
History Dependent Automata for Service
Compatibility ?

Vincenzo Ciancia1, Gian Luigi Ferrari1, Marco Pistore2, and Emilio Tuosto3

1 Department of Computer Science, University of Pisa
{ciancia,giangi}@di.unipi.it

2 Center for Information Technology - IRST, Fondazione Bruno Kessler
pistore@fbk.eu

3 Department of Computer Science, University of Leicester
et52@mcs.le.ac.uk

Abstract. We use History Dependent Automata (HD-automata) as a
syntax-indepentend formalism to check compatibility of services at bind-
ing time in Service-Oriented Computing.
Informally speaking, service requests are modelled as pairs of HD-au-
tomata 〈Co, Cr〉; Cr describes the (abstract) behaviour of the searched
service and Co the (abstract) behaviour guaranteed by the invoker. Sym-
metrically, service publication consists of a pair of HD-automata 〈So, Sr〉
such that So provides an (abstraction of) of the behaviour guaranteed by
the service and Sr yields the requirement imposed to invokers. An invo-
cation 〈Co, Cr〉 matches a published interface 〈So, Sr〉 when Co simulates
Sr and So simulates Cr.

1 Introduction

Over the last few years nominal calculi have been envisaged as a suitable model
for Service-Oriented Computing (SOC). As a matter of fact, names provide a
uniform mechanism for abstracting a variety of different concepts like addresses,
links, continuations, distributed objects, localities, causal dependencies, crypto-
graphic keys and session identifiers. Also, the dynamicity issues usually arising in
distributed computing (e.g., network reconfiguration, link mobility) can benefit
from the sophisticated linguistic mechanisms of nominal calculi such as binding
and scope extrusion. The π-calculus [12, 22] is a small but illustrative example of
nominal calculus. Many of the concepts outlined above can be formally described
and explained in terms of the π-calculus.

In the nineties, Montanari and Pistore [14, 15, 20] introduced History De-
pendent automata (HD-automata) as a “syntax-independent” automata based
model amenable to represent the behaviour of a whole spectrum of formalisms
that stress the role of names to refer to suitable semantics concepts. For instance,
CCS with causality and localities and some dialects of the π-calculus have been

? Research partially supported by the EU FP6-IST IP 16004 SEnSOria and by the
UK project HiDeA4SOC.

2 Vincenzo Ciancia, Gian Luigi Ferrari, Marco Pistore, and Emilio Tuosto

semantically described by HD-automata. Indeed, different versions of HD-autom-
ata have been defined. The simplest version can easily be translated to finite-state
automata, but possibly with a larger number of states.

A more sophisticated variant consists of HD-automata with symmetries where
states are equipped with name symmetries (i.e., groups of name permutations).
HD-automata with symmetries yield two main benefits: a faithful representation
of linguistic mechanisms like scope extrusion and a re-adaptation of the partition
refinement algorithm [18] for semantic minimisation of HD-automata. Basically,
semantic minimisation provides a “garbage collection” mechanism of names so
that states can be eliminated if their behaviour is mimicked by other states,
possibly “re-using” their names with different meanings. Noteworthy, a theory
based on coalgebras in a category of “named sets” can be developed for this
kind of HD-automata, which extends the applicability of the approach to other
nominal calculi and guarantees the existence of the minimal automaton within
the same bisimilarity class [16, 6].

Also, the coalgebraic theory constitutes the formal basis upon which sev-
eral verification toolkits have been defined and implemented. In fact, on the one
hand, the front-end towards the π-calculus and the translation algorithm for the
simplest version of HD-automata have been implemented in the HAL tool [4, 5],
which relies on the JACK verification environment [1] for handling semantic ver-
ification via standard finite-state automata (e.g., model checking). And, on the
other hand, the minimisation algorithm, naturally suggested by the coalgebraic
framework, has been implemented in the Mihda toolkit [7, 8].

Finally, other variations of HD-automata have been defined by introducing
different algebraic operations [9], and are based on a algebraic-coalgebraic the-
ory [13]. Moreover, HD-automata have been considered with respect to bisimu-
lation-like behavioural equivalences (e.g., π-calculus bisimulation [12] or fusion
calculus hyperbisimulation [19]).

In this paper, we introduce a semantic framework for HD-automata based
on simulation and propose to use it as a mechanism for dealing with semantic-
based discovery of services within the service-oriented context. Our main goal is
to define a foundational framework to express behaviour -based service discovery.
Current standards for service discovery (i.e., UDDI and WSDL) provide purely
syntactic techniques. As a consequence, composing services only on the basis
of syntactic WSDL interfaces may lead to composite services that fall short in
meeting their requirements.

In our approach, service descriptions are annotated with HD-automata ab-
stracting the behaviour of the service. Informally speaking, service requests are
modelled as pairs of HD-automata 〈Co, Cr〉; Cr describes the (abstract) be-
haviour of the searched service and Co the (abstract) behaviour guaranteed by
the invoker. Symmetrically, service publication consists of a pair of HD-automa-
ta 〈So, Sr〉 where So provides an (abstraction of) of the behaviour guaranteed by
the service and Sr yields the requirement imposed to invokers. Operationally, a
service invocation 〈Co, Cr〉 matches a published interface 〈So, Sr〉 when Co sim-
ulates Sr and So simulates Cr. Hence, in our approach the operation of service

History Dependent Automata for Service Compatibility 3

discovery becomes a semantic-based operation: the service registry is searched
for a service matching the semantic abstractions.

In this paper we report our preliminary results in the exploitation of HD-au-
tomata as intermediate language to represent semantic-based discovery of ser-
vices.

Structure of the Paper. § 2 fixes the notations, revisits the main notions un-
derlying HD-automata, and gives the definition of HD-automata. § 3 recasts the
definition of simulation relation given in [20] in our context. § 4 gives an example
applying the framework to the problem of semantical versioning of protocols. § 5
summarises our work, draws conclusions and sketches some research directions.

2 Background

This section collects the main notations and some basic concepts used through-
out the paper.

Let X, Y , Z, . . . be sets. Then:

– P(X) (resp. Pfin(X)) is the set of subsets (resp. finite subsets) of X;

– [X → Y] is the set of maps f with domain dom f
def= X and codomain

cod f def= Y ; Im f
def= {f(x) ∈ Y | x ∈ X} is the image of f ;

– [X
inj→ Y] is the set of injective maps from X to Y ;

– ι : X ↪→ Y is the inclusion map from X to Y (implicitely assuming that
X ∈ P(Y)) and, if f ∈ [Y → Z] then f |X = f ◦ ι is the restriction of f to X;

– Aut(X) = {f ∈ [X → X] | f bijective} is the set of automorphisms (or
permutations) of X.

To avoid cumbersome parenthesis,
inj→ has precedence over ∈ and sometimes

square brackets will be omitted from the denotation of functional domains.
We use P and R to range over (π-calculus) processes built on a countable set

of names ω. Elements of [ω → ω] are name substitutions and Pσ denotes the
agent obtained by applying the substitution σ ∈ [ω → ω] to P .

2.1 Automata as coalgebras

We will define HD-automata as coalgebras for a functor on the category of NSet
(§ 2.2). To make the presentation more clear, we first summarise how classi-
cal automata can be specified as coalgebras for which very basic notions from
category theory have to be introduced. (The interested reader is referred to,
e.g., [21].)

Recall that a category is a collection of objects a, b, ... and morphisms f : a→
b from a to b (dom f

def= a and cod f def= b resp. are the domain and codomain of
f). A category is subject to the following axioms:

4 Vincenzo Ciancia, Gian Luigi Ferrari, Marco Pistore, and Emilio Tuosto

– if f and g are morphisms for which cod f = dom g, the composition of f and
g, written g ◦ f , is a morphism of the category and dom g ◦ f = dom f and
cod g ◦ f = cod g;

– morphism composition is associative: if f , g and h can be composed, (h ◦ g)◦
f = h ◦ (g ◦ f);

– for each object a there is the identity morphism ida : a → a; identities are
such that f ◦ iddom f = f = idcod f ◦ f , for any morphism f .

A functor F from A to B (written F : A → B) trasforms objects and mor-
phisms of the category A resp. into objects and morphisms of the category B,
preserving identities and composition. Formally, any object a in A is mapped
to an object Fa in B and any morphism f : a → b in A is sent to a morphism
Ff : Fa→ Fb in B such that:

Fida = idFa, F(g ◦ f) = (Fg) ◦ (Ff).

For simplicity we limit ourselves to Set, the category of sets and total func-
tions with the usual function composition. The singleton set {?} is indicated as
1 and the disjoint union of 1 with a set X is denoted by X + 1.

Definition 1 (F-Coalgebra). Let F : Set → Set be a fixed endofunctor on
Set (i.e., a functor from Set to Set). A pair (X,α) is a coalgebra for F (or
F-coalgebra) iff X is an object of Set (i.e., a set) and α : X → FX is an arrow
of Set (i.e., a total function from X to X).

Given two F-coalgebras (X,α) and (Y, β), a function f : X → Y in Set is an
F-coalgebra (homo)morphism iff

X
f

//

α

��

Y

β

��

FX Ff
// FY

commutes, namely β ◦ f = Ff ◦ α.

It is immediate to see that coalgebras for F = P(L×) coincide with transition
systems labelled by L; in fact, if (X,α) is a P(L ×)-coalgebra then X is the
set of states and, for x ∈ X, α(x) are the outgoing transitions of x. Vice versa,
given a L-labelled transition system T whose set of states is X one can define the
coalgebra (X,α) by letting α : x 7→ {〈l, y〉 | 〈x, l, y〉 is a transition in T} for each
x ∈ X. Similarly, finitely branching L-labelled transition systems correspond
to Pfin(L ×)-coalgebras. Also, and more importantly, coalgebra morphisms
enable the definition of coalgebraic bisimulation that nicely corresponds to the
familiar notion of bisimulation in labelled transitions systems. As usual, we let
π1 : X × Y → X and π2 : X × Y → Y be the projections on the cartesian
product of X and Y .

Definition 2 (Coalgebraic bisimulation). A bisimulation between two F-
coalgebras (X,α) and (Y, β) is a set B ⊆ X × Y such that there is θ : B → FB

History Dependent Automata for Service Compatibility 5

making π′1 = π1 ◦ ι and π′2 = π2 ◦ ι two homomorphism, where ι : B ↪→ X × Y .
In other words,

X × Y
π1

zzuuuuuuuuu
π2

$$HHHHHHHHH

X

α

��

B
?�

OO

θ

��

π′1oo
π′2 // Y

β

��

FX FB
Fπ′1

oo

Fπ′2
// FY

commute, namely α ◦ π′1 = Fπ′1 ◦ θ and
β ◦ π′2 = Fπ′2 ◦ θ.

The correspondence between coalgebra homomorphisms and bisimulations is
made precise by the following theorem, that holds under mild conditions on
the functor F (namely, preservation of weak pullbacks):

Theorem 1 ([21]). Morphism f : X → Y is an homomorphisms between two
F-coalgebras (X,α) and (Y, β) iff {(x, f(x)) | x ∈ X} is a bisimulation between
(X,α) and (Y, β).

Similar results have been proved for HD-automata and in the next sections
we recast the coalgebraic framework for HD-automata.

2.2 Named sets and named functions

The definition of HD-automata relies on the notion of named sets (to represent
the states) and named functions (to represent transitions).

Definition 3 (Named set). A named set consists of a triple 〈Q, ‖ ‖ , G〉 where

– Q is a set of states;
– ‖ ‖ : Q→ Pfin(ω) maps each state q ∈ Q to the set of names of ‖q‖;
– G : Q → P(Aut(ω)) maps each state q ∈ Q to G(q) which is a subgroup of

Aut(‖q‖) called symmetry of q.

We let L,M,N, . . . range over named sets; states, set of names and symmetry
maps of a named set N are written as QN , ‖ ‖N and GN , resp. (subscripts will
be removed if clear from the context).

By Definition 3, each state q ∈ QN of a named set N is equipped with a
finite set of names ‖q‖N (called support) together with a group of permutations
over such names. Intuitively, q represents a set of states “using” names in ‖q‖N
(the names of q) that are “indistinguishable” (according to a suitable equality
of states) under the permutations in GN (q).

Example 1. The set of π-calculus agents can be given a named set structure by
taking as elements sets q of agents and setting G(q) to be the symmetry made
of all permutations in Aut(ω) that applied to agents in q yield a structurally
congruent agent still in q. Namely, if P,R ∈ q then P ≡ Rρ for a ρ ∈ G(q).
Observe that all the agents in q have the same set of free names which is actually
the support of q, ‖q‖.

6 Vincenzo Ciancia, Gian Luigi Ferrari, Marco Pistore, and Emilio Tuosto

A key feature of HD-automata is that names do not have a global meaning.
In fact, names are deemed local to states and transitions. This makes possible
garbage collection of unused names which is usually absent in ordinary transition
systems. For instance, in the ordinary semantics of the π-calculus, the agent
R(x) = (νy)x̄y.R(y) reaches an infinite number of agents because all R(z) with
fresh z are different. Instead, in the HD-automata representation of R(x) it is
the “history” of computation that establishes the freshness of names; hence, all
R(z) with fresh z collapse on a single state. Named functions yield the “history”
of computations.

Definition 4 (Named function). A named function F between two named
sets N and M is a pair of functions 〈h,Σ〉 such that

– h : QN → QM ;
– Σ : QN → P(ω

inj→ ω) such that for all q ∈ QN , Σ(q) ∈ Pfin(‖h(q)‖M
inj→

‖q‖N) and, for all σ ∈ Σ(q)

σ ◦GM (h(q)) = Σ(q) (1)
GN (q) ◦ σ ⊆ ΣF (q). (2)

We write F : N → M to denote a named function from N to M and, if F =
〈h,Σ〉, hF (resp. ΣF) denotes h (resp. Σ).

Condition (1) intuitively states that a function in ΣF traces the history of names
of q when mapped via hF . Remarkably, ΣF contains in general many injective
functions: one for each permutation in the symmetry of hF (q). In other words,
ΣF is obtained by saturating an injective function with GM (q). This avoids the
possibility to have two different mappings, that only differ for a permutation
which is already in the symmetry of an element.

Condition (2) might look a bit obscure at a first glance, however it can be
explained as follows: if we interpret σ as the representative of the history of names
along a transition, condition (2) states that permutations in the symmetry of q
respect such a history, namely they do not “represent” a transition which is not
encompassed by Σ(q).

We conclude this section by defining identity and composition of named
functions.

Definition 5 (Identity and composition). Let L, M , N be named sets. The
identity named function on N is idN = 〈idQN , λq.GN (q)〉. If F : L → M and
H : M → N , the composition of F and H is 〈hH ◦ hF , Σ〉 where

Σ(q) = {σ ◦ σ′ | σ ∈ ΣF (q) ∧ σ′ ∈ ΣH(hF (q))}.

The composition of F and H is denoted as H ◦ F .

Summing up, named sets and named functions form the category NSet [6, 3].
In [11], it is shown how NSet is categorially equivalent to the category of nominal
sets [10], which is the same as algebras over the permutation signature [17].

History Dependent Automata for Service Compatibility 7

2.3 HD-automata

We define HD-automata as labelled transition systems where a set of local names
is associated to each state. Locality of names is a key aspect of HD-automata
and, intuitively, asserts that identity of names used in a given state is not related
to that of names used in other states. This, combined with symmetries associated
to states, enables the minimisation of HD-automata [17, 3]. Roughly speaking,
the symmetry of a state q specifies how names of q can be interchanged without
affecting its observable behaviour. This also allows the size of the state space of
HD-automata to be reduced yielding a bisimulation checking algorithm. Here we
neglect some technical details in favour of a simpler presentation. Specifically,
we do not consider the normalisation operation (cf. [3, 6]).

We fix the named set L = 〈QL, ‖ ‖L , GL〉 of labels where

– QL is the set of labels (ranged over by l);
– ‖l‖L ∈ Pfin(ω) are the names “exposed” in a transition labelled by l;
– for each label l ∈ QL, GL(l) is usually the trivial group {id‖l‖L}.

Example 2. A label representing the π-calculus output can be given by a label
out ∈ QL for which ‖out‖L = {x, y}, yielding the subject and the object names
of the output. Notice that an output where subject and object coincide can be
represented by a label out1 ∈ QL such that ‖out1‖L is a singleton. Similarly, a
bound output (where the object is a private name extruded to the environment)
can be represented by a label bout having a single name for the subject.

HD-automata can be defined as coalgebras for the functor T (given below)
that equips labelled transition systems with the notion of local names and binding
emerging from the base category NSet.

Let
x
N , the set of (L-)transitions on a named set N , be defined as

x
N=

{
〈q, l, n, π, ϑ〉 | q ∈ QN , l ∈ QL, n ∈ Pfin(ω), π : ‖l‖L

inj→ n, ϑ : ‖q‖N
inj→ n+1

}
.

Each transition consists of a destination state q, a label l, a set of names n
(representing the observable names of the whole transition), and two injections
π and ϑ. The former maps the observable names of the label l into n, while ϑ
provides the history of the names of the destination state along the transition,
by mapping them to n. Remarkably, Im ϑ ⊆ n + 1 accounts for the generation
of a fresh name. Specifically, if a name of q is mapped on ? ∈ 1 then it is fresh
(for simplicity we assume that at most one fresh name can be generated).

Transitions on N form a named set Tr[N] = 〈
x
N, ‖ ‖x

N
, Gx

N
〉 where

– ‖〈q, l, n, π, ϑ〉‖x
N

= n;
– Gx

N
(〈q, l, n, π, ϑ〉) = {ρ ∈ Aut(n) | ρ|Im π = idIm π ∧ ρ∗ ◦ ϑ ◦ GN (q) = ϑ ◦

GN (q)}, where ρ∗ ∈ Aut(n + 1) is the map ρ + id1 (i.e., ρ∗|n = ρ and
ρ∗|1 = id1).

8 Vincenzo Ciancia, Gian Luigi Ferrari, Marco Pistore, and Emilio Tuosto

The symmetry of a transition is given by the permutations that preserves the
mappings ϑ◦GN (q), that is the meaning of the names as given by the symmetry
of the target state q (and the label l).

Proposition 1. If N is named set, then Tr[N] is a named set.

The functor T : NSet→ NSet is specified by describing its action on objects
(i.e., named sets) and morphisms (i.e., named functions) of NSet. The action of
the functor T on an object N is

T N = 〈Pfin(QTr[N]), ‖−‖TN , GTN 〉

where the set of names of T ∈ Pfin(QTr[N]) is the union of the set of names of
all transitions in T , and the symmetry of T is the set of permutations for which
transitions in T “are preserved”. Formally,

‖T‖TN =
⋃

〈q,l,n,π,ϑ〉∈T

n, GTN (T) =
⋂
t∈T

Gx
N

(t).

The action of T F = 〈h,Σ〉 on a named function F : N →M is given by

h(T) =
⋃

〈q,l,n,π,ϑ〉∈T

{
〈hF (q), l, (Im ϑ ◦ σ ∪ Im π) \ 1, π, ϑ ◦ σ〉 | σ ∈ ΣF (q)

}
Σ(T) = ι ◦GTN (T), where ι : ‖h(T)‖M ↪→ ‖T‖N

Namely, T maps transitions on N to transitions on M replacing q with hF (q)
in each 〈q, l,N , π, ϑ〉 and relating names of hF (q) to names of q via ΣF (q). It is
worth noticing that the names of the transitions T are a superset of the names
h(T) because they are the union of the images of ϑ ◦ σ (and π) of transitions in
h(T). In fact, Im ϑ ⊆ n by definition of ϑ and the composition with the function
σ can only restrict the image of ϑ ◦ σ (which happens when some name of q is
discarded by F).

Proposition 2. If F is a named function, then T F is a named function.

Definition 6. An HD-automata is a named function H : N → T N , namely it
is a coalgebra for the functor T on NSet.

3 Simulation for HD-automata

This section recasts the definition of the simulation relation originally presented
in [20] (Definition 7.11, Chapter 7) in our context.

Definition 7 (HD-Simulation). Let H : N → T N and K : M → TM be two
HD-automata. A relation S ⊆ QN×Aut(ω)×QM is an HD-simulation iff when-
ever (q, δ, q′) ∈ S for any 〈q1, l, n1, π1, ϑ1〉 ∈ hH(q) there are 〈q2, l, n2, π2, ϑ2〉 ∈
hK(q′) and δ′ ∈ Aut(ω) such that

History Dependent Automata for Service Compatibility 9

l

π1

��

l

π2

��

id

n1
� � ι1 // hH(q1)TH

σ1∈ΣH (q1)
+3 q1

ρ1∈GN (q1)

δ q2

ρ2∈GM (q2)

hK(q2)TK
σ2∈ΣK(q2)

ks n2? _
ι2oo

q′1

ρ′1∈GN (q′1)
ϑ1

OO

δ′
q′2

ρ′2∈GM (q′2)
ϑ2

OO

Fig. 1. HD-automata simulation

– for all ρ1 ∈ GN (q1), σ1 ∈ ΣH(q1) and ρ′1 ∈ GTN (q′1) there are ρ2 ∈ GM (q2),
σ2 ∈ ΣK(q2) and ρ′2 ∈ GTM (q2) such that
1. δ ◦ ρ1 ◦ σ1|n1 ◦ ϑ1 ◦ ρ′1 = ρ2 ◦ σ2|n2 ◦ ϑ2 ◦ ρ′1 ◦ δ′ on the names x of q1 for

which ϑ1(ρ′1(x)) 6∈ 1;
2. ϑ1(ρ′1(x)) ∈ 1 ⇐⇒ ϑ2(ρ2(δ′(x))) ∈ 1;
3. δ ◦ ρ1 ◦ σ1|n1 ◦ π1 = ρ2 ◦ σ2|n2 ◦ π2;

– (q′1, δ
′, q′2) ∈ S.

where δ (resp. δ′) is used as map from the names of q1 (resp. q′1) to the names
of q2 (resp. q′2) in the compositions above.

Definition 7 can be explained using the diagram in Figure 1 where

– bijections are represented by lines,
– elements of sets of maps Σ are represented by double lines,
– universally (resp. existentially) quantified maps are represented by solid

(resp. dotted) lines and
– all the arrows involving each of the states q1, q′1, q2 and q′2 are meant to be

maps from/to the names of the state.

For instance, ρ2 is a double dotted line because it is an existentially quantified
permutation in the symmetry of q2.

In Figure 1 the sub-diagram consisting of π1, ϑ1 and σ1|n1 = σ1 ◦ ι1 describes
how the coalgebra H maps the names of the transition 〈q′1, l, π, ϑ1〉 ∈ hH(q1)
on the names of q1 through the injective maps in ΣH(q1) (and similarly for the
sub-diagram consisting of π2, ϑ2 and σ2|n2 = σ2 ◦ ι2).

Intuitively, Definition 7 states that any transition from q1 is matched by
a transition from q2. However, names of such transitions and their relationship
with names of q1 and q2 are of concern. As a matter of fact, symmetries may yield
several different representations of equivalent states and transitions. Therefore,
the conditions on δ state that names of q1 and q2 must be related so that the
simulation is independent of their symmetries. More precisely, for any possible
representation ρ1 of q1 and meaning σ1 of the names in the derivative of q1 (in
the coalgebra H) it is possible to find corresponding representation ρ2 and σ2

for q2 (in the coalgebra K) in such a way that:

10 Vincenzo Ciancia, Gian Luigi Ferrari, Marco Pistore, and Emilio Tuosto

– the history of names in transitions are compatible;
– freshness of names is preserved;
– observed names are the same up to permutations of the symmetries.

Notice that the conditions above resp. correspond to conditions 1, 2 and 3 of
Definition 7.

Given an HD-simulation S and 〈q, δ, q′〉 ∈ S, Definition 7 demands δ to be
an automorphism of ω. In practice, name correspondences δ can be maps in
[‖q‖ → ‖q′‖] such that G(δ) def= {(x, δ(x)) | x ∈ ‖q‖} is a partial bijection in
‖q‖ × ‖q′‖, namely for all (x′, y′) ∈ G(δ), x = x′ ⇐⇒ y = y′.

Proposition 3. For each HD-simulation S there is an HD-simulation S′ such
that for all 〈q, δ, q′〉 ∈ S there is 〈q, δ′, q′〉 ∈ S′ such that δ′ ∈ [‖q‖ → ‖q′‖] is a
partial bijection.

Moreover, since each partial bijection on ω can be extended to an automor-
phism, the following proposition holds.

Proposition 4. Let S be a set of triples 〈q, δ, q′〉 where q and q′ are states of
two HD-automata and δ ∈ [‖q‖ → ‖q′‖] is a partial bijection. If S satisfies the
conditions of Definition 3 then

S′
def= {〈q, δ̂, q′〉 | 〈q, δ, q′〉 ∈ S ∧ δ̂ ∈ Aut(ω) ∧ δ̂|‖q‖ = δ}

is an HD-simulation.

4 A Motivating Example

This section gives an example illustrating the main features of our approach,
namely symmetrical and behavioural service matching with explicit handling of
names.

Typically, in a distributed setting such as SOC, services and invokers agree
on the adopted communication protocol during their very first interaction, by
selecting a version identifier that is uniquely associated to a known protocol.
In other words, an exact matching of the identifiers would establish a sort of
“contract” about the communication protocol, avoiding unexpected requests or
replies.

However, distributed protocols commonly evolve from one version to another
of a service, making the usage of version identifiers a very fragile mechanism. In
our framework, version identifiers are replaced by behaviours and simulation is
used to establish the matching. This allows new deployed versions of services to
slightly deviate from communication protocols in certain cases (e.g., by adding
functionality to certain stages).

History Dependent Automata for Service Compatibility 11

4.1 The scenario

Consider a service offering a “forwarding” mechanism whereby invokers send
an address a and a message m to be sent to a. The service sends m to a after
checking some conditions that we neglect for simplicity. Also, suppose that the
service handles sessions through cookies. For instance, at the beginning of the
interaction, a unique cookie is assigned to invokers. (Note that session handling is
a requirement imposed by the service to invokers, and it is a completely separate
issue from the effective service offered.) At any time during the evolution of the
interaction, the service may require to check the invoker’s cookie. Let this version
of the service be called protocol-A. A different version, called protocol-B,
allows the service to refresh cookies (i.e., to send a fresh cookie which should
replace the old one) at any stage of the protocol.

Since cookies are expected to be fresh (in practice, being randomly generated
with a very low probability of collision), it is necessary to explicitly handle fresh
resource generation. The absence of garbage collection of old session cookies
would yield infinite state systems, since an unbound number of (unused) cookies
should be maintained. Remarkably, since clients must record at least the last
received cookie (which is always fresh), it is not possible to model either of
the protocols without memory at all. Therefore HD-automata are a reasonable
choice, being close to ordinary labelled transition systems, with the added benefit
of name handling and garbage collection.

In order to make the presentation clearer, in the following:

– states and labels are written together with their set of local names; for in-
stance, q{x, y} or addr{a} denote a state q with two names x and y or a
label addr whose observed name is a;

– the HD-automata transition

q0
X

q1
Y

l Z, ϑ

represents a transition from q X to q′ Y with label l Z and mapping θ from
the names Y of q′ to those X of q such that π is the identity map on Z and ϑ
behaves as the identity of Y ∩X; moreover, θ is omitted if it is the identity;

– we write

q0
X

q1
Y

l1 Z1, θ1/.../
ln Zn, θn

for a set of transitions from q X to q Y with labels l1 Z1, ϑ1,..., ln Zn, ϑn.

4.2 Binding services using HD-automata simulation

We assume that a service publishes (together with its signature) a pair of HD-au-
tomata 〈So, Sr〉 built on top of a fixed named set of labels. Intuitively, So yields
the (abstracted) behaviour of the service (its offer) and Sr is the requirement
that the service imposes to invokers to allow them to bind and make invocations.

12 Vincenzo Ciancia, Gian Luigi Ferrari, Marco Pistore, and Emilio Tuosto

We show here how this approach works for the scenario discussed in § 4.1 for
which we define the named set of labels 〈Lab, ‖ ‖ , G〉 as follows:

– Lab is the set {setC, readC,addr,msg,quit} (where setC and readC are
for setting a new cookie or reading a new one, addr is for communicating
an address, msg is for communicating a message and quit determines the
end of the protocol);

– ‖ ‖ maps setC and quit to the empty set while addr and msg are mapped
to a singleton;

– as assumed for named sets of labels, G maps each label to the trivial sym-
metry containing only the identity.

The HD-automaton representing the service requirements is Sr below:

sr0
{a′,m′}

sr1
{a′,m′, c′}

sr2
{a′,m′, c′}

sr3
{}

setC{},ϑ
c′

readC{c′}/
setC{}, ϑ

c′/
addr{a′}

msg{m′} quit{}

where ϑc′ maps c′ to ? and a′ (resp. m′) to a′ (resp. m′). HD-automaton Sr
formalises protocol-B service requirements and requires invokers to accept a
cookie and to be ready to reset it (setC) or provide it (readC) at any time
during the protocol before the message is sent. After sending the message, the
invoker has to quit.

Remark 1. It is a simple observation that requirements for protocol-A can be
obtained by removing the transition labelled setC{} from sr1 in Sr.

The service offers the behaviour So below to invokers that fulfill Sr:

so0
{a1, a2, c

′}
so1

{a1, a2, c
′}

so2
{a1, a2,m

′, c′}
so3
{}

addr{a1}/
addr{a2}

setC{}, ϑ
c′

setC{}, ϑ
c′/

readC{c′}/
addr{a1}/
addr{a2}

msg{m′} quit{}

where the cookie can be refreshed any number of times before and after getting
an (states so0 and so1). Once an address is sent, the service moves in state so1
where cookies can be refreshed or required for checking an unbound number of
times. In so1 the service is also keen to accept addresses (either a1 or a2) before
sending the message. Finally, if the message is sent, the service halts.

Remark 2. Noteworthy, so1 could be replaced by a state so′1 equipped with the
symmetry {ida1,a2 , (a1 a2)} (where (a1 a2) is the transposition of a1 and a2).
However, for simplicity we prefer to stick with the current more explicit repre-
sentation.

History Dependent Automata for Service Compatibility 13

Remark 3. Again, removing the transition setC{} from so1 in So yields the
HD-automaton for protocol-A.

Symmetrically to service publication, service invocations have to specify a
pair 〈Cr, Co〉 of HD-automata so that Cr describes the behaviour required by
the invoker to the service and Co yields the offered guarantees. An invocation
matching 〈Sr, So〉 is represented by 〈Co, Cr〉 where Co is:

co0
{a1, a2,m}

co1
{a1, a2,m, c}

co2
{a1, a2,m, c}

co3
{a1, a2,m, c}

co4
{}

setC{}, ϑ
c′

readC{c}/
setC{}, ϑc

addr{a1}

msg{m}

readC{c}/
setC{}, ϑc/
addr{a2}

msg{m}

readC{c}/
setC{}, ϑc

quit{}

and Cr is

cr0
{a1, a2}

cr1
{a1, a2, c}

cr2
{a1, a2, c}

cdr3
{a1, a2, c,m}

cr4
{a1, a2, c,m}

setC{}, ϑ
c′ addr{a1} addr{a2} msg{m}

Cr simply requires to the service the capacity of executing the sequence of tran-
sitions setting the cookie, receiving the addresses and forwarding. (Notice that
the invocation does not require the service to stop.)

Co guarantees that the client accepts a request to set the cookie, then in each
state is capable to provide the previously set cookie upon request, or to refresh
it, thus respecting the protocol imposed by the service provider.

While it is immediate to see that So simulates Cr, it is less obvious that Co
simulates Sr. To show this, we build an explicit simulation between Sr and Co
represented in the following figure.

14 Vincenzo Ciancia, Gian Luigi Ferrari, Marco Pistore, and Emilio Tuosto

co0
{a1, a2,m}

co1
{a1, a2,m, c}

co2
{a1, a2,m, c}

msg{m}

co3
{a1, a2,m, c}

co4
{}

sr0
{a′,m′}

sr1
{a′,m′, c′}

sr2
{a′,m′, c′}

sr3
{}

setC{}, ϑ
c′

msg{m′}

quit{}

δ0 = ∅

δ1 = {(c′, c)}

δ2 = {(c′, c), (a′, a2)}

δ3 = {(c′, c), (a′, a1), (m′,m)}

δ4 = ∅

readC{c′}/
setC{}, ϑ

c′/
addr{a′}

setC{}, ϑ
c′

readC{c}/
setC{}, ϑc

addr{a1}

readC{c}/
setC{}, ϑc/
addr{a2}

msg{m}

readC{c}/
setC{}, ϑc

quit{}

A simple check shows that

S = {〈sr0, δ0, co0〉, 〈sr1, δ1, co1〉, 〈sr2, δ2, co2〉, 〈sr2, δ3, co3〉, 〈sr3, δ4, co4〉}

yields an HD-simulation (by Proposition 4).

5 Conclusions and Future Work

We have introduced the foundations of a notion of behavioural matching of ser-
vices, that keeps in account resource generation in a finitistic way employing
HD-automata. Our framework inherits the algorithmic properties of HD-autom-
ata and it can support effective usages in design environments for SOC.

As a a case study here we considered the versioning problem of protocols. In
the usual approach, versioning relies on version identifiers. Local deviations to a

History Dependent Automata for Service Compatibility 15

protocol, hence, either lead to incompatibility between clients and servers, or to
servers mimicking a version identifier without giving real guarantees on the fact
that the protocol is respected. We tackled this problem exploiting the semantic
HD-automata machinery for the fresh generation of names.

A pair of matching interfaces (i.e., 〈Co, Cr〉 and 〈So, Sr〉 where Co simulates
Sr and So simulates Cr) determines a contract. A possible research direction
concerns the synthesis of a monitor out of a contract so that the fulfillment of
the contract can be enforced during the execution of the communication pro-
tocol. This is an interesting research direction as, during the execution of the
communication protocol, only traces can be observed (while at service binding
time the interfaces of two services can be represented by abstractions of their in-
teractive behaviours). We argue that a monitor can be automatically synthesised
from contracts.

Laudatio

HD-automata appeared for the first time in CONCUR’95, in an article by Ugo
Montanari and the third author of this paper [14]. At that time, HD-automata
where called π-automata, and they where simply seen as an efficient structure in
an algorithm for detecting names that where syntactically present in π-calculus
agents but that did not play any semantic role.

Since then, HD-automata have evolved into a reference model for nominal
calculi, both from a theoretical and from a practical point of view. HD-automata
can be defined by extending to structures with names several frameworks ini-
tially proposed for classical automata, ranging from the the categorical setting
of Nielsen and Winskel (see [20]), to Rutten’s coalgebraic setting (see this paper,
[3] and the recent work [2]), to the bialgebraic setting of Turi and Plotkin (see
[11, 17]). The semantic framework of HD-automata has been used to model and
analyse concepts such as locality, causality, link mobility and cryptography [5];
more recently, they have also been used to capture concepts typical of SOC, as
shown in this paper. Moreover, HD-automata have been exploited as the formal
basis for verification toolkits such as HAL and Mihda [4, 7].

Along the years, the research on HD-automata has involved several scien-
tists, including PhD students of Ugo, of whom we would like to remember Gioia
Ristori, who will unfortunately not be able to celebrate Ugo’s 65th birthday. If
HD-automata have become a reference model for nominal calculi, it is thanks
to the work of all these scientists. However, it is also and primarily thanks to
Ugo, to his intuition that HD-automata were much more than the efficient data
structure of CONCUR’95, to his idea that being able to manage names in a
syntax-independent way is the key to understand and analyse nominal calculi,
and to his capability to guide the research and to prove that this intuition was
true.

Bibliography

[1] Amar Bouali, Stefania Gnesi, and Salvatore Larosa. The Integration Project
for the JACK Environment. In Bulletin of the EATCS, volume 54, pages
207–223. 1994.

[2] Vincenzo Ciancia and Ugo Montanari. A name abstraction functor for
named sets. In Coalgebraic Methods in Computer Science 2008, 2008. to
appear.

[3] Gian Luigi Ferrari, Ugo Montanari, and Emilio Tuosto. Coalgebraic mini-
mization of hd-automata for the pi-calculus using polymorphic types. The-
oretical Computer Science, 331(2-3):325–365, 2005.

[4] Gianluigi Ferrari, Giovanni Ferro, Stefania Gnesi, Ugo Montanari, Marco
Pistore, and Gioia Ristori. An Automata Based Verification Environment
for Mobile Processes. In Ed Brinksma, editor, Tools and Algorithms for
the Construction and Analysis of Systems, volume 1217 of Lecture Notes in
Computer Science, pages 275–289. Springer-Verlag, April 1997.

[5] Gianluigi Ferrari, Stefania Gnesi, Ugo Montanari, and Marco Pistore. A
Model Checking Verification Environment for Mobile Processes. ACM
Transactions on Software Engineering and Methodology, 12(4):440–473,
2003.

[6] Gianluigi Ferrari, Ugo Montanari, and Marco Pistore. Minimizing Tran-
sition Systems for Name Passing Calculi: A Co-algebraic Formulation. In
Mogens Nielsen and Uffe Engberg, editors, FOSSACS 2002, volume 2303 of
Lecture Notes in Computer Science, pages 129–143. Springer-Verlag, 2002.

[7] Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. From Co-algebraic
Specifications to Implementation: The Mihda toolkit. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors,
Formal Methods for Components and Objects: First International Sympo-
sium, FMCO, volume 2852 of Lecture Notes in Computer Science, pages
319 – 338, Leiden (Netherlands), November 2002. Springer-Verlag.

[8] Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. Coalgebraic Min-
imisation of HD-automata for the π-Calculus in a Polymorphic λ-Calculus.
Theoretical Computer Science, 331:325–365, 2005.

[9] Gianluigi Ferrari, Ugo Montanari, Emilio Tuosto, Björn Victor, and Ki-
dane Yemane. Modelling and Minimising the Fusion Calculus Using HD-
Automata. In José Luiz Fiadeiro, Neil Harman, Markus Roggenbach, and
Jan Rutten, editors, Algebra and Coalgebra in Computer Science, volume
3629 of Lecture Notes in Computer Science, pages 142 – 156. Springer-
Verlag, 2005.

[10] Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax
with variable binding. Formal Aspects of Computing, 13(3-5):341–363, 2002.

[11] Fabio Gadducci, Marino Miculan, and Ugo Montanari. About permutation
algebras, (pre)sheaves and named sets. Higher-Order and Symbolic Com-
putation, 19(2-3):283–304, 2006.

History Dependent Automata for Service Compatibility 17

[12] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mo-
bile Processes, I and II. Information and Computation, 100(1):1–40,41–77,
September 1992.

[13] Ugo Montanari and Marzia Buscemi. A First Order Coalgebraic Model of
π-Calculus Early Observational Equivalence. In Luboš Brim, Petr Jančar,
Mojmı́r Křetinský, and Antońın Kučera, editors, International Conference
in Concurrency Theory, volume 2421 of Lecture Notes in Computer Science,
pages 449–465. Springer-Verlag, August 2002.

[14] Ugo Montanari and Marco Pistore. Checking Bisimilarity for Finitary π-
Calculus. In Insup Lee and Scott A. Smolka, editors, International Con-
ference in Concurrency Theory, volume 962 of Lecture Notes in Computer
Science, pages 42–56, Philadelphia, PA, USA, August 1995. Springer-Verlag.

[15] Ugo Montanari and Marco Pistore. History Dependent Automata. Technical
report, Dipartimento di Informatica, Università di Pisa, 1998. TR-11-98.

[16] Ugo Montanari and Marco Pistore. π-Calculus, Structured Coalgebras, and
Minimal HD-Automata. In Mogens Nielsen and Branislav Roman, editors,
Mathematical Foundations of Computer Science, volume 1983 of Lecture
Notes in Computer Science. Springer-Verlag, 2000. An extended version
will be published on Theoretical Computer Science.

[17] Ugo Montanari and Marco Pistore. Structured coalgebras and minimal hd-
automata for the π-calculus. Theoretical Computer Science, 340:539–576,
2005.

[18] Robert Paige and Robert Tarjan. Three Partition Refinement Algorithms.
SIAM Journal on Computing, 16(6):973–989, December 1987.

[19] Joachim Parrow and Bjorn Victor. The Fusion Calculus: Expressiveness
and Symmetry in Mobile Processes. In Annual Symposium on Logic in
Computer Science. IEEE Computer Society, 1998.

[20] Marco Pistore. History Dependent Automata. PhD thesis, Università di
Pisa, Dipartimento di Informatica, 1999. available at University of Pisa as
PhD. Thesis TD-5/99.

[21] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249(1):3–80, October 2000.

[22] Davide Sangiorgi and David Walker. The π-Calculus: a Theory of Mobile
Processes. Cambridge University Press, 2002.

