Faster Unfolding of General Petri Nets Based on Token
Flows

Robin Bergenthum, Robert Lorenz, and Sebastian Mauser*

Department of Applied Computer Science,
Catholic University of Eichstitt-Ingolstadt,
firstname.lastname@ku-eichstaett.de

Abstract. In this paper we propose two new unfolding semantics for general
Petri nets combining the concept of prime event structures with the idea of token
flows developed in [11]. In contrast to the standard unfolding based on branch-
ing processes, one of the presented unfolding models avoids to represent iso-
morphic processes while the other additionally reduces the number of (possibly
non-isomorphic) processes with isomorphic underlying runs. We show that both
proposed unfolding models still represent the complete partial order behavior.
We develop a construction algorithm for both unfolding models and present ex-
perimental results. These results show that the new unfolding models are much
smaller and can be constructed significantly faster than the standard unfolding.

1 Introduction

Non-sequential Petri net semantics can be classified into unfolding semantics, process
semantics, step semantics and algebraic semantics [17]. While the last three semantics
do not provide semantics of a net as a whole, but specify only single, deterministic com-
putations, unfolding models are a popular approach to describe the complete behavior
of nets accounting for the fine interplay between concurrency and nondeterminism.

To study the behavior of Petri nets pri-
marily two models for unfolding semantics
were retained: labeled occurrence nets and
event structures. In this paper we consider
general Petri nets, also called place/transition
Petri nets or p/t-nets (Figure 1). The stan-
dard unfolding semantics for p/t-nets is based
on the developments in [19,5] (see [14] for
an overview) in terms of so called branching
processes, which are acyclic occurrence nets
having events representing transition occur-
rences and conditions representing tokens in
places. Branching processes allow events to

3

Cc

Fig.1. Example net N. Instead of place-
names we used different colors.

be in conflict through branching conditions. Therefore branching processes can rep-
resent alternative processes simultaneously (processes are finite branching processes
without conflict). Branching processes were originally introduced in [19] for safe nets,

* Supported by the project SYNOPS of the German research council.

14

and extended in [5] to initially one marked p/t-nets without arc weights, by viewing
the tokens as individualized entities. In contrast to [5], branching processes for p/t-nets
even individualize tokens having the same “history”, i.e. several (concurrent) tokens
produced by some transition occurrence in the same place are distinguished through
different conditions (see [14]). Analogously as in [5] one can define a single maximal
branching process, called the unfolding of the system (in the rest of the paper we will
refer to this unfolding as the standard unfolding). The unfolding includes all possible
branching processes as prefixes, and thus captures the complete non-sequential branch-
ing behavior of the p/t-net. In the case of bounded nets, according to a construction by
McMillan [16] a complete finite prefix of the unfolding preserving full information on
reachable markings can always be constructed. This construction was generalized in [3]
to unbounded nets through building equivalence classes of reachable markings. In the
case of bounded nets, the construction of unfoldings and complete finite prefixes is well
analyzed and several algorithmic improvements are proposed in literature [7,15,13]. By
restricting the relations of causality and conflict of a branching process to events, one
obtains a labeled prime event structure [20] underlying the branching process, which
represents the causality between events of the branching process. An event structure
underlying a process, i.e. without conflict, is called a run. In the view of the develop-
ment of fast model-checking algorithms employing unfoldings resp. event structures [6]
there is still the important problem of efficiently building them.

The p/t-net shown in Figure 1 has a fi-
nite standard unfolding (as defined for ex-
ample in [14]). A part of this unfolding
is shown in Figure 2. An unfolding has a
unique minimal event producing the ini-
tial conditions. Each condition in the un-
folding corresponds to a token in the net,
i.e. tokens are individualized. In the ini-
tial marking there are three possibilities
for transition B to consume two tokens
from the grey place (and for transition
A to consume one token from the grey
and one token from the white place).
All these possibilities define Goltz-Reisig
processes [8] of the net, are in conflict and
are reflected in the unfolding. That means,
Fig. 2. Standard unfolding of N. The colors of 1ndividualized tokens cause the unfolding
conditions refer to the place the corresponding to contain events with the same label, be-
tokens belong to. ing in conflict and having the same num-

ber of equally labeled pre-conditions with
the same history” (for each place label), where two conditions have the same “his-
tory” if they have the same pre-event. Such events are called strong identical. In Figure
2 all A-labeled and all B-labeled events are strong identical, since all grey conditions
have the same “history”. Strong identical events produce isomorphic processes in the
unfolding and therefore are redundant.

15

After the occurrence of transitions A and B there are four tokens in the black place
and there are four possibilities for transition C' to consume three of these tokens (Fig-
ure 2). For each of those possibilities, a C'-labeled event is appended to the branching
process. Two of these events consume two tokens produced by A and one token pro-
duced by B (these are strong identical), the other two consume one token produced
by A and two tokens produced by B (these are also strong identical). The first pair of
strong identical C-events is not strong identical to the second pair, but they all causally
depend on the same two events. Such events having the same label, being in conflict
and depending causally from the same events, are called weak identical. Weak identi-
cal events produce processes with isomorphic underlying runs and therefore also are
redundant. Note finally, that the described four weak identical C-labeled events are ap-
pended to each of the three consistent pairs of A- and B-labeled events. That means,
the individualized tokens in the worst case increase the number of events exponentially
for every step of depth of the unfolding.

Figure 3 illustrates the labeled prime
event structure underlying the unfolding
shown in Figure 2. Formally a prime
event structure is a partially ordered set
of events (transition occurrences) together
with a set of (so called) consistency sets
[20]. “History-closed” (left-closed) con-
sistency sets represent partially ordered
runs. The labeled prime event structure
underlying an unfolding is obtained by
omitting the conditions and keeping the Fig. 3. Prime event structure of N. The colors of
causality and conflict relations between t.he events refer .to the consistency sets. Transi-
events. Events not being in conflict define tive arcs are omitted.
consistency sets. Thus, left-closed consis-
tency sets correspond to processes and their underlying runs in the unfolding. Strong
and weak identical events lead to consistency sets corresponding to processes with iso-
morphic underlying runs in the prime event structure.

In this paper we are interested in algorithms to efficiently construct unfoldings. As
explained, the standard unfolding has the drawback, that it contains a lot of redundancy
in form of isomorphic processes and processes with isomorphic underlying runs. This is
caused by the individualization of tokens producing strong and weak identical events.
Unfolding models with less nodes could significantly decrease the construction time,
because a construction algorithm in some way always has to test all co-sets of events
or conditions of the so-far constructed model to append further events. In this paper
we propose two unfolding approaches reducing the number of events in contrast to the
standard unfolding by neglecting (strong resp. weak) identical events.

Instead of considering branching processes, we use labeled prime event structures
and assign so called token flows to its edges. Token flows were developed in [11] for
a compact representation of processes. Token flows abstract from the individuality of
conditions of a process and encode the flow relation of the process by natural numbers.
For each place natural numbers are assigned to the edges of the partially ordered run

16

underlying a process. Such a natural number assigned to an edge (e, €’) represents the
number of tokens produced by the transition occurrence e and consumed by the tran-
sition occurrence €’ in the respective place. This principle is generalized to branching
processes/unfoldings and their underlying prime event structures in this paper.

The idea is to annotate each edge of
the prime event structure underlying a
branching process by the numbers of con-
ditions between the corresponding pair of
events of the branching process and omit
1somorphic consistency sets having equal
annotated token flow. The resulting prime
event structure is shown in Figure 4. The
event v is the unique initial event produc-
ing the initial marking. The edges have
attached natural numbers, which are inter-
Fig. 4. Token flow unfolding of N. The color- preted as token flows as described, where
ing of the events illustrates the sets of consistent the colors refer to the places the tokens
events. belong to. The assigned token flow spec-

ifies in particular that transition A con-
sumes one initial token from the white place and one initial token from the grey place,
while transition B consumes two initial tokens from the grey place. That means in this
model the different possibilities for transition A and B of consuming initial tokens are
not distinguished. Transition C either consumes one token produced by A and two to-
kens produced by B or vice versa in the black place. The respective two C-labeled
events having the same pre-events but a different token flow are distinguished. They are
in conflict yielding different consistency sets. In this approach strong identical events
are avoided, while weak identical events still exist. Figure 4 only contains one of the
three A and B events and two of the twelve C' events. However, full information on
reachable markings is still available. For example, the sum of all token flows assigned
to edges from the initial event v to consistent events equals the initial marking. The ex-
ample shows that through abstracting from the individuality of conditions, it is possible
to generate an unfolding in form of a prime event structure with assigned token flow
information having significantly less events than the standard unfolding.

A prime event structure with assigned token flow information is called a roken flow
unfolding if left-closed consistency sets represent processes and there are no strong
identical events which are in conflict. Observe that to represent all possible processes
we have to allow strong identical events which are not in conflict. For a given marked
p/t-net, it is possible to define a unique maximal token flow unfolding, in which each
process is represented through a consistency set with assigned token flows correspond-
ing to the process. Figure 4 shows the maximal token flow unfolding for the example net
N. We will show that the maximal token flow unfolding contains isomorphic processes
only in specific situations involving auto-concurrency.

The token flow unfolding from Figure 4 still contains processes (consistency sets)
which have isomorphic underlying runs, since token flow unfoldings still allow for
weak identical events. In Figure 5 a prime event structure with assigned token flow

17

information is shown without weak identical events. Namely, the two weak identical
C-labeled events in Figure 4 do not occur in Figure 5. This causes that the token flow
information is not any more complete in contrast to token flow unfoldings, i.e. not each
possible token flow distribution resp. process is represented. Instead example token
flows are stored for each partially ordered run, i.e. each run is represented through one
possible process. Note that still in this reduced unfolding full information on reachable
markings is present, since markings reached through occurrence of a run do not depend
on the token flow distribution within this run.

If a prime event structure with as-
signed token flow information does not
contain weak identical events, this un-
folding model is called a reduced token
flow unfolding. We can define a unique
maximal reduced token flow unfolding, in
which each run is represented through a
left-closed consistency set with assigned
token flows corresponding to a process
having this underlying run. It can be seen
as a very compact unfolding model cap-
turing the complete behavior of a p/t-net. Fig. 5. Reduced token flow unfolding
Figure 5 shows the maximal reduced to-
ken flow unfolding for the example net N. We will show that the maximal reduced
token flow unfolding contains processes with isomorphic underlying runs only in spe-
cific situations involving auto-concurrency.

For both new unfolding approaches we develop a construction algorithm for finite
unfoldings and present an implementation together with experimental results. Token
flow unfoldings can be constructed in a similar way as branching processes. The main
difference is that processes are not implicitly given through events being in conflict, but
are explicitly stored in consistency sets. This implies that new events are appended to
consistency sets and not to co-sets of conditions. From the token flow information we
can compute, how many tokens in which place, produced by some event, are still not
consumed by subsequent events. These tokens can be used to append a new event. The
crucial advantage of token flow unfoldings is that much less events must be appended.
One disadvantage is that a possible exponential number of consistency sets must be
stored. Moreover, for the construction of the reduced token flow unfolding not the full
token flow information is available, since not each possible but only one example token
flow distribution is displayed. Therefore the procedure of appending a new event is
more complicated, because eventually an alternative token flow distribution has to be
calculated (there is an efficient method for this calculation based on the ideas in [11]).
Experimental results show that the two new unfolding models can be constructed much
faster and memory consumption is decreased. The bigger the markings and arc weights
are, the more efficient is the new construction compared to the standard one.

Altogether, the two new unfolding approaches on the one hand allow a much more
efficient construction, and on the other hand still offer full information on concurrency,
nondeterminism, causality and reachable markings. In particular, the assigned token

18

flows allow to compute the reachable marking corresponding to a consistency set. This
allows to apply the theory of complete finite prefixes of the standard unfolding also to
the presented new models. Acceleration of model checking algorithms working on the
standard unfolding can be done by adapting them to the new smaller unfolding models.
Another benefit is, that the new methods may lead to a more efficient computation of
the set of all processes of a p/t-net.

There are also other attempts to extend the unfolding approach of [19] for safe nets
to p/t-nets, where in some of them tokens are individualized as in the standard unfold-
ing ([17,18]) and in some of them such an individualization of tokens is avoided as in
our approach ([10,9,2,12,1]). In [17,18] conditions are grouped into families (yielding
so called decorated occurrence nets) in order to establish desirable algebraic and order-
theoretic properties. In [10] so called local event structures instead of prime event struc-
tures are introduced as an unfolding semantics of p/t-nets without autoconcurrency. In
this approach, conflict and causality relations among events are not any more explicitly
given by the model structure. Algorithmic aspects are not considered. In [2] arbitrarily
valued and non-safe occurrence nets are used. Also here the direct link with prime event
structures is lost. In [9], general nets are translated into safe nets by introducing places
for reachable markings (which considerably increases the size of the structure) in or-
der to apply branching processes for safe nets. In [1] a swapping equivalence between
conditions introduces a collective token view.! Finally, in [12] events and conditions
are merged according to appropriate rules yielding a more compact unfolding structure
which not longer needs to be acyclic. Nevertheless it can be used for model checking.
It cannot be directly computed from the p/t-net but only from its finite complete prefix
which needs to be computed first. In contrast to all these approaches we propose a com-
pact unfolding semantics avoiding individualized tokens while still explicitly reflecting
causal relations between events through prime event structures. Moreover, basic order
theoretic properties such as the existence of a unique maximal unfolding can be estab-
lished. Our main focus is the development of fast construction algorithms, established
so far for the finite case.

The remainder of the paper is organized as follows: In Section 2 we introduce basic
mathematical notations and briefly restate the standard unfolding approach for p/t-nets.
In Section 3 we develop the two new unfolding models. We prove that in both cases
there is a unique maximal unfolding representing all processes resp. runs and formalize
in which cases isomorphic processes resp. runs are avoided. Finally, in Section 4 we
present algorithms for the construction of the new unfolding models in the finite case
and provide experimental results in Section 5.

2 P/T-Nets and Standard Unfolding Semantics

In this section we recall the definitions of place/transition Petri nets and the standard
unfolding semantics based on branching processes. We begin with some basic mathe-
matical notations.

! Note here that the token flow unfolding and the reduced token flow unfolding define an equiv-
alence on processes which is finer than the swapping equivalence, i.e. weak and strong equiv-
alent events always produce swapping equivalent processes.

19

We use N to denote the nonnegative integers. A multi-set over a set A is a function
m : A — N € N4, For an element a € A the number m(a) determines the number of
occurrences of a in m. Given a binary relation R C A x A over a set A, the symbol
R™ denotes the transitive closure of R and R* denotes the reflexive transitive closure
of R. A directed graph G is a tuple G = (V,—), where V is its set of nodes and
—C V x V is a binary relation over V' called its set of arcs. As usual, given a binary
relation —, we write a — b to denote (a,b) €—.Forv € V and W C V we denote by
‘v ={v € V|V — v} the preset of v, and by v* = {v/ € V | v — v’} the postset
of v, *W = J e *wis the preset of W and W* = oy w® is the postset of W.

A partial order is a directed graph (V, <), where <C V x V is an irreflexive and
transitive binary relation. In this case, we also call < a partial order. In the context of
this paper, a partial order is interpreted as “earlier than”-relation between events. Two
nodes (events) v, v' € V are called independentif v £ v' andv’ £ v.By coc CV xV
we denote the set of all pairs of independent nodes of V. A co-set is a subset S C V'
fulfilling Vx,y € S : zcoc y. A cut is a maximal co-set. For a co-set S and a node
veV\Swewritev < S(v>09),ifdse S: v<s(@seS: v>s),andvcoc S,
if Vs € S: vcoc s. Anode v is called maximal if v® = (), and minimal if *v = (). A
subset W C V' is called left-closed if Vv, 0" € V 1 (v e W AV <v) =o' € W. For
a left-closed subset W C V/, the partial order (W, < |w xw) is called prefix of (V, <),
defined by W. The left-closure of a subset W' is given by the set W U {v € V | Jw €
W : v < w}. The node set of a finite prefix equals the left-closure of the set of its
maximal nodes. Given two partial orders po; = (V, <1) and po, = (V, <3), we say
that po, is a sequentialization of po; if <;C<s. By <,C< we denote the smallest
subset <’ of < which fulfils (<) =<, called the skeleton of <.

A labeled partial order (LPO) is a triple (V, <, 1), where (V, <) is a partial order,
and [is a labeling function on V. We use all notations defined for partial orders also
for LPOs. If Viisasetand [: V — X is a labeling function on V/, then for a finite
subset W C V, we define the multi-set /(W) C NX by [(W)(z) = [{v € W |
[(v) = x}|. LPOs are used to represent partially ordered runs of Petri nets. Such runs
are distinguished only up to isomorphism. Two LPOs (V1, <1,l3) and (V1, <1,1s) are
isomorphic if there is a bijective mapping ¢ : V4 — V5 satisfying Vo, € V4 @ [(v1) =
l(p(v1)) and Yoy, v € Vi@ vy <1 v] <= @(v1) <2 ©(v]).

A netisatriple N = (P, T, F), where P is a set of places, T is a set of transitions,
satisfying PNT = (,and ' C (PUT) x (T"U P) is a flow relation. Places and
transitions are called the nodes of V. Presets and postsets of (sets of) nodes are defined
w.r.t. the directed graph (P U T, F'). We denote <y= F* and <y= F'".If N is clear
from the context, we also write < instead of <, and < instead of <.

Assume now that <=+ is a partial order. Then two nodes z. y (places or transi-
tions) of IV are in conflict, denoted by x+#y, if there are distinct transitions ¢, € F
with *¢t N *t’ # () such that t < x and t’ < y. Two nodes x, y are called independent if
x co sy and —(x#y). Maximal and minimal nodes of N and prefixes of N are defined
wrt. (PUT, <).

Definition 1 (Place/transition net). A place/transition-net (shortly p/t-net) N is a qua-
druple (P, T, F, W), where (P, T, F) is a net with finite sets of places and transitions,
and W : F — N\ {0} is a weight function. A marking of a p/t-net N = (P, T, F, W)

20

is a function m : P — N. A marked p/t-net is a pair (N, mg), where N is a p/t-net, and
my is a marking of N, called initial marking.

We extend the weight function W to pairs of net elements (x,y) € (P x T)U (T x P)
satisfying (x,y) ¢ F by W((x,y)) = 0. A transition ¢ € N is enabled to occur
in a marking m of N if Vp € P : m(p) > W((p,t)). If ¢ is enabled to occur in
a marking m, then its occurrence leads to the new marking m’ defined by m/(p) =
m(p) — W((p,t)) + W((t, p)) forp € P.

Unfolding semantics of p/t-nets is given by so called branching processes which are
based on occurrence nets. A conflict relation between events distinguishes alternative
runs. Runs are given by conflict-free, left-closed sub-nets of branching processes.

Definition 2 (Occurrence net). An occurrence net is a net O = (B, E, G) satisfying

O is acyclic, i.e. <o is a partial order.
Vbe B: |*] < 1.

Ve € BUFE : =(x#x).

- Ve e BUE :|{y |y <z} is finite.

Elements of B are called conditions and elements of E are called events. MIN(O)
denotes the set of minimal elements (w.r.t. <p).

Definition 3 (Branching process). Let (N, mg), N = (P, T, F, W) be a marked p/t-
net. A branching process of (N, myg) is a pair 7 = (O, p) where O = (B, E,G) is an
occurrencenetand p : BU E — X with PU'T' C X is a labeling function satisfying:

— There is e;nit € E with]\/[IN(O) = {eim-t} and p(eimt) gPUT.

Vbe B: p(b) € PandVe € E\{eini}: ple) € T.

Ve € E\{emu}, Vp € Pi [{be *c| p(b) = p}| = W((p, ple))) A {b € e |
p(b) = p}| = W((p(e), p)).

Vpe P: [{bees,, | p(b) =p} =mo(p)

Ve feE: (*e= *fAple) = pl(f)) = (e = /).

In a branching process, < is interpreted as “earlier than”-relation between transition
occurrences. A finite branching process with empty conflict relation is called a process.

Two branching processes 7' = (O',p'), O’ = (B, E',G"), and 7 = (O, p), O =
(B, E,G), are isomorphic, if there is a bijection Iso : BU E — B’ U E’ satisfying
Iso(B) = B', Iso(E) = E', p' o Iso = pand (x,y) € G < (Iso(x),Iso(y)) € G’
forz,y € BUE.

A branching process 7 = (O, p), O = (B, E,G), is a prefix of another branching
process 7' = (O, p'), O' = (B’,E’,G"), denoted by m C 7', if O is a prefix of O’
satisfying B = MIN(O) U (U, €*) and p is the restriction of p’ to B U £. For
each marked p/t-net (N, my) there exists a unique, w.r.t. = maximal, branching process
Tmaz (IN, mg), called the unfolding of (N, my).

Sometimes one is only interested in storing the causal dependencies of events of a
branching process. For this conditions are omitted and the <- and #-relation are kept
for events. Formally the resulting object is a so-called prime event structure.

21

Definition 4 (Prime event structure). A prime events structure is a triple PES =
(E, Con, <) consisting of a set E of events, a partial order < on F and a set Con of
finite subsets of E satisfying:

- Vec E: {€|e€ < e} is finite.

- {e} € Con.

-YCXeCon—Y €Con.

- (X eCon)AN (T e X: e<eé)) = (XU{e} € Con).

A consistent subset of E' is a subset X satisfying VY C X, Y finite : 'Y € Con. The
conflict relation # between events of PES is defined by e#t¢e’ < {e, e’} & Con.

A pair (PES, 1), where PES is a prime events structure and [is a labeling function
on E, is called labeled prime event structure.

A (labeled) prime event structure with £ consistent we interpret as an LPO, i.e. in this
case we omit the set of consistency sets C'on.

If = = (0,p), O = (B, FE,G) is a branching process, then PES(7) = (E, Con,
< |pxg), where X € Con if and only if X C F is finite and fulfills Ve,e’ € X :
—(eft€’), is a prime event structure. PES(7) is called corresponding to w. If 7 is a
process, then PES(7) is a finite LPO, called the run underlying .

3 Unfoldings Based on Token Flows

One basic problem of the unfolding of a p/t-net is, that it contains a lot of redundancy.
This arises from the individuality of conditions in branching processes. When append-
ing a new transition occurrence to a branching process, each particular choice of a set
of conditions representing the preset of this transition yields a different process, where
some of these processes are isomorphic and others have isomorphic underlying runs
(see Figure 2 and the explanations in the introduction). In this section we propose two
new unfolding semantics of p/t-nets avoiding such redundancy. Both approaches are
based on the notion of token flows presented in [11]. In the following we restate this
notion and its role in the representation of single processes. In the next subsection, the
concepts will be transferred to unfoldings.

In the following, LPOs are considered to be finite. The edges of LPOs, representing
partially ordered runs of a p/t-net, are annotated by (tuples of) non-negative integers
interpreted as token flow between transition occurrences. Namely, for a process K =
(O,p), O = (B, E,G), of a marked p/t-net (N, mg), N = (P,T, F,W), we defined
a so called canonical token flow function v :<— N’ assigned to the edges of the
run (E, <, p) underlying K via zx((e,e’)) = p(e® N ®¢’). That means xx ((e, e’))
represents for each place the number of tokens which are produced by the occurrence
of the transition p(e) and then consumed by the occurrence of p(e’). Such a token flow
function abstracts away from the individuality of conditions in a process and encodes
the token flow by natural numbers for each place. It is easy to see that z i satisfies:

- (IN):Ve € E\{eini}, Vp € P: (3. v (e, €))(p) = W(p,ple)).
- (OUT):Ve € E\{einit}, Vp € P: (O L. zx (e €))(p) < W(p(e),p).

22

- (INIT):Vp € P: (3., o Z(€init,€))(p) < mo(p).
- (MIN):V(e,e') €<s: (Ip e P: xx(e,e)(p) =1).

(IN), (OUT) and (INIT) reflect the consistency of the token flow distribution given
by z i with the initial marking and the arc weights of the considered net. (MIN) holds
since skeleton arcs define the “earlier than”-causality between transition occurrences
and this causality 1s produced by non-zero token flow. Non-skeleton edges may carry a
zero token flow, since they are induced by transitivity of the partial order. A zero flow
of tokens means, that there is no direct dependency between events. In particular, there
are no token flows between concurrent events.

In [11] we showed, that the other way round for an LPO (E, <, p) with unique initial
event €;,,;, a token flow function z :<— N satisfying (IN), (OUT), (INIT) and (MIN)
is a canonical token flow function of a process. That means processes are in one-to-one
correspondence with LPOs having token flow assigned to their edges fulfilling (IN),
(OUT), (INIT) and (MIN). Such LPOs yield an equivalent but more compact represen-
tation of partially ordered runs. In particular full information on reachable markings as
well as causal dependency and concurrency among events is preserved.

3.1 Token Flow Unfolding

In the following, we extend these ideas to branching processes by assigning token flows
to the edges of prime event structures. We will prove that in such a way one gets a
more compact representation of the branching behavior of p/t-nets while preserving
full information on markings, concurrency, causal dependency and conflict.

Let PES = (F,Con, <) be a prime event structure. We denote the set of left-closed
consistency sets by Con,,.. C Con. For a token flow function x :<— N, a consistency
set C € C'onyyre and an event e € C' we denote

- INc(e) =3 ..o oco ®(€ €) the intoken flow of e w.rt. C.
- OUTc(e) =) sor oec (e, €) the outtoken flow of e w.rt. C.

A prime token flow event structure is a labeled prime event structure together with
a token flow function. Since equally labeled events represent different occurrences of
the same transition, they are required to have equal intoken flow. Since not all tokens
which are produced by an event are consumed by further events, there is no analogous
requirement for the outtoken flow. It is assumed that there is a unique initial event
producing the initial marking.

Definition 5 (Prime token flow event structure). A prime token flow event structure
is a pair (PES,1),xz), where PES = (F,Con, <) is a prime event structure, | is a
labeling function on E and x :<— N is a token flow function satisfying:

— There is a unique minimal event e;,,;; w.r.t. < with l(€;,i) # l(e) for all e # €.
- VC,C" € Conpre, Ve € Coe’ € C': l(e) =1(e') = INc(e) = INc/(€).

A token flow unfolding of a marked p/t-net is a prime token flow event structure, in
which intoken and outtoken flows are consistent with the arc weights resp. the initial

23

marking of the net within each left-closed consistency set. Moreover, we neglect so-
called strong identical events in such unfoldings which turn out to produce isomorphic
process nets. 2

Definition 6 (Strong identical events). Ler ((PES, 1), x) be a prime token flow event
structure. Two events e, ¢’ € E fulfilling

(le) =1 N (%e=)N (VfE %e: a(f.e) =x(f.€))
are called strong identical.

Definition 7 (Token flow unfolding). Let (N, mg), N = (P,T, F,W), be a marked
p/t-net. A token flow unfolding of (IV, mg) is a prime token flow event structure ((PES,
D),x),l: E— XwithlT C X andVe € E\ {einii}: l(e) € T, satisfying:

— (IN): ¥C € Conypye, Ve € C\ {€ini}, Vp € P: INc(e)(p) = W(p,l(e)).
(OUT): VC € Conpye. Ve € C\ {eimi}, Vp € P: OUTc(e)(p) < W(l(e),p).
(INIT): VC' € Conpye, Vp € P : OUTc(einit)(p) < mo(p).

(MIN): V(e e') €<s: (Ip € P: x(e,e)(p) = 1).
— There are no strong identical events e, e’ satisfying {e,e’'} & Con.

Two token flow unfoldings u' = ((PES',l'),2"), PES' = (E',Con/,<'), and
w = ((PES,l),xz), PES = (FE,Con, <), are isomorphic if there is a bijection I :
E — FE’ satisfyingVe € E : l(e) = U'(I(e)) N1I(®%) = *I(e) NI(e®) = I(e)®,
VCCE: CeCons I(C)eCon andVe < f: x(e, f) =2"(I(e), I(f)).

Given a token flow unfolding u = ((PES,l),x), PES = (£,Con, <), each non-
empty left-closed subset £’ C E defines a token flow unfolding i/ = ((PES’,l"), z'),
PES" = (E',Con’,<") by Con’ = {C € Con | C C E'}, X'==< |pxp, ! =
l|gr and ' = z|<s. Each token flow unfolding p/ = ((PES”,l'),2"), PES" =
(E',Con”,<"), Con” C Con’ is called prefix of 11, denoted by 1/ C p. By C=L \id,
a partial order on the set of token flow unfoldings is given. We now want to prove
that up to isomorphism, there exists a unique maximal (in general infinite) token flow
unfolding w.r.t. . The partial order _ can be defined through appending new events to
(consistency sets of) existing token flow unfoldings starting with the initial event. There
1s a unique maximal token flow unfolding (fix point) only if the order of appending
events does not matter, i.e. if events are appended in different orders, isomorphic token
flow unfoldings are constructed.

A new transition occurrence can be appended to a consistency set, if there are enough
remaining tokens produced by events in the consistency set (tokens which are not con-
sumed by subsequent events in the consistency set). For e € E \ {e;,ii} and C' €
Cony,e, the remaining tokens produces by e are formally given by the residual token
flow Resc(e) (of e wrt. C) defined by Resc(e)(p) = W(l(e),p) —
> exer.cc®(e,€)(p) for p € P. Similarly, for each p € P, Resc(€init)(p) =

% Note that omitting strong identical events disables the possibility of applying prime event
structures having a set of consistency sets defined by a binary conflict relation, which is the
case for example for prime event structures corresponding to branching processes.

24

mo(P)— e, ., <. erec L(€init, €)(p). Let Mar(C) = > .- Resc(e) be the the
residual marking of C'. If there are enough tokens in the residual marking to fire a tran-
sition ¢, there may be several choices which of the remaining tokens are used to append
a respective transition occurrence to the consistency set. Each such choice is formally
represented by an enabling functiony : C — NT satisfying Ve € C' : Resc(e) = y(e)
andVp € P: (3 .cc¥y(e))(p) = W((p,t)). Such an enabling function defines a new
evente, by l'(ey) = t, *ey, ={ec C |3 : yl)#0N(e=¢€ Ve <e€)}and
Ve € ®e, : x'(e,ey) = y(e). If there is already a strong identical event not belonging
to the consistency set, then this strong identical event is added to the consistency set.
Otherwise, the new event is added.

Definition 8 (Appending events). Let (N, mg), N = (P, T, F,W), be a marked p/t-
net and let y = ((PES,l),z), PES = (E,Con, <), be a token flow unfolding of
(N, mo).

Lett € T and C € Conyye be such that Mar(C)(p) = W ((p,t)) for each p. Let y
be an enabling function and e, be the associated new event.

If there is no event e ¢ C which is strong identical to e, then we define a prime
token flow event structure Ext(u,C,y,t) = (PES',l'),z’), PES" = (E',Con/, <),
through ' = EU{e,}, U'lp =1, 2'|2x =z, < |pxp =< and Con’ = Con U {C" U
{e,} | C" C C}. We say that 1 is extended by e,,.

If there is an event e;q ¢ C which is strong identical to e, then we define a prime
token flow event structure Ext(u,C,y,t) = (PES',l'),z"), PES" = (E',Con/, <),
through E' = E, ' =1, 2’ =z, <'=<and Con’ = Con U {C" U{e;q} | C' C C}.
We say that 1 s updated by e,

The following lemma ensures that we have defined an appropriate procedure to append
events:

Lemma 1. Ext(u,C,y,t) fulfills:

(i) Ext(p,C,y,t) is a token flow unfolding.

(ii) 5 C Ext(u, C.y.1).

(iii) Every finite token flow unfolding p can be constructed by the procedure shown in
Definition 8: Given a token flow unfolding u = ((PES,l),z), PES = (E,Con,
<), there exists a sequence |, ..., [, of token flow unfoldings with o =
((({einit} - {{emiet}. 0),id),0), pn = p and pip1 = Eat(pg, Ci,yisti) for
1=0,...,n— 1L

Proof. The first and second statement follow by construction. The third one can be
shown as follows: Fix one ordering of £ = {ej,...,e,},suchthate; <e; =i < j
and denote F; = F \ {e;,...,en}. Then uo C pp, C ... C ug, T pp, where pp
is the prefix of u defined by a left-closed set £’ C E. By definition, there are triples
(Ctyi l(es)), ... (Ch vk 1(e;)), such that pp,,, can be constructed from jup;, by
appending [(e;)-occurrences in arbitrary order to C viay; for j = 1,...,m. Namely,

1 ...C" are the sets arising by omitting e; from every left-closed consistency set in
1E,; ., whichincludes e; and all yj are defined according to the intoken flow of e;. That
means supp; = {yj, > 0} = {y} > 0} and y}|supp, = ¥}|supp, for all k, j. Therefore,

25

actually in the first appending step the event e; is appended and in the further m — 1
steps only consistency sets are updated.

In the construction of the above proof, the resulting token flow unfolding does not
depend on the used ordering of the events in 7 and also does not depend on the used or-
dering of the consistency sets enabling a fixed event e. This means that extending finite
token flow unfoldings by new events in different orders and w.r.t. different consistency
sets leads to isomorphic token flow unfoldings if after each extension all consistency
sets which enable the considered event are updated. Observe moreover that by defini-
tion also the extension by a new event and the update by another event can be mixed
up. This gives the following statement:

Lemma 2. Let (N, mg) be a marked p/t-net. There is a token flow unfolding Un f,qx
(N, mg), which is maximal w.r.t. C (no more events can be appended to finite prefixes)
and unique up to isomorphism.

Un finaz (N, mg) can be defined as the limit of a sequence of finite token flow unfold-
ings (ttn)nen With g, 11 = Ext(u,, C,y,t), since the order of appending events does
not matter. Each finite left-closed consistency set C' of Un fy,4. (N, mg) represents a
process mc of (IN,mg) in the sense that the LPO lpo, = (C,< |cxc,!l|c) is the
run underlying 7 and z¢ = x|« is the canonical token flow function of 7¢ (this
follows from [11] since z¢ satisfies (INIT), (IN), (OUT) and (MIN) on Ipo,). More-
over, in Un f,q: (N, mg) all processes of (N, myg) are represented by finite left-closed
consistency sets. Namely, for each process, the underlying run with assigned canonical
token flow defines a token flow unfolding and without loss of generality we can assume
that this token flow unfolding equals px of a defining sequence of Un 4. (N, mg) for
some k.

Theorem 1. Let (N, mg) be a marked p/t-net. Then for each process m of (N, mg)
there is a left-closed consistency set C' of Un finao (N, mg) such that w¢ is isomorphic
to .

To show that Un f,,,4..(IN, mg) avoids the generation of isomorphic processes, we prove
that only in special auto-concurrency situations processes of (N, mg) are represented
more than once in Un f,q. (N, mg).

Theorem 2. Let (N, mg) be a marked p/t-net and 7 be a finite process of (N, mg). If
in Unfma:(N,mg) = (PES,l),x), PES = (FE,Con, <), there are two finite sets
C # C" € Conyye representing m, then there exist events e € C, ¢’ € C', e # ¢ such
that e and €' are strong identical and fulfill {e, e’} € Con.

Proof. Assume there are finite C, C’ € Con,, such that the processes m¢ and 7 are
isomorphic. Let e € C'\ C’ with *e C C' N C". Such an event e exists since C' N C’
defines a prefix of PES containing e;,;; and therefore e can be chosen as a minimal
element w.r.t. < in C'\ C’. Let ¢’ € C’ be the image of e under the isomorphism relating
mc and wor. Since m¢ and 7o are isomorphic, the left-closed consistency sets of all
pre-events of e resp. €’ define isomorphic processes. Thus, either e and e’ are strong
identical, or there are f € ®e\ ®°¢’ and f’ € ®¢’\ °®e fulfilling the same property

26

as e and €’ that the left-closed consistency sets of all pre-events of f resp. f’ define
isomorphic processes. Since the number of pre-events of f and [’ is smaller than the
number of pre-events of e and €’ (i.e. the procedure can only finitely often be iterated),
and e;,;; iS a common pre-event, there is some pair of events g and ¢’ being strong
identical. By definition we have g € C, ¢’ € C’ and g # ¢'. The definition of token
flow unfoldings ensures {g, g’} € Con (since g, ¢’ are strong identical).

Since e and €’ are strong identical, they in particular have the same label and {e, e’} €
Con shows that they can occur concurrently in some marking.

Corollary 1. If (N, mg) allows no auto-concurrency (i.e. there is no reachable mark-
ing m, such that there is a transition t fulfillingVp € P : m(p) > 2-W((p,t))), there is
a one-to-one correspondence between left-closed consistency sets of Un fyq:(IN, mo)
and (isomorphism classes of) processes.

existence of strong identical events is not
enough to avoid isomorphic processes in
general, the number of isomorphic pro- A
cesses represented in token flow unfold-

ings is significantly smaller than in the ‘ o
standard unfolding approach (see the ex-

perimental results). Figure 6 shows a sit- E
uation as discussed in Theorem 2, where

the token flow unfolding as introduced so . '
far is not small enough to completely ne- Fig. 6. P/t-net with token flow unfolding con-

glect isomorphic processes. Namely, the taining two isomorphic (maximal) processes
two B-labeled events produce two iso-
morphic processes, despite they are not strong identical (because they have no common
pre-events). Observe however, that the two A-labeled pre-events of the two B-labeled
events are themselves strong identical, but are not in conflict (they are concurrent). To
avoid such situation, we must generalize the notion of strong identical events in the
sense that two strong identical events have not necessarily common, but strong iden-
tical pre-events. This setting is formally described by the notion of isomorphic strong
identical events as follows:

Let ((PES, 1), x) be a prime token flow event structure. Let 2C F x E be the least
equivalence relation satisfying for all e, ¢’ € E:

= ((Ue) =Ue)) N (%e=e)ANNVSf e *: z(f e) =z(f €))) = (e=¢€).
- ((I(e) =U(e)) N (3L : ®e — ®*€ bijective: (Vf € ®e: f2I(f)Nx(f,e) =

z(I(f),e"))) = (e=¢€).

[aY}

Two =-equivalent events e, e’ are called isomorphic strong identical. Basically, omit-
ting isomorphic strong identical events yields a token flow unfolding representing no
isomorphic (maximal) processes at all (can be deduced similarly as Theorem 2). But
considering such an approach we encountered several intricate technical problems. In
particular, a test for the isomorphic strong identical property is complicated, such that
the algorithmic applicability is questionable.

Although we have seen that the non- @

27

3.2 Reduced Token Flow Unfolding

In a token flow unfolding there is still redundancy w.r.t causality and concurrency, since
there are consistency sets which induce processes which have the same underlying run
(but a different token flow distribution). Such consistency sets are caused by so-called
weak identical events (compare the introduction). To avoid weak identical events, since
many different processes produce one run and token flow distributions correspond to
processes, we store for each consistency set an example token flow distribution.

That means, we need to extend our model of prime event structures PES = (F,
Con, <) extended by token flows such that we can store for each consistency set C' €
Conyye an individual token flow z¢ < |cxc — N”. For such z¢ and an event e € C'
we denote INc(e) = > ..., wc(€',e) and OUTc(e) = > .. zc(e,€’). We intro-
duce generalized prime token flow event structures as pairs ((PES, 1), (zc¢)cecony,.)
where PES = (E,Con, <) is a prime event structure, [is a labeling function on F
and (z¢)cecon,,. s a family of token flow functions xc < |ocxc — N* satisfying
analogous conditions as prime token flow event structures:

— There is a unique minimal event e;,,;; W.r.t. < with [(€;,5¢) # l(e) for all € # €.
- VC,C" € Conpyre, Ve € Cye € C": l(e) =1(e') = INc(e) = INc (€).

Two distinct events e € C, ¢’ € C’, fulfilling l(e) = [(e') A *e = °¢/, are called weak
identical.

Definition 9 (Reduced token flow unfolding). Let (N, mq), N = (P, T, F,W), be a
marked p/t-net. A reduced token flow unfolding of (N, mg) is a generalized token flow
unfolding (PES, 1), (vc)cecon,,.) satisfying (IN), (OUT), (INIT),

(MIN): YC € Congye, Ve, €' € Cie <5¢': (Ip e P: zelee)(p) >1)
and having no weak identical events e, e’ satisfying {e, e’} & Con.

Similar as for token flow unfoldings, prefixes can be defined. Given a reduced token
flow unfolding u = ((PES, 1), (zc)cecony,.)» PES = (E, Con, <), each non-empty
left-closed subset £/ C E defines a reduced token flow unfolding p/ = ((PES’,l'),
(zo)cecony,,) PES" = (E',Con’, <") by Con’ = {C € Con | C C E'}, <'=<
| s, ! = l|p and . = z¢. Each token flow unfolding p”” = ((PES”,l'),2'),
PES" = (E',Con”,<"), Con'" C Con/ is called prefix of u, denoted by u” C p.
Events can be appended to reduced token flow unfoldings similar as to token flow
unfoldings. The residual token flow Resc(e) and the residual marking Mar(C') are
defined analogously as before, using z¢ instead of x. If there are enough tokens in the
residual marking to fire a transition ¢, in general a new token flow distribution for the
considered consistency set has to be stored in order to have the possibility to append
a respective transition occurrence to the consistency set via an enabling function y.
Formally, such a token flow redistribution is given by a redistribution flow function
r < |oxc — NP fulfilling (IN), (OUT), (INIT) and V(e,e') € <, NC x C : (Ip €
P : z(e,e')(p) > 0) such that there is an enabling function y : C — N satisfying
Ve e C: W(l(e).p) — Yo zle.d)(p) > yle) and¥p € P i (Y, u(e))(p) =
W ((p,t)). The functions = and y define a new event e, ,, through (e,) =t, ®ey, =

28

{eeC |3 :yl)#0N(e=€Ve=<eé)}andVe € ®ey,y : (e, e5y) = yle).
If there is already a weak identical event not belonging to the consistency set, then this
weak identical event is added to the consistency set. Otherwise, the new event is added.

Definition 10 (Appending events). Let (N, mg), N = (P, T, F, W), be a marked p/t-
net and let p = ((PES, 1), (xc)cecony.) PES = (E,Con, <), be a reduced token
flow unfolding of (N, my).

Lett € T and C € Conypye, such that Mar(C)(p) = W {((p,t)) for each p. Let
be a redistribution function with associated enabling function y and e, ,, be the corre-
sponding new event.

If there is no event e ¢ C which is weak identical to e, ,, then we define a gener-
alized prime token flow event structure Ext(u,C,x,y,t) = (PES",l'),z"), PES" =
(E',Con’, <), through E' = EU{e; y}, U'|p =1, Con’ = C’onU{C”U{ew g1 | C' C
C},ve! G C’onpre, ery €C' 1 Til< =T NTei|orxqe,,y = 2 and < |pxp ==
We say that 1 1s extended by e, .

If there is an event e;q ¢ C which is weak identical to e, ,, then define a prime token
flow event structure Ext(u,C,x,y,t) = ((PES’ N,z"), PES" = (F', C’on <",
updating C'on by epeq through E' = E, ' =1, <'=<, Con’ =
C' C C}and V0O’ € Cony,, \ Congpe, €iq € C' 1 i< = T ANTeu|orx ey =
We say the p is updated by e, .

In the reduced token flow unfolding, only one event having a certain set of pre-events is
introduced (except for concurrent events in one run), although there are different pos-
sible distributions of the token flows on ingoing edges of the event. Only one example
distribution of these possible token flows is stored.

For the reduced token flow unfolding analogous results hold as for token flow un-
foldings. By construction Ext(u, C, z,y,t) is a reduced token flow unfolding. Similar
as for token flow unfoldings, a prefix relation C between reduced token flow unfold-
ings can be defined. Since through appending events, the token flow on old consistency
sets is not changed, u T FExt(u, C,z,y,t) holds. Moreover, every finite reduced to-
ken flow unfolding ;2 can be constructed by a sequence of appending operations from
po = ((({einit}, {{€init}},0),id), D), where C, z, y and t are chosen according to .

Appending events to a token flow unfolding in different orders leads to reduced token
flow unfoldings with isomorphic underlying prime event structures. Isomorphic pre-
fixes (in different such reduced token flow unfoldings) may have different token flow
distributions, representing processes with isomorphic underlying runs. In this sense, the
order of appending events plays no role and we can define a maximal (w.r.t. C) reduced
token flow unfolding Un f,.q(IN, mg) as the limit of a sequence of finite token flow
unfoldings (i,)nen With i1 = Ext(p,, C.z,y,t). Unfrea(IN, mp) is unique up to
1somorphism of the underlying prime event structure and up to the token flow stored for
a consistency set, where different possible token flows produce isomorphic runs.

Each left-closed consistency set C' of Unf,..q(IN, mq) represents a process w¢ of
(N, mg) in the sense that the LPO Ipo. = (C, < |cxc,!|c) is the run underlying 7¢
and z¢ is the canonical token flow function of w¢. Moreover, in Un fr.q(IN, mg) all
runs underlying a process of (N, mg) are represented by consistency sets (without loss
of generality we can start the construction of Un f,..q4(IN, mg) with an arbitrary process
representing a specific run).

29

Unfrea(IN, mg) avoids the generation of processes with isomorphic underlying runs.
Namely, only in special auto-concurrency situations runs of (N, mq) are represented
more than once in Un f,.q(IN, mg). It can be seen similar as for token flow unfoldings
that, if there are two sets C' # C’ € Cony,.. representing processes with isomorphic
underlying runs, then there exist events e € C,e’ € C’',e # ¢’ such that e and ¢’
are weak identical and fulfill {e, e’} € Con. That means, if (/V,mg) allows no auto-
concurrency, there is a one-to-one correspondence between left-closed consistency sets
of Unfreqa(IN, mp) and (isomorphism classes of) runs.

As a topic of future research, similar as for strong identical events and isomorphic
processes, to avoid isomorphic runs, we can generalize the notion of weak identical
events in the sense that two weak identical events have not necessarily common, but
weak identical pre-events. This leads to the notion of isomorphic weak identical events
analogously as for isomorphic strong identical events.

4 Algorithms

In this section we briefly describe two algorithms to construct unfolding models of a
marked p/t-net with finite behavior. The algorithms essentially follow the Definitions 8
and 10. We implemented both methods.

The first algorithm computes a token flow unfolding equal to the maximal token flow
unfolding, except that some isomorphic processes caused by auto-concurrency of tran-
sitions are omitted. Starting with the token flow unfolding consisting only of the initial
event ¢;,,;; and having the only consistency set {e;,; }, events are appended to maximal
left-closed consistency sets in a breadth-first way. In each iteration step, the algorithm
picks the next consistency set C' and, for each transition ¢ € T, stores all enabling
functions for appending a ¢-occurrence. The enabling functions can be computed from
the residual token flows of events e € C and the residual marking of C. Finding all
possible choices of enabling functions is a combinatorial problem. For each enabling
function, a new event is generated and the old token flow unfolding is either extended
or updated by the new event in a similar way as described in Definition 8. In contrast to
Definition 8, in each appending step only maximal left-closed consistency sets are con-
structed. Therefore, in some special cases of auto-concurrency the described algorithm
does not construct all possible isomorphic strong identical events. That is because not
all left-closures of subsets of strong identical events are considered as consistency sets
(if there are two concurrent strong identical events, one is appended first and the second
is only appended to consistency sets including the first appended event). Therefore, in
general the calculated token flow unfolding contains less events than the maximal token
flow unfolding. But calculating these events (which are isomorphic strong identical to
already appended events) would only lead to isomorphic processes (i.e. the unfolding
computed by the algorithm still represents all processes) and would worsen the runtime.

The second algorithm computes a reduced token flow unfolding equal to the max-
imal reduced token flow unfolding, except that only processes with minimal causality
are represented. Starting with the token flow unfolding consisting only of the initial
event e;,;; and having the only consistency set {e;,;; }, the algorithm essentially ap-
pends events to prefixes of left-closed consistency sets in a breadth-first way. In each

30

iteration step, the algorithm picks the next consistency set C' and tries to append each
transition ¢ to prefixes of C. The aim is to find all minimal prefixes which allow to
append a t-occurrence. We say that a transition occurrence can be appended to a prefix
of a consistency set C, if there exists a token flow function fulfilling (IN), (OUT) and
(INIT) of the resulting LPO. In [11] a polynomial algorithm to check this and to con-
struct such a token flow function in the positive case was presented. For each computed
token flow function, a new event is generated and the old token flow unfolding is either
extended or updated by the new event in a similar way as described in Definition 8
(the computed token flow function defines the redistribution function and the enabling
function). Since the algorithm appends transition occurrences only to minimal prefixes
of C' for which this is possible, the resulting reduced token flow unfolding contains all
runs with minimal causality of the given p/t-net. In this sense it represents the complete
partial order behavior. Observe that weak identical events are only constructed in cases
of auto-concurrency, and that only left-closed consistency sets are constructed (each
appending step leads a maximal left-closed consistency set). In contrast to the construc-
tion algorithm of the token flow unfolding, here all isomorphic runs appearing through
auto-concurrency of events are computed, because all left-closures of subsets of weak
identical events are considered as prefixes of consistency sets.

S Experimental Results

In this section we experimentally test our implementation of the construction algorithms
having the standard unfolding algorithm as a benchmark.

To construct the standard unfolding, we use an adapted version of the unfolding al-
gorithm in [4]. When interpreting the results, one has to pay attention that this unfolding

Standard unfolding Token flow unfolding Reduced token flow
unfolding
nmx y(E P time mem|E P time mem |[E P time mem
1 32319 12 82ms 1133kb| 5 2 25ms 557kb (4 1 42ms 625kb
2 4 2 3267 132 1406ms 2548kb| 15 6 43ms 667kb [9 4 76ms 865kb
1 3 4 2 (91 315 2721ms 2365kb| 11 3 37ms 704kb |7 1 59ms 917kb
1 3 4 3 (175840 23622ms 4640kb| 9 6 40ms 685kb |5 1 55ms 754kb
3 4 2 31799 612 90665ms 5067kb| 22 10 54ms 761kb |12 7 103ms 1160kb
3443 - - - - 43 56 271ms 2440kb (13 3 102ms 1159kb
345 3|- - - - 45 104 672ms 6196kb (17 7 178ms 1149kb
n mk
I 1 1({41 22 133ms 1011kb| 13 6 47ms 834kb {13 6 103ms 1135kb
1 2 1 (47 28 180ms 1270kb| 13 6 49ms 841kb {13 6 114ms 1185kb
2 1 1 (71 58 469ms 1325kb| 17 9 65ms 917kb (15 7 145ms 1211kb
2 2 1 (77 67 694ms 1438kb| 17 9 65ms 917kb (15 7 145ms 1235kb
1 2f- - - - (179 150 640ms 5200kb [71 68 8561ms 2580kb
22 2|(- - - - [239 413 3498ms 16991kb|95 147 54371ms 5414kb

Fig. 7. Experimental results: E shows the number of events and P the number of maximal pro-
cesses in the constructed unfolding

31

algorithm is not completely runtime optimized, but the remaining improvement poten-
tial should be limited. We compare the runtime, memory consumption as well as the
size and the number of maximal processes of the resulting event structures. The up-
per table in Figure 7 shows a test of the parameterized version of the example net of
Figure 1 shown in Figure 8. The lower table in Figure 7 shows a test of the net in
Figure 9 modeling for example a coffee automata.

Fig. 8. Parameterized test net Ny Fig. 9. Parameterized test net Na

The experimental results indicate that our new unfolding approaches are superior to the
standard approach. For the tested examples, the runtime, memory consumption and the
sizes of the resulting structure of our new algorithms are a lot better. It is clear that the
standard unfolding is least as big as the token flow unfolding and the reduced token flow
unfolding, but usually considerably bigger, if the net contains arc weights or a non-safe
initial marking. In these cases our new algorithms are significantly faster and use less
memory. Comparing the two new approaches shows that in almost every tested case the
calculated reduced token flow unfolding is actually smaller than the calculated token flow
unfolding, but the redistribution of token flows in each step worsens the runtime.

6 Conclusion

In this paper we propose two new unfolding semantics for p/t-nets based on the con-
cepts of prime event structures and token flows. The definitions of the two unfolding
models are motivated by algorithmic aspects. We develop a construction algorithm for
both unfolding models, if they are finite. We show that there are many cases in which
our implemented algorithms are significantly more efficient than standard unfolding
methods for p/t-nets.

We finally want to mention that the two presented unfolding models are a conserva-
tive extension of the unfolding model introduced in [5] for safe nets. That means, for
safe nets, the standard unfolding, the token flow unfolding and the reduced token flow
unfolding coincide.

Topic of further research is the application of isomorphic weak resp. strong identical
events to avoid isomorphic runs resp. isomorphic processes at all, the adaption of the theory
of complete finite prefixes to our approach and the adaption of model checking algorithms.
Although there are complete finite prefixes which also avoid redundant events, we believe
that our approach yields faster construction algorithms since such complete finite prefixes
rely on complex adequate orders which cannot be implemented efficiently.

32

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Best, E., Devillers, R.: Sequential and concurrent behaviour in petri net theory. Theoretical

Computer Science 55(1), 87-136 (1987)

Couvreur, J.-M., Poitrenaud, D., Weil, P.: Unfoldings for general petri nets. University de
Bordeaux I (Talence, France), University Pierre et Marie Curie (Paris, France) (2004),
http://www.labri.fr/perso/weil/publications/depliage.pdf

. Desel, J., G., Neumair, C.: Finite unfoldings of unbounded petri nets. In: Cortadella, J.,

Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 157-176. Springer, Heidelberg (2004)
Desel, J., Juhds, G., Lorenz, R.: Viptool-homepage (2003),
http://www.informatik.ku-eichstaett.de/projekte/vip/

Engelfriet, J.: Branching processes of petri nets. Acta Informatica 28(6), 575-591 (1991)
Esparza, J., Heljanko, K.: Implementing Itl model checking with net unfoldings. In: Dwyer,
M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 37-56. Springer, Heidelberg (2001)

. Esparza, J., Romer, S., Vogler, W.: An improvement of mcmillan’s unfolding algorithm. For-

mal Methods in System Design 20(3), 285-310 (2002)

. Goltz, U., Reisig, W.: The non-sequential behaviour of petri nets. Information and Con-

trol 57(2/3), 125-147 (1983)

. Haar, S.: Branching processes of general s/t-systems and their properties. Electr. Notes Theor.

Comput. Sci. 18 (1998)

Hoogers, P., Kleijn, H., Thiagarajan, P.: An event structure semantics for general petri nets.
Theoretical Computer Science 153(1&2), 129-170 (1996)

Juhds, G., Lorenz, R., Desel, J.: Can i execute my scenario in your net? In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 289-308. Springer, Heidelberg
(2005)

Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes: a new condensed
representation of petri net behaviour. Acta Inf. 43(5), 307-330 (2006)

Khomenko, V., Koutny, M.: Towards an efficient algorithm for unfolding petri nets. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 366-380. Springer,
Heidelberg (2001)

Khomenko, V., Koutny, M.: Branching processes of high-level petri nets. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 458-472. Springer, Heidelberg (2003)
Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of petri net unfoldings. Acta
Inf. 40(2), 95-118 (2003)

McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification
of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS,
vol. 663, pp. 164-177. Springer, Heidelberg (1993)

Meseguer, J., Montanari, U., Sassone, V.: On the model of computation of place/transition
petri nets. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 16-38. Springer, Heidel-
berg (1994)

Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition petri nets.
Mathematical Structures in Computer Science 7(4), 359-397 (1997)

Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part i.
Theoretical Computer Science 13, 85-108 (1981)

Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986.
LNCS, vol. 255, pp. 325-392. Springer, Heidelberg (1987)

