that is locally
stable and locally satisfies ΠX:h→h′

X .
Consider a signature ΣG with a fitting morphism

γ : Σ → ΣG and the usual pushout. Let hG : TΣG
(AG) →

AG ∪ {α} and h′
G : TΣ′

G
(A′

G) → A′
G ∪ {α} be behaviour

specifications. If Mod(hG) ⊆ ModObs(Obs(hG+γ(h))),
and for each X ⊇ AG|γ , Mod(ι′(h) + γ′(h′

X)) ⊆
ModObs(Obs(h′

G)) then the γ-lifting κγ of κ is observ-
Σ

ΣG

Σ′

Σ′
G

6
γ

-
ι

-ι′

6
γ′

ably correct w.r.t. hG and h′
G.

7.1 Examples

Recall constructions Flb and Flb′ as defined in Sect. 6. Any argument behaviour
B (which has to satisfy Bunch) is inherited by the result behaviours Flb(B)
and Flb(B), but it is passed there untouched and otherwise (apart from the type
bunch and the constant defaultbunch) is not used by Flb and Flb

′. Therefore
the essence of either of the two constructions can be captured over a smaller
signature as a local construction as follows.

We start with a simple argument specification:

Elem =
sort elem
opns default : elem
with

elem = unit
and

hElemelem (default) = α

The following function yields specifications for the result given a carrier for sort
elem; note that all these result specifications have a common signature.

Stack(sort elem) =
sort stack
opns emptystack : stack

push : elem × stack → stack
pop : stack → stack
top : stack → elem
isempty : stack → bool

with
stack = elem list

and

hStackstack (emptystack) = []
hStackstack (push(b, l)) = α if hStackstack (l) = α or hStackelem (b) = α

else b::hStackstack (l)
hStackstack (pop(l)) = α if hStackstack (l) = α

else case hStackstack (l) of [] ⇒ α
b::l′ ⇒ l′

hStackelem (top(l)) = α if hStackstack (l) = α
else case hStackstack (l) of [] ⇒ α

b::l′ ⇒ b
hStackbool (isempty(l)) = α if hStackstack (l) = α

else case hStackstack (l) of [] ⇒ true
b::l′ ⇒ false

Here are two local constructions along the obvious inclusion of the signature
of Elem into the signature of Stack(elem) (for any carrier for elem).

functor FSTACK(structure E : ELEM) : STACK(E.elem) =

struct

open E

type stack = elem list

val emptystack = []

fun push(b,l) = b::l

fun pop [] = []

| pop(b::l) = l

fun top [] = default

| top(b::l) = b

fun isempty [] = true

| isempty(b::l) = false

end

functor FSTACK’(structure E : ELEM) : STACK(E.elem) =

struct

open E

type stack = (int -> elem) * int

val emptystack = (fn n => default , -1)

fun push(b,(f,m)) = (fn n => if n>m then b else f(n), m+1)

fun pop(f,m) = (f,m-1)

fun top(f,m) = f(m)

fun isempty(f,m) = m<0

end

FStack and FStack
′ are locally stable. As in Sect. 6.1, this should follow from

the fact that they are coded as SML functors. FStack and FStack
′ are also

locally correct.
Flb and Flb′ arise as global constructions induced by FStack and FStack′,

respectively, via the fitting morphism from the signature of Elem to the signa-
ture of Bunch which maps elem to bunch and default to defaultbunch. This is,
of course, assuming the appropriate choice of names in the pushout signature,
where we need to rename stack to lb, emptystack to emptylb, etc. Stability and
observational correctness of Flb and Flb

′ follow from local stability and local
correctness of FStack and FStack

′, respectively, using Thms. 7.4 and 7.8.

8 Conclusion

This is a new look at some of our previous work on observational interpre-
tation of specifications and its role in software specification and development
[ST88b,BST02,BST08], presented in a new framework inspired by the ideas in
[GGM76]. We have focused on a key idea in [GGM76], that of viewing a system
via its behaviour, given by the evaluation function for terms of sort bool , and
consequently, that of specifying behaviour by indicating the results of evaluating
some terms and leaving others as “don’t care” cases. The resulting framework
and its observational aspects are sketched in Sects. 3 and 4; our work on sys-
tematic software development is then adapted to this framework, concentrating
on the use of local constructions in a global context, in Sects. 6 and 7.

The specifications considered in this new framework are considerably more
restrictive than axiomatic specifications. Even the simple constraint that the val-
ues of two terms coincide cannot be captured without giving their common value
explicitly. On the other hand, such specifications offer a visible link to so-called
“abstract model specifications” [Jon80] with mechanisms for making looseness
in specifications explicit, via the designation of “don’t care” cases, rather than
implicit, by simply omitting axioms from specifications that constrain required
behaviour. The ramifications of this link remains to be investigated. It is possible
to add axiomatic specifications to this framework, for which there are two ap-
proaches: one uses an observational interpretation of the axioms, where equality
refers to indistinguishability via the available operations; the other uses the stan-
dard interpretation, but closes model classes of specifications under behavioural
equivalence.

Other important parts of the story are not covered here for lack of space.
One major issue concerns proof: to show that a behaviour satisfies a specifica-
tion, or that one specification implements another, requires formal proofs about
behaviours and specifications. An observational view of specifications compli-
cates this task, although again requiring stability helps considerably. But this is

still a research area, with some questions unresolved after many years of work.
A recent elegant and promising approach to these issues is [BH06].

Another point concerns the extension of this account to deal with more com-
plex notions of behaviour, involving partial functions, higher-order functions,
subsorting, relations etc. When we depart from the total first-order case pre-
sented here, it is not always obvious what observable behaviour means: should
partiality of operations be observable or not? Should the results of relations, as
opposed to functions into bool , be observable or not?

Parallel to the developments in algebraic specifications, ideas concerning ob-
servability have been taken up in the area of concurrency (with significant contri-
butions from Ugo Montanari in this area too!). Essentially from their beginnings,
standard process calculi have been considered modulo a notion of bisimulation
in various variants, which captures similar intuitions as that of observational
equivalence studied in work on algebraic specifications. An abstract version of
bisimulation, defined using spans of “open maps” [JNW96] can be used to link
the two concepts, see [Las97,Las98]. It would be interesting to see how these
ideas may be instantiated in the present framework.

Yet another angle on this topic is provided by universal coalgebra [Rut00],
with techniques to specify coalgebras (and behaviours they define) using modal
logics [Kur01]. We would like to try extending the approach presented here in
this direction as well.

References

[AG97] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

[AKKB99] E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Algebraic
Foundations of Systems Specification. Springer, 1999.

[BH06] M. Bidoit and R. Hennicker. Constructor-based observational logic. Journal
of Logic and Algebraic Programming, 67(1–2):3–51, 2006.

[BKL+91] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and (eds.) D. Sannella.
Algebraic System Specification and Development: A Survey and Annotated
Bibliography. Springer LNCS 501, 1991.

[BST02] M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specifications in
Casl. Formal Aspects of Computing, 13:252–273, 2002.

[BST08] M. Bidoit, D. Sannella, and A. Tarlecki. Observational interpretation of
Casl specifications. Mathematical Structures in Computer Science, 18:325–
371, 2008.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics. Springer, 1985.

[GGM76] V. Giarratana, F. Gimona, and U. Montanari. Observability concepts in
abstract data type specifications. In Proc. 1976 Symp. on Mathematical
Foundations of Computer Science, pages 567–578. Springer LNCS 45, 1976.

[GM00] Joseph A. Goguen and Grant Malcolm. A hidden agenda. Theoretical
Computer Science, 245(1):55–101, 2000.

[Gog96] J.A. Goguen. Parameterized programming and software architecture. In
Proc. 4th Intl. IEEE Conf. on Software Reuse, pages 2–11, 1996.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types.
In Current Trends in Programming Methodology, Vol. 4: Data Structuring,
pages 80–149. Prentice-Hall, 1978. Edited by R.T. Yeh.

[JNW96] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. In-
formation and Computation, 127(2):164–185, 1996.

[Jon80] C.B. Jones. Software Development: A Rigorous Approach. Prentice-Hall,
1980.

[Kur01] Alexander Kurz. Specifying coalgebras with modal logic. Theoretical Com-
puter Science, 260(1-2):119–138, 2001.

[Las97] S. Lasota. Open maps as a bridge between algebraic observational equiv-
alence and bisimilarity. In Recent Trends in Algebraic Development Tech-
niques, pages 285–299. Springer LNCS 1376, 1997.

[Las98] S. Lasota. Partial-congruence factorization of bisimilarity induced by open
maps. In Proc. 25th Intl. Colloq. on Automata, Languages and Program-
ming, pages 91–102. Springer LNCS 1443, 1998.

[Rei81] H. Reichel. Behavioural equivalence – a unifying concept for initial and
final specification methods. In Proc. 3rd Hungarian Comp. Sci. Conference,
pages 27–39, 1981.

[Rut00] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249(1):3–80, 2000.

[Sch87] O. Schoett. Data Abstraction and the Correctness of Modular Programming.
PhD thesis, Dept. of Computer Science, Univ. of Edinburgh, 1987.

[SST92] D. Sannella, S. Soko lowski, and A. Tarlecki. Toward formal development
of programs from algebraic specifications: Parameterisation revisited. Acta
Informatica, 29(8):689–736, 1992.

[ST87] D. Sannella and A. Tarlecki. On observational equivalence and algebraic
specification. Journal of Computer and System Sciences, 34:150–178, 1987.

[ST88a] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. In-
formation and Computation, 76:165–210, 1988.

[ST88b] D. Sannella and A. Tarlecki. Toward formal development of programs
from algebraic specifications: Implementations revisited. Acta Informatica,
25:233–281, 1988.

[Wan79] M. Wand. Final algebra semantics and data type extensions. Journal of
Computer and System Sciences, 19:27–44, 1979.

[Wir90] M. Wirsing. Algebraic specifications. In Handbook of Theoretical Computer
Science, Vol. B: Formal Models and Semantics, pages 675–788. Elsevier,
1990. Edited by J. van Leeuwen.

