
Explicit State Model Checking for Graph Grammars

Arend Rensink

Department of Computer Science, University of Twente, The Netherlands
rensink@cs.utwente.nl

Abstract. In this paper we present the philosophy behind the GROOVE project,
in which graph transformation is used as a modelling formalism on top of which
a model checking approach to software verification is being built. We describe
the basic formalism, the current state of the project, and (current and future)
challenges.

1 Introduction

Our primary interest in this paper is software model checking, in particular of object-
oriented programs. Model checking has been quite successful as a hardware verification
technique and its potential application to software is receiving wide research interest.
Indeed, software model checkers are being developed and applied at several research
institutes; we mention Bogor [32] and Java Pathfinder [17] as two well-known examples
of model checkers for Java.

Despite these developments, we claim that there is an aspect of software that does
not occur in this form in hardware, and which is only poorly covered by existing model
checking theory: dynamic (de)allocation, both on the heap (due to object creation and
garbage collection) and on the stack (due to mutual and recursive method calls and
returns). Classical model checking approaches are based on propositional logic with a
fixed number of propositions; this does not allow a straightforward representation of
systems that may involve variable, possibly unbounded numbers of objects. Although
there exist workarounds for this (as evidenced by the fact that, as we have already seen,
there are working model checkers for Java) we strongly feel that a better theoretical
understanding of the issues involved is needed.

Graphs are an obvious choice for modelling the structures involved, at least informally;
direct evidence of this can be found in the fact that any textbook of object-oriented pro-
gramming uses graphs (of some form) for illustrative purposes. Indeed, a graph model
is a very straightforward way to visualise and reason about heap and stack structures, at
least when they are of restricted size. In fact, there is no a priori reason why this con-
nection cannot be exploited beyond the informal, given the existence of a rich theory of
(in particular) graph transformation — see for instance the handbook [33], or the more
recent textbook [8]. By adopting graph transformation, one can model the computation
steps of object-oriented systems through rules working directly on the graphs, rather than
through some intermediate modelling language, such as a process algebra.

This insight has been the inspiration for the GROOVE project and tool.1 Though
the idea is in itself not revolutionary or unique, the approach we have followed differs

1 GROOVE stands for “GRaphs for Object-Oriented VErification.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 114–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Explicit State Model Checking for Graph Grammars 115

from others in the fact that it is based on state space generation directly from graph
grammars; hence, neither do we use the input language of an existing model checker
to translate the graph rules to, like in [35,12], nor do we attempt to prove properties on
the level of graph grammars, like in [22,14,21]. In this paper, we present the elements
of this approach, as well as the current state of the research. It is thus essentially the
successor [25], where we first outlined the approach.

The paper is structured as follows: in Sect. 2 we introduce the formal notion of
graphs and transformations, in a constructive way rather than relying on category the-
oretical notions. In Sect. 3 we define automata, so-called graph transition systems, on
top of graph grammars; we also define bisimilarity and show that there exist minimal
(reduced) automata. (This is a new result, achieved by abstracting away from symme-
tries in a somewhat different way than by Montanari and Pistore in [24].) In Sect. 4 we
define first-order temporal logic on top of graph transition systems; we also present an
equivalent temporal logic based on graph morphisms as core elements, along the lines
of [28,6]. Finally, in Sect. 5 we give an evaluation and outlook.

2 Transformation of Simple Graphs

We model system states as graphs. Immediately, we are faced with the choice of graph
formalism. In order to make optimal use of the existing theory on graph transformation,
in particular the algebraic approach [8], it is preferable to select a definition that gives
rise to a (weakly) adhesive HLR category (see [20,10]), such as multi-sorted graphs
(with separate sorts for nodes and edges, and explicit source and target functions), or
attributed graphs [7] built on top of those. On the other hand, in the GROOVE project
and tool [27], in which the approach described in this paper was developed, we have
chosen to use simple graphs, which do not fulfill these criteria (unless one also re-
stricts the rules to regular left morphisms, which we have not done), and single-pushout
transformation, as first defined by Löwe in [23]. There were two main reasons for this
choice:

– In the envisaged domain of application (operational semantics of object-oriented
systems) there is little use for edges with identities (see, e.g., [18]);

– The most straightforward connection to first-order logic is to interpret edges as
binary predicates (see, e.g., [28]); again, this ignores edge identities.

In this paper, we stick to this choice and present the approach based on simple graphs;
in Sect. 5 we will come back to this issue.

Throughout this paper we will assume the existence of a universe of labels Label, and a
universe of node identities Node.

Definition 1 (simple graph)

– A simple graph is a tuple 〈V, E〉, where V ⊆ Node is a set of nodes and E ⊆
V × Label × V a set of edges. Given e = (v, a, w) ∈ EG, we denote src(e) = v,
lab(e) = a and tgt(e) = w for its source, label and target, respectively.

116 A. Rensink

– Given two simple graphs G, H , a (partial) graph morphism f : G → H is a pair
of partial functions fV : VG ⇀ VH and fE : EG ⇀ EH , such that for all e ∈
dom(fE), fE(e) = (fV (src(e)), lab(e), fV (tgt(e))).

Some notation and terminology.

– A morphism f is called total if fV and fE are total functions, injective if they are
injective functions, and an isomorphism if they are bijective functions. The total,
injective morphisms are sometimes called monos.2

– For f : G → H , we call G and H the source and target of f , denoted src(f) and
tgt(f), respectively. A pair of morphisms with a common source is called a span;
with a common target, a co-span.

– We write G ∼= H to denote that there is an isomorphism from G to H , and φ: G ∼=
H to denote that φ is such an isomorphism. This is extended to the individual
morphisms of spans ←f−−g→: we write f ∼= g for such morphisms if there is an
isomorphism φ: tgt(f) → tgt(g) such that g = φ ◦ f .

– We use Morph to denote the set of all (partial) graph morphisms.

Some example graphs will follow below. As a further convention, in figures we will use
node labels to represent self-edges; for instance, in Fig. 1, the labels Buffer, Cell and
Object are used in this way.

Graph morphisms are used for many different purposes, but the following uses stand
out in the context of graph transformation:

– Isomorphisms are used to capture the fact that two graphs are essentially the same.
The whole theory of graph transformation is set up to be insensitive to isomorphism,
meaning that it is all right to pick the most convenient isomorphic representative.

– Total morphisms describe an embedding of one graph into another, possibly while
merging nodes. If a total morphism is also injective, then there is no merging, and
the source graph is sometimes called an (isomorphic) subgraph of the target.

– Arbitrary (partial) morphisms are used to capture the difference between graphs, in
terms of the exact change from the source graph to the target graph. To be precise,
the change consists of deletion of those source graph elements on which the mor-
phism is not defined, merging of those elements on which it is not injective, and
addition of those target graph elements that are not in the image of the morphism.

A core construction in graph transformation is the so-called pushout. This is used as a
way to combine, or glue together, different changes to the same graph; or in particular,
an embedding on the one hand and a change on the other — where both the embedding
and the change are captured by morphisms, as in the second and third items above. In
the following, we define pushouts constructively.

Definition 2 (pushout). For i = 1, 2, let fi: G→ Hi be morphisms in Morph such that
Hi = 〈Vi, Ei〉 with V1 ∩ V2 = ∅; let ∗ be arbitrary such that ∗ /∈ V1 ∪ V2.

2 This name stems from category theory, where monos are arrows satisfying a particular decom-
position property. We do not elaborate on this issue here.

Explicit State Model Checking for Graph Grammars 117

1. For i = 1, 2, let f̄i: G → H̄i be a total extension of fi, defined by adding a distinct
fresh node v′ to Hi and setting f̄i(v) = v′ for each v ∈ VG \ dom(fV,i). Hence,
H̄i = 〈V̄i, Ēi〉 such that V̄i extends Vi with the fresh nodes, and Ēi extends Ei with
the fresh edges implied by the totality of f̄i.

2. Let V̄ = V̄1 ∪ V̄2 be the union of the extended node sets, and Ē = E1 ∪ E2 that of
the extended edge sets. Let � ⊆ V̄ × V̄ be the smallest equivalence relation such
that f̄V,1(v) � f̄V,2(v) for all v ∈ VG; and likewise for edges.

3. Let W = {X ∈ V̄ /� | X ⊆ V1 ∪ V2}, and for i = 1, 2, define gV,i: Vi → W̄ such
that for all v ∈ Vi

gV,i: v �→ [v]� if [v]� ⊆ V1 ∪ V2 .

Let F = {([v]�, a, [w]�) | [(v, a, w)]� ⊆ E1 ∪ E2}; moreover, for i = 1, 2, define
gE,i: Ei → F such that for all (v, a, w) ∈ Ei

gE,i: (v, a, w) �→ ([v]�, a, [w]�) if [(v, a, w)]� ⊆ E1 ∪ E2 .

4. Let K = 〈W, F 〉; then gi: Hi → K are morphisms for i = 1, 2.

K together with the morphisms gi is called the pushout of the span f1, f2; together they
form the following pushout diagram.

G
f1 ��

f2

��

H1

g1

��
H2

g2 �� K

The intuition behind the construction is as follows: first (step 1) we (essentially) con-
struct the disjoint union of the two target graphs H1 and H2, augmented with images
for those elements of G for which the morphisms f1 resp. f2 were originally unde-
fined. These fresh images later work like little “time bombs” that obliterate themselves,
together with all associated (i.e., equivalent) elements. In the resulting extended dis-
joint union, we call two elements equivalent (step 2) if they have a common source in
G, under the (extended) morphisms f̄1 or f̄2. Then (step 3), we construct the quotient
with respect to this equivalence, omitting however the (equivalence classes of the) fresh
nodes and edges added earlier — in other words, this is when the bombs go off.

The name “pushout” for the object constructed in the previous definition is justified
by the fact that it satisfies a particular co-limit property, stated formally in the following
proposition.

Proposition 1 (pushout property). Given morphisms fi as in Def. 2, the pushout is a
co-limit of the diagram consisting of the span f1, f2, meaning that

– g1 ◦ f1 = g2 ◦ f2;
– Given any hi: Hi → L for i = 1, 2 such that h1 ◦ f1 = h2 ◦ f2, there is a unique

morphism k: K → L such that h1 = k ◦ g1 and h2 = k ◦ g2; in other words, such
that the following diagram commutes

118 A. Rensink

G
f1 ��

f2

��

H1

g1

�� h1

��

H2
g2 ��

h2 ��

K
k

���
��

��
��

�

L

Proof (sketch). We construct k. For a given W ∈ VK , let i be such that W ∩ Vi �= ∅;
let kV (W) = hi(w) for w ∈ W ∩ Vi. This is well-defined due to the fact that W
is a �-equivalence class, in combination with the confluence of the f1g1/f2g2- and
f1k1/f2k2-squares of the diagram. kE is defined likewise. k satisfies the necessary
commutation properties by construction. Its uniqueness in this regard can be established
by observing that no other image for any of the nodes or edges of K will make the
pushout diagram commute.

The mechanism we use for generating state spaces is based on graph grammars, con-
sisting of a set of graph production rules and a start graph. The necessary ingredients
are given by the following definition.

Definition 3 (graph grammar)

– A graph production rule is a tuple r = 〈p: L → R, ac〉, where p ∈ Morph, and ac
is an application condition on total graph morphisms m: L → G (for arbitrary G)
that is well-defined up to isomorphism of G. We write m |= ac to denote that m
satisfies ac. (Well-definedness up to isomorphism of G means that m |= ac if and
only if φ ◦ m |= ac for all graph isomorphisms φ: G → H .)

A graph grammar is a tuple G = 〈R, I〉, where R is a set of production rules and
I is an initial graph.

– Given a graph production rule r, an r-derivation is a four-tuple (G, r, m, H), typi-
cally denoted G =r,m

==⇒ H , such that m: Lr → G |= acr and H is isomorphic to the
pushout graph; i.e., the following square is a pushout:

Lr
pr ��

m

��

Rr

m′

��
G

f �� K ∼= H

A G-derivation (G a graph grammar) is an r-derivation for some r ∈ RG .

The definition is slightly sloppy in that our pushout construction is only defined if
the right hand side Rr and the host graph G have disjoint node sets. This is in practice
not a problem because we are free to take isomorphic representatives where required;
in particular, we can make sure that the derived graphs have nodes that are distinct from
all right hand side graphs.

Explicit State Model Checking for Graph Grammars 119

L

put

get
41

2

3

1 2

3

1

3

2

p

R

N
n 1

2

4

3

5

3

Fig. 1. Graph production rules for a circular buffer

8

m’

8

m

f
HG

99

4

p

L R

3,7

1,5

2,6

1

3

2

4

1
2

3

6

7

5

Fig. 2. Example derivation using the rule get from Fig. 1

As a running example, we use the graph grammar consisting of the two rules in
Fig. 1, which retrieve, resp. insert, objects in a circular buffer. The rule put has a so-
called negative application condition (see [13]), in the form of a morphism n: L → N
from the left hand side of the rule; the satisfaction of such a condition is defined by

m: L → G |= n :⇔ �f : N → G : f ◦ n = m � dom(n)

120 A. Rensink

(where dom(n) is the sub-graph of L on which n is defined, and m � H stands for
the restriction of the morphism m to the graph H). The morphisms are indicated by
the numbers in the figure: nodes are mapped to equally labelled nodes in the target
graph (if such a target node exists, elsewhere the morphism is undefined), and edges
are mapped accordingly. An example derivation is shown in Fig. 2, given a match m =
{(1, 5), (2, 6), (3, 7)}. In terms of Def. 2, this gives rise to

V̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9}
W = {{1, 5}, {2, 6}, {3, 7}, {4}, {8}, {9}} .

3 Graph Transition Systems

As related in the introduction above, the core of our approach is explicit state space
generation, where the states are essentially graphs. Rather than completely identifying
states with graphs (like we did in the original [25]), in this paper we follow [2] by
merely requiring that every state has an associated graph. This leaves room for cases
where there is more information in a state than just the underlying graph.

Definition 4 (graph transition system). A graph transition system (GTS) is a tuple
S = 〈Q, T, q0〉 where

– Q is a set of states with, for every q ∈ Q, an associated graph Gq ∈ Graph;
– T ⊆ Q×Morph×Q is a set of transitions, such that src(α) = Gq and tgt(α) ∼= Gq′

for all (q, α, q′) ∈ T . As usual, we write q −α→ q′ as equivalent to (q, α, q′) ∈ T .
– q0 ∈ Q is the initial state.

S is called symmetric if (q, α, q′) ∈ T implies (q, α ◦ φ, q′) ∈ T for all φ: Gq
∼= Gq .

We write qt, αt, q
′
t for the source state, morphism and target state of a transition t, and

qi etc. for the components of ti. Note that the target graphs of the morphisms associated
with the transitions are only required to be isomorphic, rather than identical, to the
graphs associated with their target states. Obviously, this only makes a difference for
graphs having non-trivial symmetries, since otherwise the isomorphisms are unique and
might as well be appended to the transition morphisms. Using the definition given here,
we avoid to distinguish between symmetric cases, and hence it is possible to minimise
with respect to bisimilarity — see below.

An example symmetric GTS is shown in Fig. 3. The morphisms associated with
the transitions are indicated by node mappings at the arrows; all the morphisms have
empty edge mappings. The two left-to-right transitions are essentially the same, since
their associated morphisms are “isomorphic;” that is, there is an isomorphism between
their target graphs that equalises them —namely, based on node mapping (3, 4), (4, 3).
On the other hand, this is not true for the right-to-left transitions: the node mapping
(1, 2), (2, 1) is not an isomorphism of the left hand side graph. Indeed, by symmetry,
the presence of each of the right-to-left transition implies the presence of the other.

We can now understand a GTS as being generated by a graph grammar G, if the start
state’s associated graph is isomorphic to the start graph of G, and there are transitions
corresponding to all the derivations of G (modulo isomorphism). That is, we call a GTS
S generated by G if the following conditions hold:

Explicit State Model Checking for Graph Grammars 121

(1,3),(2,4)

(3,2),(4,1)

(3,1),(4,2)

(1,4),(2,3)

2

1 3

4

Fig. 3. Example symmetric GTS, removing and re-adding an edge

– Gq0 is isomorphic to I;
– For any q ∈ Q and any G-derivation Gq =r,m

==⇒ H , S has a transition q −α→ q′ such
that α ∼= pr ↑ m.

– Likewise, for any transition q −α→ q′, there is a G-derivation Gq =
r,m
==⇒ H such that

α ∼= pr ↑ m.
For instance, Fig. 4 shows a GTS generated using the rules in Fig. 1, taking G from

Fig. 2 as a start graph.
Grammar-generated GTSs are close to the history-dependent automaton (HDA) of

Montanari and Pistore (see [24]). There, states have associated sets of names, which are
“published” through labelled transitions, the labels also having names and the transi-
tions carrying triple co-spans of total injective name functions, from the source state,
target state and label to a common set of names associated with the transition.

If we limit our rules to injective morphisms, then the derivation morphisms will be
injective, too. Injective partial morphisms α: G → H are in fact equivalent to

getget

put

get

put

put

get

put

Fig. 4. GTS generated from the circular buffer rules

122 A. Rensink

co-spans of monos αL: G → U, αR: H → U , where U is the “union” of G and H while
gluing together the elements mapped onto each other by α. If, furthermore, we require
all matchings to be injective as well (through the application condition ac), any G-
generated GTS gives rise to a HDA, where the names are given by node identities. The
only catch is that, as mentioned before, the actual isomorphism from tgt(α) to Gq′ in
a transition q −α→ q′ is not part of the GTS, whereas in HDA the name mappings are
precise. On the other hand, this information is abstracted away in HDA with symmetries
(see [24]). We conclude:

Proposition 2. If G is such that all rules in R are injective, and m |= ac only if m is
injective, then every G-generated GTS uniquely gives rise to a HDA with symmetries,
in which the transition labels are tuples of rules and matchings.

In contrast to HDAs, however, GTS transitions are reductions and not reactions. In
other words, they do not reflect communications with the “outside world”. In fact, the
behaviour modelled by a GTS is not primarily captured by the transition labels but by
the structure of the states; as we will see, the logic we use to express GTS properties
can look inside the states. For that reason, although we can indeed define a notion of
bisimilarity —inspired by HDA bisimilarity— which abstracts away to some degree
from the branching structure, the relation needs to be very discriminating on states.3

Definition 5 (bisimilarity). Given two GTSs S1, S2, a bisimulation between S1 and S2
is an isomorphism-indexed relation (ρφ)φ ⊆ (Q1 × Q2) ∪ (T1 × T2) such that

– For all q1 ρφ q2, the following hold:
• φ: Gq1

∼= Gq2 ;
• For all q1 −α1−→ q′1, there is a q2 −α2−→ q′2 such that (q1, α1, q

′
1) ρφ (q2, α2, q

′
2);

• For all q2 −α2−→ q′2, there is a q1 −α1−→ q′1 such that (q1, α1, q
′
1) ρφ (q2, α2, q

′
2);

– For all t1 ρφ t2: q1 ρφ q2, α1 ∼= α2 ◦ φ, and there is a ψ such that q′1 ρψ q′2;
– q0,1 ρφ q0,2 for some φ.

S1 and S2 are said to be bisimilar, denoted S1 ∼ S2, if there exists a bisimulation
between them.

For instance, although the GTS generated by a graph grammar is not unique, it is unique
modulo bisimilarity.

Theorem 1. If S1 and S2 are both generated by a graph grammar G, then S1 ∼ S2.

Thus, bisimulation establishes binary relations between the states and transitions of two
GTSs. As usual, this can be used to reduce GTSs, as follows:

– Between any pair of GTSs there exists a largest bisimulation, which can be defined
as the union of all bisimulations (pointwise along the φ). (The proof that this is
indeed again a bisimulation is straightforward.)

– If S1 and S2 are the same GTS (call it S), then the largest bisimulation gives rise
to an equivalence relation ρ over the states and transitions of S.

3 In this paper, we use bisimilarity only to minimise GTSs, not so much to establish a theory of
equivalence.

Explicit State Model Checking for Graph Grammars 123

– Given the equivalence ρ, pick a representative from every equivalence class of states
Q/ρ. For any q ∈ Q, let q̂ denote the representative from [q]ρ.

– Similarly, for every equivalence class of transitions U ∈ T/ρ, pick a representative
with as source the (uniquely defined) state q̂t for t ∈ U . For any t, let t̂ denote the
selected representative from [t]ρ. (Note that this means qt̂ is the representative state
selected from [qt]ρ, but q′

t̂
is not necessarily the representative for [q′t]ρ.)

– Define Ŝ = 〈Q̂, T̂ , q̂0〉 where

Q̂ = {q̂ | q ∈ Q}
T̂ = {(qt̂, αt̂, q̂

′
t) | t ∈ T } .

Thus, this construction collapses states with isomorphic graphs and transitions with
isomorphic graph changes. For instance, in Fig. 3, only one of the two left-to-right tran-
sitions remains in the reduced transition system. The transition system in Fig. 4 cannot
be reduced further (there are no non-trivial isomorphisms); in fact, it has already been
reduced up to symmetry, since (for instance) the precise graph reached after applying
put · get from the initial state is not identical to the start graph; rather, it can be thought
of as isomorphically rotated clockwise by 90◦. Indeed, reduction with respect to bisim-
ilarity exactly corresponds to symmetry reduction for model checking (see, e.g., [11]).

It may actually not be clear that Ŝ is well-defined, since it relies on the choice of
representatives from the equivalence classes Q/ρ and T/ρ. To show well-definedness
we must first define isomorphism of GTSs.

Definition 6 (GTS isomorphism). Two GTSs S1, S2 are isomorphic if there exists a
pair of mappings φQ: Q1 → (Morph × Q2) and φT : T1 → T2 such that

– For all q1 ∈ Q1, φQ(q1) = (ψ, q2) such that ψ: Gq1
∼= Gq2 ;

– For all t1 ∈ T1, if φQ(q1) = (ψ, q2) and φQ(q′1) = (ψ′, q′2) then φT (t1) =
(q2, α2, q

′
2) such that α2 ◦ ψ ∼= α1;

– φQ(q1,0) = (ψ, q2,0) for some ψ.

The following theorem states the crucial properties of the GTS reduction.

Theorem 2. Given any GTS S, the reduced GTS Ŝ is well-defined up to isomorphism
and satisfies Ŝ ∼ S. Furthermore, for any bisimulation (ρ̂φ)φ between Ŝ and itself,
q̂1 ρ̂φ q̂2 implies q̂1 = q̂2 for all q̂1, q̂2 ∈ Q̂.

Proof (sketch).

– It is straightforward to check that any choice of representatives from the ρ-induced
equivalence classes of states and transitions gives rise to an isomorphic GTS. For
instance, in Fig. 3 it is not important which of the two left-to-right transition is
chosen. (This indifference crucially depends on the condition α2 ◦ ψ ∼= α1 in the
isomorphism condition for transitions; if we would require α2 ◦ ψ = ψ′ ◦ α1 then
the uniqueness up to isomorphism would break down.)

– Let (ρφ)φ be the largest bisimulation over S, used in the construction of Ŝ. Ŝ ∼ S
is then immediate, using as bisimilarity the restriction of (ρφ)φ on the left hand side
to states of Ŝ.

124 A. Rensink

– It can be proved that q̂1 ρ̂φ q̂2 implies that also q̂1 ρφ q̂2 in the original GTS S. But
then q̂1 and q̂2 are both representatives of the same ρ-equivalence class of states in
S, implying they are the same.

(Note that it is not the case that Ŝ has only trivial bisimulations, i.e., such that q ρφ q
implies that φ is the identity, since in contrast to [24] we are not abstracting graphs up
to symmetry.) The following is immediate.

Corollary 1 (canonical GTS). Given a graph grammar G, there is a smallest GTS
(unique up to isomorphism) generated by G. We call this the canonical GTS of G, and
denote it SG .

The following property of the canonical GTS is a consequence of the definition of
derivations and the assumption that ac is well-defined up to isomorphism.

Proposition 3 (symmetry of canonical GTSs). For any graph grammar G, the canon-
ical GTS SG is symmetric.

4 First-Order Temporal Logic

Besides providing a notion of symmetry, the transition morphisms of GTSs also keep
track of the identity of entities. For instance, Fig. 4 contains all the information neces-
sary to check that entities are retrieved in the order they are inserted and that no entity
is inserted without eventually being retrieved. All this is established through the node
identities of the val-labelled nodes; no data values need be introduced. Such properties
can be expressed formally as formulae generated in a special temporal logic.

4.1 First-Order Linear Temporal Logic

The usual temporal logics are propositional, meaning that their smallest building blocks
are “atomic” propositions, whose truth is a priori known for every state.4 For express-
ing properties that trace the evolution of entities over transitions, however, we need
variables that exist, and remain bound to the same value, outside the temporal modal-
ities. An example of a logic that has this feature is first-order linear temporal logic
(FOLTL), generated by the following grammar:

Φ ::= x | a(x, y) | tt | ¬Φ | Φ ∨ Ψ | ∃x.Φ | XΦ | Φ U Ψ .

The meaning of the predicates is:

– x expresses that the first-order variable x has a definite value (which is taken from
Node). As we will see, this is not always the case: x may be undefined.

– a(x, y) expresses that there is an a-labelled edge from node x to node y.
– tt (true), ¬Φ and Φ ∨ Ψ have their standard meaning.

4 In practice, such propositions may themselves well be (closed) first-order formulae, evaluated
over each state.

Explicit State Model Checking for Graph Grammars 125

– XΦ and Φ U Ψ are the usual linear temporal logic operators: XΦ expresses that Φ
is true in the next state, whereas Φ U Ψ expresses that Ψ is true at some state in the
future, and until that time, Φ is true.

In addition, we use the common auxiliary propositional operators ∧, ⇒ etc., as well
as the temporal operators G (for “Globally”) and F (for “in the Future”). Furthermore,
we use ∃x : a.Φ with a ∈ Label as abbreviation for ∃x.a(x, x) ⇒ Φ. Some example
formulae which can be interpreted over the circular buffer system of Fig. 4 are:

1. ∀c : Cell.�v.val(c, v) is a non-temporal formula expressing that in the current state
there is no val-edge.

2. ∀c : Cell. F ∃v.val(c, v) is a temporal formula expressing that all currently existing
cells will eventually be filled (though maybe not all at the same time).

3. F ∀c : Cell.∃v.val(c, v) expresses that eventually all cells will be filled (at the same
time).

4. ∃o : Object.X ¬o expresses that there exists an Object-node that will be gone in
the next state.

5. ∀b : Buffer.(∃c, o.first(b, c)∧val(c, o)) U (�c, o.val(c, o)) expresses that eventually
the buffer is empty, and until that time, the first cell has a value.

6. (X∃o.val(c, o))∧(�o.Xval(c, o)) expresses that, although in the next state the cell c
will have a value, that value does not already exist in the current state. This implies
that that value is freshly created in the next state.

Formulae are interpreted over infinite sequences of graph morphisms, in combination
with a valuation of the free variables. The definition requires some auxiliary concepts
and notation.

– A path is an infinite sequence of consecutive morphisms m1 m2 · · ·, i.e., such that
tgt(mi) = src(mi+1) for all i ≥ 1. We let σ range over paths. For all 1 ≤ i ≤ |σ|,
σi denotes the i’th element of σ (i.e., mi), and, σi the tail of σ starting at the i’th
element (i.e., mi mi+1 · · ·).

– A run of a GTS S is an infinite sequence of pairs ρ = (t1, φ1)(t2, φ2) · · · such that
q1 = q0, and for all i ≥ 1

• q′i = qi+1;
• Either ti ∈ T or ti = (q, idGq , q) where �t ∈ T : qt = q (so we stutter upon

reaching a final state);
• φi: tgt(αi) ∼= src(αi+1).

Given a run ρ, the path σρ generated by ρ is the sequence of morphisms (φ1 ◦
α1)(φ2 ◦ α2) · · ·.

– θ is a partial valuation of variables to elements of Node. If f is a graph morphism,
then f ◦ θ is a new valuation defined by concatenating fV with θ. We use θ{v/x}
(with v ∈ Node) to denote a derived valuation that maps x to v and all other
variables to their θ-images.

Satisfaction of a formula is expressed through a predicate of the form G, σ, θ |= φ,
where G = src(σ1). The following set of rules defines this predicate inductively. The
main point to notice is the modification of the valuation θ in the rule for Xφ. Here the
effect of the transformation morphism is brought to bear. For one thing, it is possible

126 A. Rensink

that a variable becomes undefined, if the node that it was referring to is deleted by the
transformation.

G, σ, θ |= x iff θ(x) is defined
G, σ, θ |= a(x, y) iff (θ(x), a, θ(y)) ∈ EG

G, σ, θ |= tt always
G, σ, θ |= ¬Φ iff not G, σ, θ |= Φ
G, σ, θ |= Φ1 ∨ Φ2 iff G, σ, θ |= Φ1 or G, σ, θ |= Φ2
G, σ, θ |= ∃x : Φ iff G, σ, θ{v/x} |= Φ for some v ∈ NG

G, σ, θ |= XΦ iff src(σ2), σ2, σ1 ◦ θ � Φ
G, σ, θ |= Φ1 U Φ2 iff ∃i ≥ 0 : G, σ, θ |= XiΦ2 and ∀0 ≤ j < i : G, σ, θ |= XjΦ1

We define the validity of a formula on a GTS S as follows:

S |= Φ if for all runs ρ of S and all valuations θ: Gq0 , σρ, θ |= Φ

For instance, of the example formulae presented above, nrs. 1, 2, 5 and 6 (provided c
is mapped to the cell pointed to by first) are valid on the GTS of Fig. 4, whereas the
others are not. Property 2, for instance, holds because the morphisms associated with
the transitions are such that after a finite number of transitions, each cell is mapped onto
a cell with an outgoing val-edge. Property 5, on the other hand, is trivially valid since
the start state is already empty; however, when another state is picked as start state it
becomes invalid, since although it would hold for some paths of that modified GTS,
there are runs that never enter the state where the buffer is empty.

The following is an important property, since it shows that bisimilarity minimisation
does not change the validity of FOLTL properties.

Theorem 3. If S1, S2 are GTSs, then S1 ∼ S2 implies S1 |= Φ iff S2 |= Φ for all
Φ ∈ FOLTL.

We can now finally formulate the model checking question:

Model checking problem: Given a graph grammar G and a formula Φ, does SG |= Φ
hold?

In general, this question is certainly undecidable. In cases where SG is finite, however,
we can use the following (which can be shown for instance by a variation on [29]):

Theorem 4. Given a finite GTS S and a formula Φ, the property S |= Φ is decidable,
with worst-case time complexity exponential in the number of variables in Φ.

4.2 Graph-Based Linear Temporal Logic

We now present an alternative logic, which we call GLTL, based only on graphs (rather
than predicates and variables) but equivalent (for simple graphs) to FOLTL as presented
above. The ideas are based on our own work in [28], originally conceived as an exten-
sion to negative application conditions [13]; the same basic ideas were later worked out
in a slightly different form in [6]. The extension of this principle to temporal logic is
new here.

Explicit State Model Checking for Graph Grammars 127

1 ∃f.¬g

4 ∃f.X¬id

5 ∃f.(g U ¬h)

gf

g
h

f

f
id

Fig. 5. Formulae in GLTL, corresponding to FOLTL nrs. 1, 4 and 5

The basic idea is to use morphisms as core elements of formulae. Thus, a GLTL for-
mula is generated by the following grammar:

Ω ::= tt | ¬Ω | Ω ∨ Ω | ∃f.Ω | XΩ | Ω U Ω .

As a convenient notation we use the morphism f on its own as equivalent to ∃f.tt.
A formula of the form ∃f.Ω is evaluated under an existing total matching θ of src(f)

to the current graph; the formula is satisfied if θ can be factored through f , i.e., there
exists an η from tgt(f) such that θ = η◦f . In fact, src(f) acts as a “type” of ∃f.Ω, and
the sub-formula Ω is typed by tgt(f), meaning that its evaluation can assume the exis-
tence of η. This notion of “type” replaces the notion of free variables of a (traditional)
first-order formula. Types can be computed as follows:

type(tt) = 〈∅, ∅〉
type(¬Ω) = type(Ω)

type(Ω1 ∨ Ω2) = type(Ω1) ∪ type(Ω2)
type(∃f.Ω) = src(f) if type(Ω) ⊆ tgt(f)
type(XΩ) = type(Ω)

type(Ω1 U Ω2) = type(Ω1) ∪ type(Ω2) .

Here, the union of two graphs is the (ordinary, not disjoint) union of the node and
edge sets, and the sub-graph relation is likewise defined pointwise. (In fact, the types
Ωi of the operands of ∨ and U are regarded as sub-types of the type of the composed
formula.) The side condition in the type definition for ∃f.Ω implies that the type can
be undefined, namely if the type of Ω is not a sub-graph of tgt(f). We only consider
typable formulae.

For example, Fig. 5 shows some GLTL formulae that are equivalent to FOLTL for-
mulae given earlier.

The semantics of GLTL is a relatively straightforward modification of FOLTL. The
valuation θ is now a total graph morphism from the type of the formula to the graph. Due
to the type definition, this means that in the evaluation we sometimes have to restrict

128 A. Rensink

θ to sub-types. The rules that are different from FOLTL are given below; for the other
operators, the semantics is precisely as defined above.

G, σ, θ |= Ω1 ∨ Ω2 iff G, σ, θ � type(Ω1) |= Ω1 or G, σ, θ � type(Ω2) |= Ω2
G, σ, θ |= ∃f : Ω iff there is a η: tgt(f) → G such that θ = η ◦ f and G, σ, η |= Ω
G, σ, θ |= Ω1 U Ω2 iff ∃i ≥ 0 : G, σ, θ � type(Ω2) |= XiΩ2

and ∀0 ≤ j < i : G, σ, θ � type(Ω1) |= XjΩ1

There exists a relatively straightforward translation back and forth between FOLTL and
GLTL. We explain the principles here on an intuitive level; see Fig. 5 for some concrete
examples.

– From FOLTL to GLTL, formulae of the form a(x, y) are translated to morphisms f
with src(f) = 〈{x, y}, ∅〉 and tgt(f) = 〈{x, y}, {(x, a, y)}〉; formulae x = y to
non-injective morphisms mapping a two-node discrete graph to a one-node discrete
graph while merging the nodes; and formulae ∃x.Φ to ∃f.Ω where f adds a single,
unconnected node to its source.

– From GLTL to FOLTL, ∃f.Ω is translated to

∃z1, . . . , zn.
∧

i ai(xi, yi) ∧
∧

j(xj = yj) ∧ Φ ,

where the zk are variables representing the nodes that are new in tgt(f) (i.e., not
used as images by f), the ai(xi, yi) are edges that are new in tgt(f), the xi = yi

equate nodes on which f is non-injective (in both cases, the xi and yi correspond
to some zj), and Φ is the translation of Ω.

We state the following result without proof.

Theorem 5. There exist translations gltl : FOLTL → GLTL and foltl : GLTL → FOLTL
such that for all GTSs S:

S |= Φ ⇐⇒ S |= gltl(Φ)
S |= Ω ⇐⇒ S |= foltl(Ω) .

5 Evaluation and Future Work

In this section we evaluate some issues regarding choices made in the approach, as well
as possible extensions and future challenges. In the course of this we will also touch
upon related work, insofar not already discussed.

Graph formalism. In Sect. 3, we have discussed our choice of graph formalism, in the
light of the existing algebraic theory surrounding DPO rewriting, only little of which
has been successfully transferred to SPO. Let us briefly investigate what has to be done
to lift our approach to a general DPO setting; that is, to a category of graphs that is an
adhesive HLR category, with a set M of monos.

– In Sect. 3, our graph transitions carry partial morphisms. In a DPO setting, this
should be turned into a span of arrows, of which the left arrow (pointing to the
source graph of the transition) should be in M. The corresponding notions of bisim-
ilarity and isomorphism will become slightly more complicated, but we expect that
the same results will still hold.

Explicit State Model Checking for Graph Grammars 129

– In Sect. 4, it is not clear how to interpret FOLTL in an arbitrary HLR category. On
the other hand, GLTL as defined in Sect. 4.2 can easily be generalised. For this pur-
pose, the construction of the type of a formula (which now relies on subgraphs and
graph union, neither of which can be generalised directly to categorical construc-
tions) should be revised.
A straightforward solution is to provide explicit monos with the binary operators
to generalise the sub-graph relation; i.e., the formulae become Ω1 ∨ι,κ Ω2 and
Ω1 Uι,κ Ω2, where ι, κ is a co-span of monos (in M) such that src(ι) = type(Ω1),
src(κ) = type(Ω2) and tgt(ι) = tgt(κ) equals the type of the formula as a whole.
Furthermore, the morphism f in ∃f.Ω should be replaced by a span ←ι−−f→, where
type(Ω) = tgt(f) and tgt(ι) is the type of the whole formula.

Existing model checkers. In the last decades, model checking has given rise to a large
number of successful academic and commercial tools, such as SPIN [16], BLAST [4],
JPF [17], Murphi [5] or Bogor [32]. Many of these tools share the aims of the GROOVE
project, viz., verifying actual (object-oriented) code. It is, therefore, justified to ask
what we can hope to add to this field, given the inherent complexities of the graph
transformation approach. In fact, there are two distinct issues involved:

– Graph transformation as a specification paradigm. In our approach, we essentially
propose to use graph transformations as a language to specify the semantics of
programming languages. Existing tools use textual modelling languages for this
purpose, such as Promela for SPIN or BIR for Bogor, or rely on the available com-
pilation to byte code, as in the case of JPF.
We believe graph transformations to be a viable alternative, for the following
reasons:

• Graphs provide a syntax which is very close to, if not coincides with, the intu-
itive understanding of object-oriented data structures (or even heap structures
in general). Thus, graph-based operational semantics is easy to understand (see
also [18]).

• Graphs are also very close to diagram models as used in visual languages, and
so provide an integrated view along the software engineering process.

• As numerous case studies have shown, graph transformation can alternatively
be used as a specification formalism in its own right. Verification techniques
based on this paradigm can therefore also be used outside the context of soft-
ware model checking.

– Graph transition systems as verification models. Even if one accepts the arguments
given above in favour of graph transformation as a specification paradigm, this does
not immediately imply creating a new model checker. Instead, it is perfectly think-
able to encode graph derivations in terms of the input languages of one of the ex-
isting tools, and so avoid re-inventing (or re-implementing) the wheel. Verification
approaches based on this idea are, for instance, [35,12].

We believe that it is nevertheless worthwhile to implement model checking di-
rectly on top of graph transition systems, for the following reasons:

130 A. Rensink

• Symmetry reduction. In graphs, symmetry is equivalent to isomorphism, and
collapsing the state space modulo isomorphism is an immediate method for
(non-trivial) symmetry reduction (see also [30]). This connection is lost when
graphs are encoded in some other language, since such an encoding invariably
involves breaking symmetries.

• Unboundedness. Many of the existing model checkers rely on fixed-size bit
vectors to represent states. Graphs, however, are not a priori bounded. In order
to perform the encoding, it is therefore necessary to choose an upper bound for
the state size, and to increase this if it turns out to have been set too low —
which involves repeating the encoding step.

• Encoding. The complexity of finding acceptable matchings for rules does not
suddenly disappear when the problem is encoded in another language. In-
stead, the encoding itself typically involves predicting or checking all possible
matches; so the complexity of the graph transformation paradigm is (partially)
shifted from the actual model checking to the encoding process.

Alternative approaches. The explicit state model checking approach presented here is
probably the most straightforward way to define and implement verification for graph
grammars. A promising alternative is the Petri graph method proposed by König et al.;
see, e.g., [3,1,19]. This approach uses unfolding techniques developed originally for
Petri nets, and offers good abstractions (identified below as one of the more important
future work items in our approach); thus, the aproach can yield answers for arbitrary
graph grammars. On the other hand, the logic supported is more limited, and it is not
clear if symmetry reduction is possible.

Future work. Finally, we identify the following major challenges to be addressed before
explicit-state model checking for graph grammars can really take off.

– Partial order reduction. This refers to a technique for only generating part of the
state space, on which nevertheless a given fragment of the logic (typically, X-free
LTL) can still be checked. Traditional techniques for partial order reduction do not
apply directly to the setting of graph grammars, since the number of entities is not
a priori known. (Note that the unfolding approach of [3,1] is in fact also a partial
order reduction.)

– Abstraction. Instead of taking concrete graphs, which can grow unboundedly large,
one may define graph abstractions, which collapse and combine parts of the graphs
that are sufficiently similar. Inspired by shape analysis [34], we have investigated
possible abstractions in [26,31]. This is still ongoing research; no implementation
is yet available.

– Compositionality. In Sect. 3 we have pointed out the analogy of GTSs with History-
Dependent automata, a long-established model for communicating systems, shar-
ing some of the dynamic nature of graphs. This analogy can be turned around to
inspire a notion of communication between graph transition systems where (parts
of) graphs are echanged, leading to a theory of compositionality for graph gram-
mars. The only work we know of in this direction is König and Ehrig’s borrowed
context [9], and the synchronised hyperedge replacement by Hirsch, Montanari and
others [15].

Explicit State Model Checking for Graph Grammars 131

References

1. Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: An unfolding-
based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
83–98. Springer, Heidelberg (2004)

2. Baldan, P., Corradini, A., König, B., Lluch-Lafuente, A.: A temporal graph logic for veri-
fication of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT
2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007)

3. Baldan, P., König, B.: Approximating the behaviour of graph transformation systems. In:
Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505,
pp. 14–29. Springer, Heidelberg (2002)

4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.
STTT 9(5-6), 505–525 (2007)

5. Dill, D.L.: The murφ verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)

6. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and application
conditions: From graphs to high-level structures. Fundam. Inform. 74(1), 135–166 (2006)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graphs
and graph transformation based on adhesive HLR categories. Fundam. Inform. 74(1), 31–61
(2006)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. Springer, Heidelberg (2006)

9. Ehrig, H., König, B.: Deriving bisimulation congruences in the dpo approach to graph rewrit-
ing. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151–166. Springer,
Heidelberg (2004)

10. Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement systems: A
new categorical framework for graph transformation. Fundam. Inform. 74(1), 1–29 (2006)

11. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System De-
sign 9(1/2), 105–131 (1996)

12. Ferreira, A.P.L., Foss, L., Ribeiro, L.: Formal verification of object-oriented graph grammars
specifications. In: Rensink, A., Heckel, R., König, B. (eds.) Graph Transformation for Con-
currency and Verification (GT-VC). Electr. Notes Theor. Comput. Sci, vol. 175, pp. 101–114
(2007)

13. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions.
Fundam. Inform. 26(3/4), 287–313 (1996)

14. Habel, A., Pennemann, K.H.: Satisfiability of high-level conditions. In: Corradini, A., Ehrig,
H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 430–
444. Springer, Heidelberg (2006)

15. Hirsch, D., Montanari, U.: Synchronized hyperedge replacement with name mobility. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 121–136. Springer,
Heidelberg (2001)

16. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–295
(1997)

17. Java PathFinder – A Formal Methods Tool for Java,
http://ase.arc.nasa.gov/people/havelund/jpf.html

18. Kastenberg, H., Kleppe, A.G., Rensink, A.: Defining object-oriented execution semantics
using graph transformations. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 186–201. Springer, Heidelberg (2006)

19. König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of
graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 197–211. Springer, Heidelberg (2006)

http://ase.arc.nasa.gov/people/havelund/jpf.html

132 A. Rensink

20. Lack, S., Sobocinski, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004.
LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)

21. Lambers, L., Ehrig, H., Orejas, F.: Efficient detection of conflicts in graph-based model trans-
formation. Electr. Notes Theor. Comput. Sci. 152, 97–109 (2006)

22. Levendovszky, T., Prange, U., Ehrig, H.: Termination criteria for dpo transformations with
injective matches. Electron. Notes Theor. Comput. Sci. 175(4), 87–100 (2007)

23. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical Com-
puter Science 109(1–2), 181–224 (1993)

24. Montanari, U., Pistore, M.: History-dependent automata: An introduction. In: Bernardo, M.,
Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28. Springer, Heidelberg
(2005)

25. Rensink, A.: Towards model checking graph grammars. In: Gruner, S., Presti, S.L., eds.:
Workshop on Automated Verification of Critical Systems (AVoCS), Southampton, UK. Vol-
ume DSSE-TR-, -02 of Technical Report., University of Southampton (2003) 150–160
(2003)

26. Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986,
pp. 401–415. Springer, Heidelberg (2004)

27. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz, J.L., Nagl,
M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg
(2004)

28. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-
Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer,
Heidelberg (2004)

29. Rensink, A.: Model checking quantified computation tree logic. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 110–125. Springer, Heidelberg (2006)

30. Rensink, A.: Isomorphism checking in GROOVE. In: Zündorf, A., Varró, D. (eds.) Graph-
Based Tools (GraBaTs). Electronic Communications of the EASST, European Association
of Software Science and Technology, vol. 1, Natal, Brazil (September 2007)

31. Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes Theor. Comput.
Sci. 157(1), 39–59 (2006)

32. Robby, D.M.B., Hatcliff, J.: Bogor: A flexible framework for creating software model check-
ers. In: McMinn, P. (ed.) Testing: Academia and Industry Conference - Practice And Re-
search Techniques (TAIC PART), pp. 3–22. IEEE Computer Society, Los Alamitos (2006)

33. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Foundations, vol. I. World Scientific, Singapore (1997)

34. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24(3), 217–298 (2002)

35. Varró, D.: Automated formal verification of visual modeling languages by model checking.
Software and System Modeling 3(2), 85–113 (2004)

	Explicit State Model Checking for Graph Grammars
	Introduction
	Transformation of Simple Graphs
	Graph Transition Systems
	First-Order Temporal Logic
	First-Order Linear Temporal Logic
	Graph-Based Linear Temporal Logic

	Evaluation and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

