The pairing of contracts and session types

Cosimo Laneve! and Luca Padovani?

! Department of Computer Science, University of Bologna
2 Information Science and Technology Institute, University of Urbino

Dedicated to Ugo Montanari in occasion of his 65th birthday

Abstract. We pair session types and contracts using two encodings. The encod-
ing of session types accommodates width and depth subtyping, two properties
that partially hold in contracts. The encoding of contracts accommodates com-
plex synchronization patterns, since session types own a simple control protocol.
The encodings allow one to use the two formalisms interchangeably, within the
context of dyadic interactions.

1 Introduction

Service Oriented technologies and Web Services have been recently proposed as a new
way of distributing and organizing complex applications across the Internet. The suc-
cess of these technologies has fostered the development of formal methods for statically
analyzing and verifying the behavior of concurrent and distributed systems. Two such
methods — session types [13, 10, 9] and contracts [3, 14, 4] — aim at describing the com-
munication protocol implemented by services. These methods provide a foundation for
statically checking that a process implements a given communication protocol and for-
mally characterize compliance (when a client interacts successfully with a service) and
safe replacement (when it is possible to replace a process with another one).

Session types and contracts find their origins in two different domains: the former
ones derive from the domain of type theory and type systems, whereas contracts are
more related to the study of behavioral equivalences, such as bisimulation and testing
equivalence [6, 12]. Both languages are equipped with similar constructors. For exam-
ple, the session type

g & px.&(Login : @(Wrong : z;0k : &(VoteA : end; VoteB : end); Cheat : end))
and the contract
1[o] Lef I[rec z.Login.(Wrong.x & Ok.(VoteA + VoteB) & Cheat)]

where 1 = {Login, Wrong, Ok, Cheat, VoteA, VoteB}, represent a simple service for
an online ballot between two candidates A and B. Before a client is allowed to vote, he
must provide a valid login token that the system uses for ensuring that preferences are
expressed at most once, for otherwise the voter is identified as a cheater.

In contracts, the actions such as Login and Cheat represent atomic communica-
tions between the voter and the service and we have two binary operators for encoding

2 Cosimo Laneve and Luca Padovani

alternatives: a + indicates an external choice (the voter chooses the candidate) whereas
a @ indicates an infernal choice (the service decides whether the login is valid or not).
In session types we have branches &(- - -) and choices & (- - -) that play the same roles
played by + and &. However, branches indicate the receipt of a label expressing the
decision of the voter, whereas choices indicate that the service emits a label expressing
the alternative it has chosen. Hence, the direction of the exchanged messages is en-
coded in the type of alternative, rather than in the labels themselves. Also, while actions
in contracts may encode the exchange of data between the voter and the service, labels
in session types are only meant to implement the control part of the protocol. In fact,
typical presentations of session types admit additional constructs for representing the
exchange of data, which we omit in this paper as they are irrelevant for the results that
follow.

The relationship between session types and contracts also regards the semantics,
although, in this case, their different origin is evident because the relations are mostly
the opposite. For example, the session type

7 &(Login : G&(0k : &(VoteA : end;VoteB : end)))

and the contract
def i

1[7] Login.Ok.(VoteA + VoteB)]

both describe a ballot service that does not care about cheaters and always accepts login
tokens regardless their validity. It turns out that 7" is a subtype S (notation T' < S) and
I[o] is a subcontract of 1[7] (notation I[o] =< 1[7]). That is, the subtype relation ' < S
embodies the notion of safe substitutability: every term having type .S may be replaced
by a term having type T" without affecting the context in a sensible way. The subcontract
relation I[o] =< I[7] embodies the notion of successful interaction (called compliance):
the set of clients succeeding in interacting with a service of contract 1[o] also succeed
with a service of contract 1[7].

There are also some differences between the theory of session types and the one
of contracts. In one direction, these differences mainly regard the so-called width and
depth subtyping. Session types, much alike object-oriented type disciplines, enjoy the
property &(VoteA : end;VoteB : end) < &(VoteA : end) (the ballot service can
be extended with more candidates without invalidating former voters), namely width
extensions of capabilities is always possible. In contracts this is not the case. To dis-
cuss the point, consider the contracts 1jo1] = {VoteA,VoteB}[VoteA] and I[og] =
{VoteA,VoteB}[VoteA + VoteB] and the client K[p] = {VoteA, VoteB, e}[VoteA.e +
VoteB.VoteB.e|. Such client tries to vote for candidate A once or for B twice. It easy
to verify that K[p] successfully interacts with 1[o;] whilst the interaction may fail with
I[o2], therefore 1[o1] Z 1[os]. In contracts width subtyping is admitted provided the
additional capabilities are not present in the interface of the smaller contract. For ex-
ample {VoteA}[VoteA] < {VoteA, VoteB}[VoteA + VoteB] (the client K[p] is not a
valid client for {VoteA}[VoteA] because it has a larger interface). Similar arguments
may be given for depth subtyping, the property guaranteeing the safety of the replace-
ment of a service with another one providing a longer communication protocol. In the
other direction, the differences follow by the fact that session types embody the prop-
erty that sessions are supposed to be completed symmetrically by both parties, whilst

The pairing of contracts and session types 3

contracts are biased towards clients, which are free to interrupt the interaction any time
they please. Another difference is that contracts describe a more abstract synchroniza-
tion pattern than session types do. For example, in the theory of contracts, a client such
as

{Login, Ok, VoteA, VoteB, e}[Login.Ok.(VoteA.e + VoteB.e)]

may successfully interact with a service as 1[7], while, in session types, a branch can-
not be matched by another branch. That is, session types describe a communication in
which no handshaking between the interacting parties ever occurs. There is always ex-
actly one party having control, and this party has to explicitly notify the other one about
the (internal) choices it has made.

In this contribution we undertake a thorough comparison between session types and
contracts for assessing a precise relationship between the two formalisms. We define
two encodings, one from session types to contracts, and the other from contracts to
session types. These encodings allows one to use the two formalisms interchangeably,
without losing any relevant information. Therefore it is possible to argue about session
types by means of the subcontract relation and, conversely, about contracts by using
the deductive system of the subtyping relation. However, because of the differences
between the two theories, the two encodings are not one the converse of the other. Let
us discuss this issue with few examples. We encode the session type

7! e &(Login : ®(0k : end; Cheat : end))

into the contract
'[7] ef [Login, Ok, Cheat](Login.(0Ok & Cheat) + 0k.f2 + Cheat.(2)

where the terms 0k.Q2 and Cheat.€2 have been added in order to enforce width subtyp-
ing in the contract. If a client of I'[7’] attempts actions that are not explicitly allowed by
T’ then a catastrophic state — 2 — is reached, meaning that, in practice, such actions are
not guaranteed.

To illustrate the encoding of contracts into session types we discuss the encoding of
{VoteA,VoteB}[VoteA @ VoteB], which eventually generates the session type

®({VoteA} : &(0 : end; {VoteA} : end);
{VoteB} : &(0 : end; {VoteB} : end);
{VoteA,VoteB} : &(0) : end; {VoteA} : end; {VoteB} : end))

where we use sets of actions as labels. This type manifests a blow up of the input con-
tract that is needed for compiling the complex synchronization patterns of contracts.
Indeed, in the theory of contracts, {VoteA, VoteB}[VoteA @ VoteB| is equivalent to
{VoteA,VoteB}[VoteA @ VoteB @ (VoteA + VoteB)]. That is, an internal choice be-
tween two alternatives means that one or possibly both are available. The encoding of
contracts has to model explicitly which alternative is taken by sending a notification to
the partner.

4 Cosimo Laneve and Luca Padovani

Related work. The research on contracts was inspired by “cCS without 7’s” [7] and by
Hennessy’s model of acceptance trees [11, 12]. Contracts are an alternative represen-
tation of acceptance trees. The relation < was first introduced in [3], albeit it suffered
from the lack of a clean semantic characterization and from the fact that it was not tran-
sitive. The version of < used in this paper is the same as the one introduced in [14].
In fact, < resembles the must preorder (and it reduces to the must preorder when the
interfaces are large enough), but it arises from a notion of compliance that significantly
differs from the notion of “passing a test” in the testing framework [6] and that more
realistically describes well-behaved clients of Web services. The version of < we work
with is actually a stricter version of a more powerful subcontract relation that has been
investigated in [4].

Session types have been originally proposed in [13] and subsequently extended for
dealing with functional languages [15], asynchrony, object-orientation [9]. In this paper
we take [10] as the main reference for session types because it focuses on the subtyping
relation. It is worth to notice that we restrict our analysis on the control aspects of
session types, whilst other features such as first-class sessions and name passing, which
are described in [10], have not been investigated in the framework of contracts yet.

Structure of the paper. We present the formal syntax and semantics of contracts in
Section 2 and of session types in Section 3. Sections 4 and 5 present the encoding from
session types to contracts and from contracts to session types, respectively. Section 6
concludes by summarizing the main similarities and differences between contracts and
session types.

2 Contracts

The syntax of contracts uses an infinite set of names .4 ranged over by a, b, ¢, ...,

and a disjoint set of co-names .4 ranged over by @,b,¢,.... Names and co-names
are generically called actions. We let @ = a and use «, 3, ... to range over actions;
we let 1,J,K,... and R, S, ... to range over (finite) sets of actions and we extend the

operation - to sets of actions so that R = {& | @ € R}. An infinite set of variables is
also used, which is ranged over by z,y, 2,

Contracts are pairs I|oc] where I is a finite subset of .#” U ./ representing the static
interface of the contract (all the actions occurring in ¢ must also occur in I), whereas o,
called behavior, is defined by the grammar:

c == 0 | aoc | o®o | o+0c | x | reczo

Informally, O describes the inactive behavior; ae.o describes the behavior that performs
an action « and then behaves like o; o & 7 describes the behavior that autonomously
decides whether to behave as o or as 7; o + 7 describes the behavior that lets the
environment choose whether it should behave as ¢ or as 7; finally, rec x.0 describes a
recursive behavior that is equivalent to o{re¢ z.0/,.}. In the following we write §2 for
the behavior rec x.x.

The pairing of contracts and session types 5

Behaviors retain a transition relation that is inductively defined by the rules
o ! /
g —0 g —0

o+1 0o o+T1T—0 471

«
a0 — O cdT — 0

recx.0c — o{recz.o/ 1

We write —> for the reflexive and transitive closure of —; o == ¢ foroc ==
o’; 0 == if there exists o’ such that ¢ == ¢’. We write o] if o has an infinite internal
computation 0 = 09 — 07 — 02 — --- and o] if not oT. We write 0| - - -
if 0| and, if 0 == o’ implies 0’ | as - - - a3 We write o ¢ otherwise. For example 21,
rec z.a + zT, and rec x.(a.z + b.x)]p for every ¢ € {a,b}*. We let init(o) be
{a|o ==}

A basic use of contracts is to verify whether a client protocol is compliant with a
service protocol. This compliance is possible if, independently of the internal choices
of both client and service, the client successfully completes every interaction with the
service. We now formalize the notions of “interaction” and of “successful completion”:

— The interaction of a client and a service is defined by the relation — over pairs of
behaviors as follows:

/ / «@ a
p—p og—0 p—p o—d

pllo—p'llo pllo—pld pllo—p"|o

where we assume that p is a client contract and o is a service contract. As usual we
write = for the reflexive and transitive closure of —.

— The successful completion of the client is modeled using a special name e. The
client has successfully completed the interaction with the service if no further syn-
chronization with the service is possible and the client can emit an e action. We
assume that behaviors never manifest co-names e.

Definition 1 (Compliance). Let e & S. The (client) contract K[p] is compliant with the
(service) contract 1[c|, written K[p] 1 1|o], if K\ {e} Cland p | o = p' || o' implies
1. ifp' || o/ ——, then {e} C init(p’);
2. ifo’1, then {e} = init(p’).

According to the notion of behavioral compliance, if a client K[p] is compliant
with a service 1[o] then it should never attempt to perform actions that are not al-
lowed by the interface of the service it is interacting with. If the client-service con-
versation terminates, then the client is in a successful state (it will emit e). For example,
a.e+b.e4adband a.e®b.e 1a+bbuta.ePb.e A @®bbecause of the computation
a.e®b.e||a®b=> a.e| b— where the client waits for an interaction on @ in vain.
Similarly, the client must reach a successful state if the conversation does not terminate
but the divergence is due to the service. In this case, however, the client cannot rely on
any signal from the service, not even an end-of-connection one, so it is required to do
nothing but terminate.

Following De Nicola and Hennessy’s approach to process semantics [6], this test
induces a preorder on services on the basis of the set of clients that comply with a given
service.

6 Cosimo Laneve and Luca Padovani

Definition 2 (Subcontract). A contract 1[o] is a subcontract of J[7], written 1[o] = I[7],
if and only if, for every K[p|, we have K[p] - 1[o] implies K[p] = J[T]. We let 1[o] ~ 1[T]
if both 1[o] 2 J[7] and J[7] = 1[o].

That is, if a client is compliant with a service 1[o] and 1[o] < J[7], then the same
client is also compliant with J[7]. Hence, the service J[7] can be safely used where
I[o] is expected. As usual it is easier to figure out inequalities: {a, b}[a] A {a,b}[a.b]
because {@, b, e}[a.(e+b)] 1 {a,b}[a] but {@, b, e}[@.(e+b)] # {a,b}[a.b]; {a,b}[a] A
{a,b}[a + b] because {b, e}[e + b] 4 {a,b}[a] but {b, e}[e + b] # {a,b}[a + b].

Since the set of clients compliant with a given service is usually infinite, Definition 2
gives little insight on the properties of <. This calls for a direct, coinductive character-
ization of =<, which also happens to be easier to work with in the proofs of the results
that follow.

Definition 3 (Coinductive subcontract). Let o |} R if and only if 0 =—> ¢’ and R =
init(o’). The relation Z is a coinductive subcontract if 1[o] Z J[7] implies 1 C J and
whenever o | then

1. 7|, and

2. 7 | Rimplies o || R and R’ C R, and

3. a € 1and T == 7’ implies that there exist o, . .., oy, such that o == o; for every
1<i<nand1D, <<, 0i] ZI[T'].

By this definition, a contract I[o] such that o7 is the smallest one with interface 1.
When o, condition 1 constrains the larger contract J[7] to converge as well, since
clients might rely on the convergence of o to complete successfully. Condition 2 states
that J[7] must exhibit a more deterministic behavior: the smaller the number of ready
sets is, the more deterministic the contract is. Furthermore, J[7] should expose at least
the same capabilities as the smaller one (R’ C R). Condition 3 is perhaps the most subtle
one, as it deals with all the possible derivatives of the smaller contract. The point is that
{a,b,c}a.b+ a.c] =~ {a,b,c}a.(b P c)] since, after interacting on a, a client of the
service on the left side of ~ is not aware of which state the service is in (it can be either
b or ¢). Hence, we have to consider all of the possible derivatives after a, thus reducing
to verifying {a, b, c}[(b+ ¢) ® b D ¢] Z {a,b, c}[b D] which trivially holds.

The set-theoretic and the coinductive versions of the subcontract relation do co-
incide, as the following proposition states (a proof can be found in the full version
of [14]).

Proposition 1. = is the largest coinductive subcontract.

The theory of < has been thoroughly studied in [14]; in particular it has been put in cor-
respondence with a well-known equivalence — the must testing [12]. A useful property
relating < and — 1is in order.

Proposition 2. If o = ¢/, then 1[o] < 1[0”].

For every I[o] there exists ¢’ in normal form such that 1[o] ~ 1[o’]. This result is
slightly more general than those in [5, 6, 12], where normal forms are used to demon-
strate the completeness of an axiomatization and are defined for recursion-free terms
only. The normal form uses particular families of sets of actions — the acceptance set.

The pairing of contracts and session types 7

Definition 4 (acceptance set [12]). The acceptance set of a behavior o, denoted by
o (o), is defined as </ (o) %ef {R| R Cinit(c)and3s CR:oc | S} Welet o7, o',
... range over acceptance sets.

Definition 5 (normal form). A behavior o is in normal form if either c = Q oro =z

0r 0 = Do) 2oner @-0a 0 0 = 1C T. By () Dner ¥-0a and each o, is in
normal form.

Let o(a) Lef ®D,_. o, 0 andlet nf(o) be a family of behavior names defined
as follows
nt(0) def Q if o7 |
DBrecw (o) Zaer @nf(o(a)) otherwise
It is not obvious that o(«) is well defined and that behav- rec

e
ior names nf (o) may be folded into a finite behavior (by using l
recursion and variables). In order to prove these facts, we rep- |
resent behaviors as syntax trees where variables are pointers rec
to the corresponding binder [1]. For example, the figure on the L
right shows the syntax tree of ¢ = rec z.a.rec y.b.(x + y). |
As usual, every node in syntax trees corresponds to a closed +
term (i.e. a behavior) that is unique up to the name of bound
variables. For example, in the above tree, the node b corre-
sponds to the behavior b.(c + (rec y.b.(0 + y))). The formal definition of behavior
associated with a node is omitted because standard.

Lemma 1. Let |0 o

lo’] € [a].

Proof. We prove that the property holds by induction on the derivation of ¢ — ¢’
or 0 —— ¢’ (symmetric cases are omitted). The lemma follows by a straightforward
induction on the length of the derivation o = o,

{7 | 3a : a.T occurs in the syntax tree of o}. If o == o, then

(0 = a.0’ -+ ') We distinguish two subcases: if o does occur in o/, then |0/ =
|o|; if o does not occur in ¢, then |0’ = |o| \ {0’} C |o].

(0 =o' &1 — ') We conclude immediately |0’ | C |0/ & 7| = |o].

(0 =7+ 7,7 - ¢') By induction hypothesis we have [¢’| C |7] hence |o/] C
7] Clr+7] = o).

(c=7+4+71",7— 7,0’ = 7'+ 7"”) By induction hypothesis we have |7'] C |7],
hence |o'| = |7/ +7"]| C |7+ 7"] = |o].

(0 =recax.T,0 — 7{9/,} = 0’) We conclude immediately |o']| = |o|. O

It is worth to notice that Lemma 1 does not hold if behaviors are extended with a
parallel operator “|”. For example if o = rec z.a | (b.z 4 0), then o(b) = a | o, which
is not a subtree in the syntax tree of .

Lemma 2. Let D(o) e {o(p) | 0 ==}. Then D(0) is finite.

8 Cosimo Laneve and Luca Padovani

Proof. Let Dy, D1, ... be the family of sets defined as follows:

Dodéf{(f} Di—i—l défDiU{O'/|E|O'EDiZE|O¢IU:>i>U/}

We only need to show that there exists n such that D,, = D,, 11, because each o ()
is obtained by joining some continuations ¢’, for some subtrees «.c’ in o. Let n be
the cardinality of || (n is the number of distinct subtrees in the syntax tree of o and it
exists because o is finite). By contradiction, assume that there exists 0,41 € Dy11\Ds.
Then there exist o1, ...,0, and aq, ..., &y,, ,4+1 such that

a1 (63 Qp Qn 41
0O =———"0] =—>—— = —— 0p = —— Ontl

and o; € D; \ D;_ forevery 1 < i < n. We have 0,41 € |oy]. By Lemma 1 we
deduce 0,1 € |o]. Since |o| has only n distinct subtrees, 0,11 is reachable from o
with at most n reductions, thus o, 41 € D,,, which contradicts 0,41 € Dy 41\ D,. O

Theorem 1. For every 1[o] there exists o’ in normal form such that 1[o] ~ 1[o’]. The
behavior o' is the folding of nf (o).

Proof. By Lemma 2 there are finitely many o (). These () are in one-to-one corre-
spondence with the behavior names that may be recursively invoked by nf (o). There-
fore the set of such behavior names is finite and nf (o) may be folded into a behavior
with recursion and variables.

To prove the subcontract equivalence, let % be the least relation containing < and
such that

1. if 1fo] < J[7] and 7’ is the normal form of 7, then 1[o] Z 1[7'];
2. if1{o] < 3]7] and ¢ is the normal form of o, then I[o’] Z J[7].

We prove that Z is a subcontract relation; the theorem follows directly.

Let I[o] Z 1[7'], where 7’ is the normal form of 7. Then I[o] =< J[7]. As regards
condition 1 in the definition of coinductive subcontract, notice that from I[o] < J[7] we
have o implies 7], hence 7’| from the definition of normal form. As regards condi-
tion 2, let 7/ || R, then R € &7(7), hence 7 || R’ and R’ C R by definition of <7 (7).
From I[o] < J[7] we obtain o || S and s C R’, hence we conclude S C R. As regards
condition 3, let 7/ == 7. Then J[7'()] < 3[7"'] and, by definition, 7/(«) is in normal
form. Then 7 == and, by 1[o] < J[7], ¢ == Therefore 1[o(a)] < J[7 ()], hence by
definition of Z, 1[o(a)] Z J[7""], where 7"’ is the normal form of 7(«). By definition
of normal form 7" = 7/(a/) and we conclude.

Let 1[o’] # ¥[7], where ¢’ is the normal form of o. Then 1[o] Z J[7]. As regards
condition 1 in the definition of coinductive subcontract, o’ | implies o, hence 7|. As
regards condition 2, let 7 |} R. From 1[o] < J[r] we have 0 || S and s C R and we
conclude by observing that o’ || S. As regards condition 3, let 7 == 7. Then there

exist oy, ...,0, such that 1D, -, ,, oi] =< 1[7']. Since 1[o(v)] < 1/, ,,, 0:] and
the normal form of o () is equal to o’/ (a) we conclude 1[0’ («)] Z 1[7’] by definition
of %. g

By Theorem 1, from now on we let nf (o) be the normal form of o.

The pairing of contracts and session types 9

3 Session types

Similarly to a contract, a session type is meant to describe the type of a communication
as a sequence of actions and branching points. The syntax of session types uses an

infinite set of labels . ranged over by ¢, ¢', ..., and an infinite set of variables ranged
over by x, v, 2, Session types are defined by the grammar:
S u= end | @S | &:S€H | x| px.S

The session type end describes a completed communication; the session type ®(l; :
S; €1y describes a choice where a process autonomously decides to proceed according
to one of the continuations .S;’s. Before doing so, the process notifies the partner of the
communication by sending a label ¢;; the session type & (¢; : S;*€!) describes a branch
where a process is ready to proceed according to any of the continuations .S;’s. Before
doing so, the process waits for a label ¢; from the process it is interacting with. The
label uniquely identifies the continuation. The session type px.S describes a recursive
type, much like a recursive contract.

Following [10], session types are taken contractive, namely every occurrence of a
variable is guarded by at least a choice or a branch. Unlike [10], however, we omit
session types describing the communications of actual data (not merely labels) during
a session. Typically, such communications are represented by session types of the form
1t.S (for “send a message of type ¢ on the channel and then continue as S”) or 7¢.S (for
“receive a message of type ¢ from the channel and then continue as S”). However, as
far as the comparison of session types and contracts is concerned, the presence of such
actions is not particularly relevant, since we are going to focus on the control part of
an interaction. The addition of !t and 7t actions to the above grammar does not pose
any particular problem for all of the results that follow, but at the same time it does not
contribute any significant insight in the comparison.

The semantics of session types is defined in terms of a subtyping relation <, which
is presented by means of a deductive system or as a coinductive definition [10]. In this
contribution we stick to this latter presentation that turns out to be easier to compare
with the subcontract relation defined in the previous section. More precisely, S < T,
whenever every process with type S can be used where a process with type 7" is ex-
pected (in this respect, < differs from < as it is oriented as a real subtyping relation).
Because of the structure of session types, < is quite straightforward to define: basically
every choice in .S must be defined on a subset of the labels occurring in the correspond-
ing choice in T', whereas any branch in 7" must be defined on a superset of the labels
occurring in the corresponding branch in 7". Let

def [unfold(T{S/,}) ifS = px.T
unfold(S) = {S otherwise

That is, unfold(-) removes topmost recursions until it reveals a branch or a choice. It is
worth to notice that unfold(-) is always defined because session types are contractive.

Definition 6 (Subtyping). The relation % is a coinductive subtyping if S % T implies
1. ifunfold(S) = end, then unfold(7T') = end,

10 Cosimo Laneve and Luca Padovani

2. ifunfold(S) = @{; : S;*S!), then untold(T) = &{¢; : T;’€') and I C J and
for every i € I we have S; Z T;,

3. ifunfold(S) = &(¢; : S;*S!), then untold(T) = &(¢; : T;’<') and J C I and
forevery j € J we have S; % T).

Let < be the largest coinductive subtyping.

For example, we have @&(¢ : S) < @(¢ : S;¢' : T) since the smaller session
type represents a process that behaves more deterministically than the one represented
by the larger session type. Dually we have & (¢ : S;¢' : T) < &{¢ : S) since the
process represented by the smaller session type offers a wider range of continuations
(it is ready to accept a superset of the labels accepted by the process represented by
the larger session type). Unlike contracts, however, we have &(¢ : S) £ end and
®(¢ : S) £ end. In the first case the process waits for a label that never arrives, in the
second case it sends a label that the matching party is not ready to receive.

Session types are naturally equipped with a dual(-) function computing the dual
type.

dual(end) = end
dual(®(l; : S; €1)) = &(¥; : dual(S;) *€1)
dual(&(l; : S; 1)) = &(¢; : dual(S;) €1)
dual(z) ==
dual(px.S) = px.dual(S)

As for unfold(-), dual(-) is always defined because session types are contractive. If S
is the session type representing the behavior of a process, then dual(S) represents the
behavior of a “canonical” process that interacts successfully with the first one. The
theory of session session types does not formalize the notion of successful interaction,
but we will be able to reason about it by means of one of our encodings in Section 5.

The duality between choices and branches in session types is formalized by the
following proposition. Let in(S) (respectively, out(S)) be the set of labels occurring
in branches (respectively, choices) of S. Then subtyping induces a relation on labels
in(-) and out(-).

Proposition 3. If S < T then (1) out(S) C out(T), (2) in(T) C in(S), and (3)
dual(7T) < dual(S).

Notice that from the previous proposition and from the fact that dual(-) is the in-
verse of itself (dual(dual(S)) = S), we have S < T if and only if dual(T) <
dual(S).

4 Encoding session types into contracts

In order to encode session types into contracts we preliminarily need to set a corre-
spondence between labels and names. For simplicity we let . = .4". Therefore, in the
following, we will not distinguish between labels and names and we will address them
with 4, a,

The pairing of contracts and session types 11

_ [end]: = o. -
[©(0: : "1™ = Biey..p o[
[&(li - St = iern Gi-ISi] + Daen (e, tn) 2
o], = o
[uz.S] = rec z.[S]:

Table 1. Encoding of session types into contracts.

The encoding [S]; of a session type S is defined with respect to an interface I
(Table 1). The terminal behavior o, is e if the session type being encoded regards a
client, or 0 if it regards a service. The only case that deserves discussion is branch. The
contract [&(¢; : S;*<'™)], has as many initial actions as are allowed by the interface,
irrespective of the labels of the branches. This enforces width subtyping in the resulting
contracts, which is otherwise false, in general. In facts, {a, b}[a] Z {a, b}[a+Db] because
the client {@, b} [a.e + b] is compliant with the first service, but not with the second one.
By translating S = &{a : S’) as simply {a,b}[a.[S']] (the action b is in the interface
because it occurs in S’), then a client such as {@, b}[a.e + b.p] could fail when one
replaces [S](q,py With [T, and T' < S, for instance when T" = &(a : S"; b : T").
To avoid these cases, one has to exclude {@, b}[@.e + b.p] from those clients that are
compliant with [S] because it attempts to do an action (b) that is not explicitly allowed
by S. This exclusion follows by translating a branch into an external choice “+” with
a summand for every action in the interface: the actions that do not appear as labels of
the branch are given a continuation 2. Therefore, the contract [S],,) does not admit,
in general, a client {@, b}[@.e + b.p] but only a client {a,b}[a.e + b.e| (this client has
to terminate after an interaction on b, without requiring any further capability to the
service). The contract €2 is the smallest one with a given interface: a client compliant
with € will also comply with any other service, in particular with those resulting from
the encoding of smaller session types.

Example 1. According to the encoding, we have

|
=
&
S|

rend)](a) = a;

(a:end)](apy = a+ 0.y
(a:end;b:end)](ap) = a+b;
(a:end)]ioy = [®{a: end)](apy =@
(a:end;b:end)](qpy =a®b.

{a,b}[a+0]. Similarly, ®(a : end) < ${a : end; b : end) and {a, b}[a®b] < {a, b}[a]
|

We notice that &(a : end; b : end) < &(a : end) and {a}[a] < {a,b}[a + 1.92] =

More generally, the encoding of Table 1 makes the subtyping relation and the sub-
contract relation agree.
Theorem 2. Let J = in(T) U out(T) and 1 = in(S) U out(T). Then S < T if and
only if 3[[T],] = 1[[S]i].

12 Cosimo Laneve and Luca Padovani

Proof. (“only if” part) Let Z be the least relation such that

1. ify C I then J[Q] Z 1]0];
2. if S <TandJ = in(T)Uout(T) and 1 = in(S)Uout(T), then J[[T],] Z 1[[S].]-

We prove that % is a coinductive subcontract. Let J[[1'];] Z 1[[S].]. By Proposition 3,
J C 1. By definition, [-]. always yields behaviors ¢ such that o |. Therefore condition 1
in Definition 3 is trivially satisfied. As regards conditions 2 and 3, we reason by cases
on S. By definition of <, S < T if and only if unfold(S) < unfold(T). Therefore
we may restrict to cases where neither .S nor 7" are recursive types.

(S = end) Then T = end. Condition 2 follows immediately; condition 3 is vacuous.

(S =@y, : S, ")) ThenT = &l : Tp %) and H C K and S}, < T}, for every
h € H. As regards condition 2, if [S]; |} R then ¢}, € R for some h € H. Since
H C K, [T], | {¢,} and {¢,} C R. As regards conditions 3, by Proposition 2, it

suffices to consider the transitions [S]; /N [Sw]: forevery h € H. Since H C K,

[T], < [T4], and [T3], 2 [Sk]: follows by S), < T

(S = &(ly : Si *<K)) Then T = & (¢}, : Ty, "€H) with H C K. Condition 2 follows
because [T]; J {¢n | h € H} and [S], |} {¢x | k € K} and {¢), | h € H} C
{l;, | E € K}. As regards condition 3, by Proposition 2, it suffices to consider

ISTh N [Sk]: with k € J. There are two subcases: either (i) £, & {{n | h € H}

or (i) ¢y € {¢n | h € H}. In subcase (i), [T], =2 € and 1[Q] Z 1[[Sk]:])

by definition of Z. In subcase (ii), [T, N [T%];- From S < T} we derive

I[Tx]:] % 1][Sk]:] by definition of Z.

(“if” part) We prove that if S £ T, then J[[T];] 2 1[[S]:]. We reason by cases on
the shape of .S and T'. It is sufficient to consider those cases in which none of the types
begins with a recursion and S < T" holds directly, without looking at the session types
in the choices and branches possibly found in .S and 7.

(S = end) It must be T' # end. Then [S]; |} {e} whereas [T7]; | R implies R # 0 and
e ¢ R;

(S =@l :S; ")) If T = end, then we can reason as for the case S = end and
conclude that J[[T],] Z 1[[S],]. If T = &(¢; : T; 7€), then [T, has only one
ready set J = in(7") U out(T"), which contains at least two actions and hence
cannot be smaller than {/;}, forevery i € I. If T = &(¢; : T; 7€'y and I £ J,
then there exists i € I such thati ¢ J. So [S], |} {/;} whereas [T], | R implies
R # () and {; & R;

(S = &(€; : S; ")) If T = end we conclude immediately since no /; is equal to e.
If T = @(¢; : T; 77), then from 1 = in(S) U out(T) we have that j € J

implies ¢; € 1. Now we have [S]; == €2, whereas [T7], = o implies o|. If
T = &(l; : T; 77y and J ¢ I, then there exists j € J suchthatj ¢ [.IfJ Z 1

there is nothing to prove. If J C 1, then [S]; N Q, whereas [T, SN implies
ol. O

The pairing of contracts and session types 13

The following proposition shows that internal moves in the encoding of a session
type S correspond to reducing its choices and determining a session type S’ < S.

Proposition 4. [f [S], = o, theno = [S'], and S’ < S.

Proof. 1t is sufficient to consider the case [S]; — o, then the lemma follows directly.
We reason by cases on the structure of .5, there are only two possibilities:

(S:@@i : S "€%)) Then [S], = @iEIE'HSiHI - @ieJ?j-[[_Sj]]l = [&(; -
S; 7€7Y], with J C I. We conclude by observing that &(¢; : S; 7€7) < S.

(S = px.S") Then [S]; = rec z.[S"]; — [S']i{recz[5'Ti/,} = [S'{S/;}] and
this is the only possible reduction. We conclude because S'{5/,} < S. O

The encoding in Table 1 allows us to relate session types and their duals. The rela-
tion is exactly the compliance of Definition 1.

Theorem 3. Let 1 = in(S) U out(S) and J = in(T) U out(T) and S < dual(T).
Then [S], 1 [T].

Proof. Let % be the least relation such that if S < dual(T) and in(S) U out(S) C
I and in(T) U out(T) C 1, then [S], # [T];. We prove that # is a compliance
relation. Let [S], # [T7],. By Proposition 4, if [S], — p, then p = [S’], and 5" <
S < dual(T). Symmetrically, if [I], — o, then o = [1"], and 7" < T, hence,
by Proposition 3(3), S < dual(7) < dual(T”). It follows that we may restrict our
analysis to cases where neither the encoding of S nor the encoding of 7" can perform
internal moves:

(S = end) Then T' = [end],. Therefore [S], || [T]; — and [S], —;
(S=@®(:8") Then T = &{¢; : T; "K); and ¢ = ¢; for some i € K and S’ <

dual(T}). Now [S]; — and [T, —=, hence [S]; || [T], — [S']: | [Z:], and we
conclude [S’], Z [T;], by definition of Z.
(S = &(¢; : S; *<T)) Dual of the previous case. O

5 Encoding contracts into session types

The encoding of contracts to session types is partially defined. In particular, we will
restrict the encoding to behaviors that are convergent. The reason for this restriction
derives from the fact that session types describe communications whose end is agreed
by both parties having type end. The behavior €2, on the other hand, represents a service
that may not pay any attention to the communication it is involved in, and it has no
corresponding session type.

A behavior o is strongly convergent if, for every sequence ¢, o|p. The following
encodings are defined on contracts with strongly convergent behaviors. It is also con-
venient to restrict the encoding of client contracts to those whose behavior never leads
to 0 without emitting e. For example, the behavior a.e 4+ b.0 describes a client that
succeeds if the service proposes @, but that fails if the service proposes b. Such a be-
havior has no counterpart in session types, where failures are not explicitly represented.

14 Cosimo Laneve and Luca Padovani

In general, if a client is unable to handle a particular action, like b in the example, it
should simply omit that action from its behavior. We say that a (client) contract 1[p]
is canonical if, whenever p == p/ is maximal, then ¢ = ¢'e and e ¢ names(¢').
For example {a}[a.e], {a}[rec z.a.x], and B[S2] are canonical; {a,b}[a.e + b.0] and
{a}[rec x.a + z] are not canonical.

The encoding of contracts into session types is reported in Table 2. We write S X .o/
(& is an acceptance set) if for every R € o7, either e € R or SN R # (. We use an
injective map - from sets of actions to labels that we leave unspecified.

Encoding of client contracts/behaviors:

o —

CIK[pl] = &K\ {e} : €[nf(p)[x\(e})

CBrecer Laen @-palk = &5 : @ () : ends {@} 1 Epa] 2SS
ife ER
€rec z.p]x = px.E[pl«
Clz]lk =

Encoding of service contracts/behaviors:

Zi[o]] = &(K : L[nf(0)]«*<")

[Brcs Snen @-0alk = BRNK : &(0 : end; {a} : S [oa] %))
S rec z.p]x = px.L[plx
Lz]x ==

Table 2. Encoding of contracts into session types.

The encoding distinguishes between client and service contracts. One reason is that,
unlike sessions, which are supposed to be completed symmetrically by both parties, the
theory of contracts is biased towards clients, which are free to interrupt the interaction
any time they please. The other reason is that contracts describe a more abstract syn-
chronization pattern than session types do, and the encoding of contracts into session
types has to render this synchronization pattern, which amounts to a little handshaking
protocol.

The session types corresponding to the client contract K[p] and the service contract
I[o] are denoted by €’ [K[p]] and . [1[c]], respectively. The labels in the types represent
finite sets of actions in the source contracts. Let us discuss the encoding of a service
contract. The first step in the generation of the session type is the offering of an inter-
face to the client. Any client that asks no more capabilities than those offered by the
service can connect. Hence, the service offers as many interfaces as the number of the
subsets of its own interface. For every offered interface, the continuation session type
is a specialized encoding of the service’s contract, restricted to the offered interface:
Z[o]k. For the proper encoding of the behavior, we resort to the normal form (Defini-

tion 5). A behavior of the form @, ., >, cx @-0 is one in which the service can be

The pairing of contracts and session types 15

in as many states as the cardinality of .o7. In each state R € 7, the service is ready to
perform any of the actions in R. So, the service begins by communicating to the client
the state it is in (restricted to the interface of the connected client). Then, the service
accepts a singleton action, among those that are available, indicating the choice of the
client, or the special action () denoting the fact that the client has decided to terminate
at this stage. We notice that the term

@(ﬁ(: &@: end; {/a\} : y[gaHKaERﬁK>Red>

is well formed: every label of a branch or a choice has exactly one continuation because
the behavior P ., D cg @-Tq is in normal form.

In some sense the encoding of a service contract is “kind” as it tries to accommodate
the largest number of clients (not only those connecting with exactly the same interface
as the service, but also with smaller ones). Conversely, the encoding of a client contract
is selfish in that it only encodes the client behavior, whose only purpose is to success-
fully achieve its task. The first action of the client is the selection of the service interface
that matches with its own (containing the co-actions of the client’s interface). Then, at
each interaction, the client must be ready to accept a set S of actions from the service,
representing the state the service is in. However, not all such states are suitable for the
client. In particular, let .7 be the acceptance set of the client; the client will only accept
those states S such that, for every R € &7, either e € R (the client is ready to terminate)
or SNR # ((the client and the service can synchronize). Said otherwise, the fewer sets
S the client can accept from the service, the more Ademanding it is. Once a set has been
accepted, the client may choose the spechil\label (), signaling its intention to terminate
the interaction, or it may choose a label {«}, signaling the intention of synchronizing
on «. Because of the way the sets S are accepted by the client, it is always possible to
pursue at least one of such possibilities.

There are discretions in the two encodings ¢’[-] and .#[-]: the alternation between
@ and & may be reversed without changing the following correctness results.

Example 2. Consider the service contracts
0] ¥ {a,b}a®b] and 17 % {a,b}[a+ D]
and notice that I[o] < 1[7]. Their respective encodings are

Shol] = &0 &0 : &@:ena));
{a} : @@ &@ end); {a} : &@ rend; {a} : end));
{b} - (0 &(@ end); {b} : &(0 : end; {b} : end));

{a,b} : @({a} &(A end; {a} : end);
{b} &(D : end; {b} end);
L {a b} : &((Z) end; {a} end; {b} end)))
L] = &0 o0 : &((Z) end));
{a} @({a} &(@ end; {a} end));
{b} @({b} &((D end; {b} end>>
{a b} : EB({CL b} : &((Z) end; {a} end; {b} end)))

16 Cosimo Laneve and Luca Padovani

and now we have .Z[1[7]] < .#[1]o]]. Notice that, in the encoding of 1[o], we have

(0) = {{a},{b},{a, b}}. o

More generally, the encodings of related contracts are related session types, except
that the direction of the preorder is reversed.

Theorem 4. Let o and T strongly convergent. Then 1[o] = 1[7] ifand only if ' [1[7]] <
< [fal]-

Proof. (“only if” part) Let Z be the least relation such that

- if I[o] < J[7] and o and T are strongly convergent, then .Z[J[7]] Z Z[i[o]];
additionally, if K C 1 then . [nf (7)]x Z < [nf(o)]«.

We prove that % is a coinductive subtyping. Let S % T'. We have two possibilities,
according to the definition of Z.

S = &K : Z[nf(1)]k *<') and T = &(K : S[nf(0)]x *<'). From1 C J we
have {K | K C 1} C {K | K C J}, hence each label in the topmost branch of T also
occurs as a label in the topmost branch of .S. Now take K C 1. We have to show
that .7 [nf (7)]x Z -[nf(0)]k), but this follows immediately from the definition
of % and from 1[o] < J[7].

2. (S = Inf(N]k, T = S[nf(0)]x, K C 1, and I[o] = J[7]) We have sev-
eral subcases depending on the shape of the normal form of o and 7. Assume
that nf(o) = ®R§;Qf(0) ZQ/ER\OL.UQ and nf(7) = Dgc(r) 2pes O-75- Then
S = ®(SNK : &0 : end; {8} : L[]k PE%) €YY and T = B(RNK :
&(@ . end;{a} : S[oa]x “R%) R€F(9)) From 1[o] =< J[r] we have that
{sNK|sed(r)} C{RNK|R € (o)}, hence each label in the topmost
choice of S also occurs as a label in the topmost choice of T'. Take S € <7(7).
The label SN K occurs in both S and I\ hence the corresponding branches have
exactly the same set of labels {@} U{{a} | @ € snk}. Let S’ = S[r4]« and
T' = #[04]x. From 1[nf(c)] =< J[nf(7)] and @ € 1 we have that nf(7) ==
implies nf (¢) == and 1[o,,] =< J[7,], so we conclude S’ Z T’ by definition of Z.
Assume that nf () = rec z.0”, where ¢’ is in normal form. Then 1[o] ~ 1[0’ {n£(0)/,}]
and ¢/ {nf(9)/,.} is itself in normal form. Since o is strongly convergent, we even-
tually reach some ¢’ in normal form such that /' does not begin with a recursion
and 1[o] ~ 1[o”’]. Similarly for 7. Hence, we easily reduce to the previous subcase.

1. (S = Zr]], T = [io]], and 1[o] < 1[7]) By definition of #[-] we have

“if”” part) We prove that 1[o] A J[7]| implies Z[1[7]] € Z[1]o]]. It suffices to
consider all the possibilities by which 1[o] £ 1[7] directly:

1. if 1 Z 7, then there exists o € I such that o ¢ J. Then {/04\} is a label occurring in
the topmost branch of .#[1[c]] but not occurring in the topmost branch of . [3[7]],
hence Z[I[7]] £ - [1[o]];

2. letRy,...,R, be the ready sets of o and assume that there exists R such that 7 || R
and for every 1 < i < n we have R; € R, that is for every 1 < i < n there exists

The pairing of contracts and session types 17

a; € R;N1and o; € R. From 1 C J we know that both .7 [1[o]] and .7 [J[7]] have
the label T in their corresponding topmost branches with continuations .# [nf (o)];
and .7 [nf(7)]; respectively. Then, by the fact that ~ is injective, it follows that
RNI & {R; NI | R; € /(0)}, hence RN1 is a label occurring in the topmost
choice of .’[nf ()], but not occurring in the topmost choice of .’ [nf(o)];, so we
conclude . 3[7]] £ L1[o]];

3. assume that there exists v € 1 such that 7 == and o =%. Then 7 | S where & € s
whereas o |} R implies o ¢ R. Hence we can reason as for the previous case and
conclude .Z[1[7]] £ <1]o]]. O

The strict correspondence between < and < allows one to use them interchangeably,
as discussed in the example below.

Example 3. Consider the client contracts
Klp) ¥ {a@,b,e}fae+be] and K[| Y {a b e}[aedb.e

and notice that K[p] - 1[o] whereas K[p'] A 1][o], where 1]o] is the service contract
defined in Example 2. The respective encodings of these two client contracts are

CIk[pl] = ©{a, b} : &({a} : ©({a} : end)
{b} @<{b} end)
- {/ai} @({a} end; {b} end)))
CIK[]] = ®{{a, b} : &{{a,b}: @({a} : end; {b} : end)))
and now we notice that .[1[o]] < dual(@[K[p]]), namely it is safe to use .#[1[o]]
to interact successfully with €’[K[p]]. On the other hand .7 [i[o]] £ dual(Z[K[/']])
because .7 [1[c]] may be in a state where only @ or only b are available, whilst the client

K[p'] autonomously decides which of the two actions to execute. Notice however that
7] < dual(€[K[p']])- [|

More generally, if K[p] - 1[o] holds then it is safe to use the service .[1]o]] to
interact with the client €’[K[p]] and in fact dual(%€’[K[p]]) is the principal service type
that interacts successfully with €'[K[p]].

Theorem 5. K[p] - 1[o] if and only if Z[1[o]] < dual(E€[K[p]]).
Proof. (“only if” part) Let Z be the least relation such that

- if K[p] - 1[o] and p and o are strongly convergent, then . [1[o]] Z dual(€[K[p]])
and . [nf (o)]]K\{ ; Z dual(€[nf(p)]]K\{e}).

It is sufficient to show that Z is a coinductive subtyping. Let S % T'. We have two
possibilities.
1. (S=SMo]], T = dual(‘g[[K[]]]) and K[p] 7 1[o]) Then S = &(H : .7 [nf(0)]y "<")
and T = &(x \ {e} : dual(¥ (P)]k\{e}))- From K \ {e} C I we have that the
label in the topmost branch of T also occurs as a label in the topmost label of S.

We must show that .7 [nf (0)]y # dual(%'[nf(p)]«\ (e}). but this is obvious by
definition of Z.

18 Cosimo Laneve and Luca Padovani

2. (S = Y[nf(0)]g, T = dual(€[nf(p)]x), and (K U {e})[p] 1 1[o]) Let nf (o) =
@Red(o) ZaER @.0q and nf(P) = ®R€£f(p) ZOLGR Q.pq. Then

S = €9<R/ﬂ\ﬁ : &(@: end; @ : L[nf(0n)]x aeRmE> Red(a)>
T =@(S: &0 : end; {@} : dual(€[nf(py)]x) REZ (P)ESNRY SCKs2F ()

LetR € /(o) be aready set of the service. Then RN K = RNK C K. Furthermore,
by definition of X, we have that R N K x <7 (p) if and only if for every R' € 7 (p)
we have either e € R or RN KNR’ # (. But R’ C K, hence RN KNR’ = RNR’. So
RNK X &7 (p) is a direct consequence of the hypothesis (K U {e})[p] - I[o]. Fur-

thermore, from the same hypothesis and from nf(p) == and nf (o) =25 it follows
that (KU{e})[pa] 1 1[o], hence we conclude . [nf (04)]x Z dual(€[nf(pa)]x)
by definition of Z.

(“if” part) Trivial by the definitions of the encoding, the details are left to the reader.
O

By combining Theorem 5 and Proposition 3(3) we derive an interesting dual result,
by which dual([1[o]]) is the principal client type that interacts successfully with
Z[1fa]].

Corollary 1. K[p] 4 1[o] if and only if €[K[p]] < dual(.-[i[o]]).

6 Discussion

The encoding of session types into contracts (Section 4) is simple and almost homomor-
phic with respect to the operations. The branch is the only operation whose encoding
requires some care, by adding extra ¢.€2 subterms in the generated contract for those
labels ¢ not mentioned in the session type. That is, the encoding renders clearly that
processes involved in a session may only perform actions that are explicitly allowed by
the type of the partner process. In other words, session types describe communications
where at any time exactly one of the two interacting parties has control and no hand-
shaking occurs. Interestingly, by interpreting €2 as a catastrophic state of a process and
by considering a slightly weaker notion of subcontract relation called safe must in [2],
we have o.£2 < 0, meaning that, in practice, action « is not guaranteed.

The encoding of contracts into session types (Section 5) manifests an exponential
blow up of the encoded contract. This indicates that contracts are more abstract than
session types and are capable of expressing more complex synchronization scenarios.
Part of this added expressiveness derives from the operators + and @, which can be
used for composing arbitrary behaviors in a liberal way. As we have anticipated in
the introduction, the encoding of {a,b}[a @ b] explicitly notifies the client if only a
is available, or if only b is available, or if both a and b are available. This is possible
only if the service has centralized control over its own resources and can decide about
the availability of a and b. If, on the other hand, the service is a collection of possibly
distributed processes (as in service choreographies) it may be impractical or impossible
to provide such information to the client.

The pairing of contracts and session types 19

The lesson we learn is that there is a strict correspondence between contracts and
session types that allows one to use them interchangeably within the context of dyadic
interactions, where both parties provide centralized control on the communication pro-
tocol. Contracts go beyond session types in that they permit to characterize arbitrary
processes in addition to sessions. For instance, the process @ | b, which stands for the
parallel composition of two smaller processes sending messages @ and b, can be seen as
having two unrelated sessions with type @ {a : end) and & (b : end). On the other hand,
the whole process can be typed according to one of the following behaviors

Q aQ+b6Q GTb+bQ aQr+ba ab+ba

representing regular, increasingly accurate approximations of the process behavior.

Recently type systems with sessions have been extended so as to guarantee stronger
progress properties [8]. Such type systems must necessarily consider a broader perspec-
tive that takes into account the mutual dependencies and interactions between sessions.
In this respect, we plan to investigate whether the additional expressiveness of contracts
already provides the required machinery for dealing with these issues.

References

1. A. Asperti and C. Laneve. Interaction systems I: The theory of optimal reductions. Mathe-
matical Structures in Computer Science, 4(4):457-504, 1994.

2. M. Boreale, R. De Nicola, and R. Pugliese. Basic observables for processes. Information
and Computation, 149(1):77-98, 1999.

3. S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of contracts for
Web Services. In WS-FM’06, 3rd Int. Workshop on Web Services and Formal Methods,
number 4184 in LNCS, pages 148-162. Springer, 2006.

4. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for Web Services. In
POPL’08: Proceedings of 35th ACM SIGPLAN SIGACT Symposium on Principles of Pro-
gramming Languages. ACM, 2008.

5. R. De Nicola. Two complete axiom systems for a theory of communicating sequential pro-
cesses. Information and Control, 64(1-3):136-172, 1985.

6. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer
Science, 34:83-133, 1984.

7. R. De Nicola and M. Hennessy. CCS without 7’s. In TAPSOFT’87/CAAP’87, number 249
in LNCS, pages 138—152. Springer, 1987.

8. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Structured Com-
munications. In 7GC’07, LNCS. Springer, 2007. To appear.

9. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session Types
for Object-Oriented Languages. In ECOOP’06, volume 4067 of LNCS, pages 328-352.
Springer, 2006.

10. S. Gay and M. Hole. Subtyping for session types in the w-calculus. Acta Informatica, 42(2-
3):191-225, 2005.

11. M. Hennessy. Acceptance trees. JACM: Journal of the ACM, 32(4):896-928, 1985.

12. M. Hennessy. Algebraic Theory of Processes. Foundation of Computing. MIT Press, 1988.

13. K. Honda. Types for dyadic interaction. In CONCUR’93, number 715 in LNCS, pages
509-523, 1993.

20

14.

15.

Cosimo Laneve and Luca Padovani

C. Laneve and L. Padovani. The must preorder revisited — an algebraic theory for web
services contracts. In CONCUR’07, 18th Int. Conference on Concurrency Theory, number
4703 in LNCS, pages 212-225. Springer, 2007. Full version available at http://www.
sti.uniurb.it/padovani/Papers/lncs_4703_full.pdf.

V. Vasconcelos, S. Gay, and A. Ravara. Type checking a multithreaded functional language
with session types. TCS: Theoretical Computer Science, 368, 2006.

