
The Complexity of Power-Index Comparison

Piotr Faliszewski∗

Department of Computer Science
University of Rochester
Rochester, NY 14627

Lane A. Hemaspaandra†

Department of Computer Science
University of Rochester
Rochester, NY 14627

Univ. of Rochester Comp. Sci. Dept. Technical Report TR-2008-929
January 29, 2008

Abstract

We study the complexity of the following problem: Given two weighted voting games G′

and G′′ that each contain a player p, in which of these games is p’s power index value higher?
We study this problem with respect to both the Shapley-Shubik power index [SS54] and the
Banzhaf power index [Ban65, DS79]. Our main result is that for both of these power indices
the problem is complete for probabilistic polynomial time (i.e., is PP-complete). We apply
our results to partially resolve some recently proposed problems regarding the complexity of
weighted voting games. We also study the complexity of the raw Shapley-Shubik power index.
Deng and Papadimitriou [DP94] showed that the raw Shapley-Shubik power index is #P-metric-
complete. We strengthen this by showing that the raw Shapley-Shubik power index is many-one
complete for #P. And our strengthening cannot possibly be further improved to parsimonious
completeness, since we observe that, in contrast with the raw Banzhaf power index, the raw
Shapley-Shubik power index is not #P-parsimonious-complete.

1 Introduction

In an abstract, direct democracy, each member in a certain sense has equal potential for impact
on the decisions that the society makes. However, in many practical decision-making scenarios
it is reasonable to give up this noble idea and consider weighted voting instead. Here are a few
motivating examples. In a country divided into districts it makes sense to give each district voting
power proportional to its population (consider, e.g., the US House of Representatives or various
decision making processes within the European Union). In fact, the power that various apportion-
ment methods give to the US states in its House of Representatives has been studied in terms of
how well it is proportional to the sizes of the states [HRSZ98]. In a business setting, stockholders
in a company might hope to have voting power proportional to the amount of stock they own.
Within computer science, Dwork et al. [DKNS01] suggested building a meta search engine for the
web via treating other search engines as voters in an election. It would only be natural to weigh

∗Work done in part while visiting Heinrich-Heine-Universität Düsseldorf, Germany. Supported in part by grant
NSF-CCF-0426761.

†Supported in part by grant NSF-CCF-0426761, a TransCoop grant, and a Friedrich Wilhelm Bessel Research
Award.

1

the participating search engines with their (quantified in some way) quality. Naturally, one can
provide many other examples.

The focus of this paper is on the computational complexity of the following issue: Given an
individual and two weighted voting scenarios (in each of them our individual might have different
weight and each scenario might involve different sets of voters with different weights), in which
one of them is our individual more influential? (We provide a formal definition of this problem in
Section 1.1.) This problem has a very natural motivation. For example, consider a company that
wishes to join some business consortium and has a choice among several consortia (e.g., consider an
airline deciding which airline alliance to join). It is natural to assume that within each consortium
companies make decisions via weighted voting, with companies weighted, e.g., via their size or
revenue or some combination thereof. In a political context, members of the European Union
sometimes try to promote new schemes of distributing vote weights among EU members. It is
important for the countries involved to see which scheme is better for them. One can easily give
many other applications of the issue we study.

Formally, we model the above problem via comparing the values of power index functions—
in our case those of Shapley and Shubik [SS54] and of Banzhaf ([Ban65], see also [DS79])—of a
particular player within two given weighted voting games. Our main result is that this problem is
PP-complete for both the Shapley-Shubik power index and the Banzhaf power index. Let us now
define our problem formally.

1.1 The Power-Index Comparison Problem

We model weighted voting via so-called weighted voting games. An n-player weighted voting game
is a sequence of n nonnegative integer weights, w1, . . . , wn, together with a quota q. We denote
it as (w1, . . . , wn; q). We refer to the player with weight wi as the i’th player. Weighted voting
games model the following scenario: The players are given a yes/no question (e.g., should we lower
the taxes? should we buy out our competitors?) and each player either agrees (answers yes) or
disagrees (answers no). If the total weight of the voters who agree is at least as high as the quota
then the result of the game is yes and otherwise it is no.

Let G be a voting game (w1, . . . , wn; q). Any subset of {1, . . . , n} is a coalition in G. We say
that a coalition S is successful if

∑
i∈S wi ≥ q. We define succG(S) to be 1 if S is a successful

coalition for G and to be 0 otherwise.
Interestingly, the relation between the effective power of a player within a voting game and his

or her weight is not as simple as one might think. Consider game G = (8, 7, 2; 9), i.e., a game with
quota q = 9 and three players with weights 8, 7, and 2, respectively. It is easy to see that in this
game any coalition of at least two players is successful. In effect, each of the players can influence
the final result of the game to exactly the same degree, regardless of the fact that their weights differ
significantly. Thus when analyzing weighted voting games it is standard to measure players’ power
using, e.g., the Shapley-Shubik power index [SS54] or the Banzhaf power index [Ban65, DS79].

In essence, these power indices measure the probability that, assuming some coalition formation
model, our designated player is critical for the forming coalition. By critical we mean here that
the coalition is successful with our designated player but is not successful without him or her.

Let G = (w1, . . . , wn; q) be a voting game, let i be a player in this game, and let N = {1, . . . , n}
be the set of all players of G. The value of the Banzhaf power index of i in G is defined as

2

Banzhaf(G, i) = Banzhaf∗(G,i)
2n−1 , where Banzhaf∗(G, i) is the raw version of the index,

Banzhaf∗(G, i) =
∑

S⊆N−{i}

(succG(S ∪ {i})− succG(S)).

The Shapley-Shubik power index of player i in game G is defined as SS(G, i) = SS∗(G,i)
n! , where

SS∗(G, i) is the raw version of the index,

SS∗(G, i) =
∑

S⊆N−{i}

‖S‖!(n− ‖S‖ − 1)!(succG(S ∪ {i})− succG(S)).

Intuitively, Banzhaf(G, i) gives the probability that a randomly chosen coalition of players in
N − {i} is not successful but would become successful had player i joined in. The intuition for
the Shapley-Shubik index is that we count the proportion of permutations for which a given player
is pivotal. Given a permutation π of {1, . . . , n}, the π(i)’th player is pivotal if it holds that the
coalition {π(1), π(2), . . . , π(i)} is successful and the coalition {π(1), π(2), . . . , π(i− 1)} is not. This
permutation-based intuition is motivated by the view of the successful-coalition formation as the
process of players joining in in random order. Naturally, the first player that makes the coalition
successful is crucial and so the idea is to measure power via counting how often our player-of-interest
is pivotal.

The focus of this paper is on the computational complexity analysis of the following problem.

Definition 1.1 Let f be either the Shapley-Shubik or the Banzhaf power index. By PowerComparef

we mean the problem where the input (G′, G′′, i) contains two weighted voting games, G′ =
(w′

1, . . . , w
′
n, q

′) and G′′ = (w′′
1 , . . . , w

′′
n, q

′′), and an integer i, 1 ≤ i ≤ n, and where we ask whether
f(G′, i) > f(G′′, i).

Note that in the above definition we assume that both games have the same number of players.
At first this might seem to be a weakness but it is easy to see that given two games with different
numbers of players we can easily pad the smaller one with weight-0 players. On the other hand,
the assumption that both games have the same number of players allows us to solve the problem
via comparing the raw values of the index: The scaling factor for both games is the same and thus
it does not affect the result of the comparison.

1.2 Computational Complexity

We briefly review some notions and notations.
We fix the alphabet Σ = {0, 1}, and we assume that all the problems we consider are encoded

in a natural, efficient manner over Σ. By | · | we mean the length function. We assume 〈·, ·〉 to be
a standard, natural pairing function such that |〈x, y〉| = 2(|x|+ |y|) + 2.

The main result of this paper, Theorem 2.1, says that the power-index comparison problem
is PP-complete both for the Shapley-Shubik power index and for the Banzhaf power index. The
class PP, probabilistic polynomial time, was defined by Simon [Sim75] and Gill [Gil77]. A language
L ⊆ Σ∗ belongs to PP if and only if there exists a polynomial p and a polynomial-time computable
relation R such that x ∈ L ⇐⇒ ‖{w ∈ Σp(|x|) | R(x,w) holds}‖ > 2p(|x|)−1. PP captures the
set of languages having a probabilistic Turing machine that on precisely the elements of the set
has strictly more than 50% probability of acceptance. Let us mention that PP is a very powerful

3

class. For example, it is well-known that NP is a subset of PP (as are even various larger classes).
Via Toda’s Theorem [Tod91], we know that PH ⊆ PPP. That is, PP is at least as powerful as
polynomial-time hierarchy, give or take the flexibility of polynomial-time Turing reductions. Many
other properties of PP have been established in the literature.

Let us now recall the definition of the class #P [Val79]. For each NP machine N (i.e., for each
nondeterministic polynomial-time machine N), by #accN (x) we mean the number of accepting
computation paths of N running with input x. A function f , f : Σ∗ → N, belongs to #P if and
only if there is an NP machine N such that (∀x ∈ Σ∗)[f(x) = #accN (x)]. #P is, in a very loose
sense, a functional counterpart of PP. For example, P#P = PPP [BBS86]. More typically, #P is
described as the counting analogue of NP.

As is usual, we say that a language L is hard for a complexity class C if every language in
C polynomial-time many-one reduces to L. If in addition L belongs to C then we say that L is
C-complete. A language A polynomial-time many-one reduces to a language B if there exists a
polynomial-time computable function f such that for each string x ∈ Σ∗ it holds that x ∈ A ⇐⇒
f(x) ∈ B. On the other hand, there is no one agreed-upon notion of completeness for function
classes. For example, Valiant [Val79] in his seminal paper used Turing reductions but other people
have preferred notions such as Krentel’s metric reductions [Kre88], Zankó’s many-one reductions
(for functions) [Zan91], and Simon’s [Sim75] parsimonious reductions.

In the context of power index functions, Prasad and Kelly [PK90] (implicitly) showed that
the (raw) Banzhaf power index is #P-parsimonious-complete and Deng and Papadimitriou [DP94]
established that the (raw) Shapley-Shubik power index is #P-metric-complete (regarding the com-
plexity analysis of power indices, we also mention the paper of Matsui and Matsui [MM01]). We
now review parsimonious and metric reductions, as those underpin the notions of parsimonious-
completeness and metric-completeness.

Definition 1.2 1. [Kre88] A function f : Σ∗ → N metric reduces to a function g : Σ∗ → N if
there exist two polynomial-time computable functions, ϕ and ψ, such that (∀x ∈ Σ∗)[f(x) =
ψ(x, g(ϕ(x)))].

2. [Zan91] A function f : Σ∗ → N many-one reduces to a function g : Σ∗ → N if there exists two
polynomial-time computable functions, ϕ and ψ, such that (∀x ∈ Σ∗)[f(x) = ψ(g(ϕ(x)))].1

3. [Sim75] f parsimoniously reduces to g if there is a polynomial-time computable function ϕ
such that (∀x ∈ Σ∗)[f(x) = g(ϕ(x))].

Note that (a) if f parsimoniously reduces to g, then f many-one reduces to g, and (b) if
f many-one reduces to g, then f metric reduces to g. Given a function class C, we say that
a function f is C-parsimonious-complete if f ∈ C and each function in C parsimonious reduces
to f . C-metric-completeness and C-many-one-completeness are defined analogously. Typically,
parsimonious-complete functions are easier to work with than functions that are merely metric-
complete or many-one-complete. In particular, our proof of Theorem 2.11 is more involved than our
proof of Theorem 2.4 because, as we note, the raw Shapley-Shubik power index is not parsimoniously
complete.

1Note that Zankó’s many-one reduction is a analogue for functions of the standard many-one reduction notion for
sets. To avoid confusion, we mention to the reader that the term “functional many-one reduction” (which we do not
use here) is sometimes used in the literature [Vol94] as a synonym for “parsimonious reductions.”

4

2 Main Results

Our main result, Theorem 2.1, says that the power index comparison problem is PP-complete.
This section is devoted to building the infrastructure for Theorem 2.1’s proof and giving that
proof. We also show that the raw Shapley-Shubik power index is #P-many-one-complete but not
#P-parsimonious-complete.

Theorem 2.1 Let f be either the Banzhaf or the Shapley-Shubik power index. The problem
PowerComparef is PP-complete.

We start via showing PP-membership of a problem closely related to our PowerCompareBanzhaf

and PowerCompareSS problems. Let f be a #P function and let Comparef be the language
{〈x, y〉 | x, y ∈ Σ∗ ∧ f(x) > f(y)}. (PowerCompareBanzhaf and PowerCompareSS are essentially, up
to a minor definitional issue, incarnations of Comparef for appropriate functions f .)

Lemma 2.2 Let f be a #P function. The language Comparef is in PP.

Proof. Let f be an arbitrary #P function and let N be an NP machine such that f = #accN .
Without the loss of generality, we assume that there is a polynomial q such that for each input
x ∈ Σ∗ all computation paths of N make exactly q(|x|) binary nondeterministic choices. Thus each
computation path of N on input x can be represented as a string w in Σq(|x|).

In order to show that Comparef is in PP we need to provide a polynomial-time computable
relation R and a polynomial p such that for each string z = 〈x, y〉 it holds that: z ∈ Comparef ⇐⇒
‖{w ∈ Σp(|z|) | R(z, w) holds}‖ > 2p(|z|)−1. We now define such R and p. Let us fix two strings,
x and y, and let z = 〈x, y〉 and n = |z|. We define p(n) = q(n) + 1 and, for each string w =
w0w1 . . . wp(n)−1 ∈ Σp(n), we define R(z, w) as follows:

Case 1. If w0 = 0 then R(z, w) is true exactly if the string w1, . . . , wq(|x|) denotes an accepting
computation path of N on x and the symbols wq(|x|)+1 through wp(n)−1 are all 0. R(z, w) is
false otherwise.

Case 2. If w0 = 1 then R(z, w) is false exactly if the string w1, . . . , wq(|y|) denotes an accepting
computation path of N on y and the symbols wq(|x|)+1 through wp(n)−1 are all 0. R(z, w) is
true otherwise.

Via analyzing the above two cases it is easy to see that there are exactly f(x) + (2p(n)−1 − f(y)) =
f(x)− f(y)+ 2p(n)−1 strings w ∈ Σp(n) for which R(z, w) is true. This value is greater than 2p(n)−1

if and only if f(x) > f(y). Thus the relation R and the polynomial p jointly witness that Comparef

belongs to PP. q

Lemma 2.2 gives an upper bound on the complexity of Comparef (assuming that f ∈ #P).
We now prove a matching lower bound, PP-completeness, for the case that f is #P-parsimonious-
complete.

Lemma 2.3 Let f be a #P-parsimonious-complete function. The language Comparef is PP-
complete.

5

Proof. Let f be a #P-parsimonious-complete function. Via Lemma 2.2 we know that Comparef

is in PP and thus to show PP-completeness it remains to show PP-hardness. We do so via reducing
an arbitrary PP language L to Comparef .

Let L be an arbitrary PP language. By definition, there exists a polynomial-time relation R
and a polynomial p such that for each string x ∈ Σ∗ it holds that x ∈ L ⇐⇒ ‖{y ∈ Σp(|x|) |
R(x, y) holds}‖ > 2p(|x|)−1. We define two functions, g1 and g2, such that g1(x) = ‖{y ∈ Σp(|x|) |
R(x, y) holds}‖ and g2(x) = 2p(|x|)−1. It is easy to see that both g1 and g2 are in #P. g1 can
be computed via a an NP machine that on input x guesses a binary string y of length p(|x|) and
accepts if and only if R(x, y) holds. g2 can be computed via a machine that on input x guesses a
binary string of length 2p(|x|)−1 and then accepts. Naturally, x ∈ L if and only if g1(x) > g2(x).

Since f is #P-parsimonious-complete, both g1 and g2 parsimoniously reduce to f . Let ϕ1 be
the reduction function for g1 and let ϕ2 be the reduction function for g2. We have that for each
string x it holds that g1(x) = f(ϕ1(x)) and g2(x) = f(ϕ2(x)).

Our reduction from L to Comparef works as follows. On input x we output the string z =
〈ϕ1(x), ϕ2(x)〉. Clearly, this can be done in polynomial time. To show correctness it is enough
to recall that x ∈ L if and only if g1(x) > g2(x), which is equivalent to testing whether z is in
Comparef . Since L was chosen as an arbitrary PP language, this proves PP-completeness. q

We are almost ready to show that PowerCompareBanzhaf is PP-complete. However, in order
to do so, we need to justify the claim that the raw version of the Banzhaf power index is #P-
parsimonious-complete. (This was shown implicitly in the work of Prasad and Kelly [PK90], but
we feel that it is important to explicitly outline the proof.)

One of our important tools here (and later on) is the function #X3C. The input to the X3C
problem is a set B = {b1, . . . , b3k} and a family S = {S1, . . . , Sn} of 3-element subsets of B.
The X3C problem asks whether there exists a collection of exactly k sets in S whose union is B.
#X3C(B,S) is the number of solutions of the X3C instance (B,S).

Hunt et al. [HMRS98] showed that #X3C is parsimonious complete for #P. This is very useful
for us as the standard reduction from #X3C to #SubsetSum (see, e.g., [Pap94, Theorem 9.10];
#SubsetSum is the function that accepts as input a vector of nonnegative integers (s1, . . . , sn; q)
and returns the number of subsets of {s1, . . . , sn} that sum up to q) is parsimonious and Prasad
and Kelly’s reduction from #SubsetSum to Banzhaf∗ (the raw version of Banzhaf’s power index)
is parsimonious as well. Since Banzhaf∗ is in #P, Banzhaf∗ is #P-parsimonious-complete. Thus
the following theorem is, essentially, a direct consequence of Lemma 2.3.

Theorem 2.4 PowerCompareBanzhaf is PP-complete.

Proof. The raw version of the Banzhaf power index is #P-parsimonious-complete and so, via
Lemma 2.3, CompareBanzhaf∗ is PP-complete. Via a slight misuse of notation, we can say that
CompareBanzhaf∗ accepts as input two weighted voting games, G′ and G′′, and two players, p′ and p′′,
such that p′ participates inG′ and p′′ participates inG′′ and accepts if and only if Banzhaf∗(G′, p′) >
Banzhaf∗(G′, p′′). We give a reduction from CompareBanzhaf∗ to PowerCompareBanzhaf .

Let G′, p′ and G′′, p′′ be our input to the CompareBanzhaf∗ problem. We can assume that G′

and G′′ have the same number of players. If G′ and G′′ do not have the same number of players
then it is easy to see that the game with fewer players can be padded with players whose weight
is equal to this game’s quota value. Such a padding leaves the raw Banzhaf power index values of
the game’s original players unchanged. (The reason for this is that any coalition that includes any

6

of the padding candidates is already winning and so none of the original player’s is critical to the
success of the coalition, and so the coalition does not contribute to original players’ power index
values.)

We form two games, K ′ and K ′′, that are identical to games G′ and G′′, respectively, except
that K ′ lists player p′ as first and G′′ lists player p′′ as first. Our reduction’s output is (K ′,K ′′, 1).

Naturally, Banzhaf(K ′, 1) > Banzhaf(K ′′, 1) if and only if Banzhaf∗(G′, p′) > Banzhaf∗(G′′, p′′).
Also, clearly, K ′ and K ′′ can be computed in polynomial time. Thus we have successfully reduced
CompareBanzhaf∗ to PowerCompareBanzhaf . This shows PP-hardness of PowerCompareBanzhaf . PP-
membership of PowerCompareBanzhaf is, essentially, a simple consequence of Lemma 2.2. This
completes the proof. q

Let us now focus on the computational complexity of the power index comparison problem
for the case of Shapley-Shubik. It would be nice if the raw Shapley-Shubik power index were
#P-parsimonious-complete. If that were the case then we could establish PP-completeness of
PowerCompareSS in essentially the same way as we did for PowerCompareBanzhaf . Thus it is
natural to ask whether the Shapley-Shubik power index (i.e., its raw version) is #P-parsimonious-
complete. Prasad and Kelly [PK90] at the end of their paper, after—in effect—showing #P-
parsimonious-completeness of the raw Banzhaf power index (their Theorem 4), write: “Such a
straightforward approach does not seem possible with the Shapley-Shubik [power index].” We
reinforce their intuition by now proving that the raw Shapley-Shubik power index in fact is not
#P-parsimonious-complete.

Theorem 2.5 The raw Shapley-Shubik power index (i.e., SS∗) is not #P-parsimonious-complete.

Proof. For the sake of contradiction, let us assume that SS∗ is #P-parsimonious-complete. Thus
for each natural number k there is a weighted voting game G and a player i within G such that
SS∗(G, i) = k. This is the case because the function f(x) = x belongs to #P (we assume that
the “output x” is an integer obtained via a standard bijection between Σ∗ and N) and if SS∗ is
#P-parsimonious-complete then there has to be a parsimonious reduction from f to SS∗.

Let G be an arbitrary voting game with n ≥ 4 players and let i be a player in G. By definition,
SS∗(G, i) is a sum of terms of the form k!(n−k−1)!, where k is some value in {0, . . . , n−1}. Since
n ≥ 4, each such term is even and thus SS∗(G, i) is even. The raw Shapley-Shubik power index of
any player in a game with at most 3 players is at most 3! = 6 and thus there is no input on which
SS∗ yields the value 7. This contradicts the assumption that SS∗ is #P-parsimonious-complete and
completes the proof. q

So the well-known result of Deng and Papadimitriou [DP94] that the raw Shapley-Shubik
power index is #P-metric-complete cannot be strengthened to #P-parsimonious-completeness.
Theorem 2.5 prevents us from directly using Lemma 2.3 to show that PowerCompareSS is
PP-complete. Nonetheless, via the following set of results not only do we establish that
PowerCompareSS is PP-complete, but we also strengthen the result of Deng and Papadimitriou via
showing that the raw Shapley-Shubik power index is #P-many-one-complete (i.e., is #P-complete
w.r.t. Zankó’s many-one reductions [Zan91]).

To establish our results we need to be able to build X3C instances that satisfy certain properties.
Fact 2.6 below lists three basic transformations that we use to enforce these properties.

7

Fact 2.6 Let (B,S) be an instance of X3C and let b1, b2, . . . , b6 be elements that do not belong to
B. Let B1 = {b1, b2, b3}, B2 = {b4, b5, b6}, B3 = {b1, b4, b5} and B4 = {b1, b4, b6}. The following
transformations preserve the number of solutions of the input instance:

1. g(B,S) = (B ∪B1,S ∪ {B1}),

2. h′(B,S) = (B ∪B1 ∪B2,S ∪ {B1, B2, B3}),

3. h′′(B,S) = (B ∪B1 ∪B2,S ∪ {B1, B2, B3, B4}),

In the following lemma we use these transformations to, in some sense, normalize X3C instances.

Lemma 2.7 There is a polynomial-time algorithm that given an X3C instance X = (B,S) outputs

instance X ′′ = (B′′,S ′′) such that #X3C(X ′′) = #X3C(X) and
1
3
‖B′′‖
‖S′′‖ = 2

3 .

Proof. Let X = (B,S) be our input X3C instance and let 3k = ‖B‖ and m = ‖S‖. Let g and
h′′ be the transformations as in Fact 2.6. The idea of our algorithm is to apply transformation
g to X so many times as to achieve the 2

3 ratio. Let t be some nonnegative integer and let

(Bt,St) = g(t)(B,S). We observe that
1
3
‖Bt‖
‖St‖ = k+t

m+t and that if t = 2m − 3k (assuming this value

is nonnegative) then k+t
m+t = 2

3 .
Our algorithm works as follows. First, we form instance X ′ = (B′,S ′) such that 2‖S ′‖ −

3 · 1
3‖B

′‖ ≥ 0. If 2m − 3k ≥ 0 then we set X ′ = X and otherwise we repeatedly apply trans-
formation h′′, until this condition is met. (It is easy to see that d3k−2m

2 e applications are suffi-
cient.) Then we derive the instance X ′′ from X ′ via 2‖S ′‖ − 3 · 1

3‖B
′‖ applications of g. That is,

X ′′ = g(2‖S′‖−3· 1
3
‖B′‖)(X ′).

Naturally, the algorithm runs in polynomial time. The correctness follows via the observation in
the first paragraph and the fact that transformations g and h′′ preserve the number of solutions. q

Finally, we are ready to show that the raw Shapley-Shubik power index is #P-many-one-
complete.

Theorem 2.8 The raw Shapley-Shubik power index (i.e., SS∗) is #P-many-one-complete.

Proof. The raw Shapley-Shubik power index is in #P and thus it remains to show that it is
#P-many-one-hard. To do so, we give a many-one reduction from #X3C′ to SS∗. #X3C′ is a

restriction of #X3C to instances X = (B,S) such that: (1)
1
3
‖B‖
‖S‖ = 2

3 . (2) If n is a nonnegative
integer such that 1

3‖B‖ = 2n and ‖S‖ = 3n then there is a nonnegative integer t such that n = 4t.
To see that the thus restricted #X3C function is #P-parsimonious-complete it is enough to consider
Lemma 2.7 and transformation h′ from Fact 2.6.

Let ϕs be the standard, parsimonious reduction from #X3C to #SubsetSum (see, e.g., [Pap94,
Theorem 9.10]). ϕs has the property that given an instance (B,S), where ‖B‖ = 3k and ‖S‖ =
m, ϕs(B,S) is an instance (s1, . . . , sm; q) of SubsetSum such that every subset of {s1, . . . , sm}
that sums up to q has exactly k elements. Given such an instance (s1, . . . , sm; q), Deng and
Papadimitriou [DP94, Theorem 9] observe that the raw Shapley-Shubik power index of the first
player in game (1, s1, . . . , sm; q + 1) is exactly (m − k)!k! · #SubsetSum(s1, . . . , sn; q). Since ϕs is
parsimonious, this value is equal to (n−m)!m! ·#X3C(B,S).

8

We now provide functions ϕ and ψ that constitute a many-one reduction from #X3C′ to SS∗.
We need to ensure that for each #X3C′ instance X2 it holds that #X3C′(X) = ψ(SS∗(ϕ(X))). We
first describe how to compute ϕ and ψ and then explain why they have this property.

Given #X3C′ instance X, we compute ϕ(X) as follows: We compute SubsetSum instance
ϕs(X) = (s1, . . . , sn; q) and output game (1, s1, . . . , sn; q + 1). Function ψ is a little more involved.
Define r1(n) = n!(2n)! and r2(n) = n!(2n)!23n. Given a nonnegative integer x, we compute ψ(x)
using the following algorithm. If x = 0 then return 0. Otherwise, find the smallest nonnegative
integer t such that r1(4t) ≤ x ≤ r2(4t) and output b x

r1(4t)c. If there is no such t then return 0.
Function ψ(x) can be computed in polynomial time via computing r1(4t) and r2(4t) for successive
values of t. It is easy to see that we only need to try O(log x) many t’s and thus ψ is computable
in polynomial time with respect to the binary representation of x.

Let us now show that indeed for any #X3C′ instance X it holds that #X3C′(X) =
ψ(SS∗(ϕ(X))). Let X = (B,S) be an arbitrary #X3C′ instance and let n be a nonnegative
integer such that 1

3‖B‖ = 2n and ‖S‖ = 3n. (The existence of such an n is guaranteed via the fact

that in any #X3C′ instance
1
3
‖B‖
‖S‖ = 2

3 .) Via the properties of ϕs and ϕ we see that

SS∗(ϕ(X)) = n!(2n)!#X3C′(X) = r1(n)#X3C′(X).

It is easy to see that #X3C′(X) ≤ 23n and thus, assuming that #X3C′(X) ≥ 1, we have that

r1(n) ≤ SS∗(ϕ(X)) ≤ r2(n).

Via routine calculation we see that for any positive integer n it holds that r1(4n) > r2(n). Thus
the intervals [r1(4t), r2(4t)] are disjoint and given SS∗(ϕ(X)) as input, the function ψ correctly
identifies the r1(n) factor and outputs the answer #X3C′(X). Clearly, ψ also works correctly when
SS∗(ϕ(X)) = 0. q

Lemma 2.9 There is a polynomial-time algorithm that given two X3C instances X = (Bx,Sx) and
Y = (By,Sy) outputs two X3C instances X ′′ = (B′′

y ,S ′′
y) and Y ′′ = (B′′

y ,S ′′
y) such that ‖B′′

x‖ = ‖B′′
y‖,

‖S ′′
x‖ = ‖S ′′

y ‖, #X3C(X) = #X3C(X ′′), and #X3C(Y) = #X3C(Y ′′).

Proof. We first use the algorithm from Lemma 2.7 to derive instances X ′ = (B′
x,S ′

X) and

Y ′ = (B′
x,S ′

X) such that #X3C(X) = #X3C(X ′′), #X3C(Y) = #X3C(Y ′′),
1
3
‖B′

x‖
‖S‖ = 2

3 , and
1
3
‖B′

x‖
‖S‖ = 2

3 . Without the loss of generality we can assume that ‖B′
x‖ ≤ ‖B′

y‖. We set Y ′′ = Y ′ and
derive X ′′ via repeatedly applying transformation h′ from Fact 2.6 to X ′, until the condition of the
theorem is met. q

In the next lemma and theorem we prove the PP-completeness of PowerCompareSS.

Lemma 2.10 Let f and g be two arbitrary #P functions. There exists a polynomial-time
computable function cmpf,g(x, y) such that (∀x, y ∈ Σ∗)[f(x) > g(y) ⇐⇒ cmpf,g(x, y) ∈
PowerCompareSS].

2We assume that the inputs to ϕ satisfy the requirements of being #X3C′ instances. We implicitly replace any
instance that does not fulfill this requirement with a fixed instance that does satisfy it and that has no solutions.

9

Proof. Let f and g be as in the lemma and let x and y be two arbitrary strings. Since both
f and g are in #P and #X3C is #P-parsimonious-complete, there exist functions ϕf and ϕg that
compute parsimonious reductions from f to #X3C and from g to #X3C, respectively.3

Let (Bx,Sx) = ϕf (x) and (By,Sy) = ϕg(y). Via Lemma 2.9 (and through a slight abuse of
notation) we ensure that ‖Bx‖ = ‖By‖ = 3k and that ‖Sx‖ = ‖Sy‖ = r, where r and k are two
nonnegative integers. Let ϕ be the reduction function from the proof of Theorem 2.8. (Note that
in the proof of Theorem 2.8 we restricted ϕ to work only on instances of X3C that fulfill a special
requirement. For the purpose of this proof we disregard this requirement.)

We now describe our function cmpf,g. Given an instance (Bx,Sx) we compute Gx = ϕ(X) and
Gy = ϕ(Y). We define cmpf,g(x, y) to output (Gx, Gy, 1). Via the properties of ϕ discussed in the
proof of Theorem 2.8, it holds that

SS∗(Gx, 1) = (r − k)!k! ·#X3C(Bx,Sx) = (r − k)!k!f(x), and
SS∗(Gy, 1) = (r − k)!k! ·#X3C(By,Sy) = (r − k)!k!g(y).

Thus f(x) > f(y) if and only if SS(Gx, 1) > SS(Gy, 1), and so it is clear that the function cmpf,g

does what the theorem claims. Naturally, cmpf,g can be computed in polynomial time. q

Theorem 2.11 PowerCompareSS is PP-complete.

Proof. Via Lemma 2.2 it is easy to see that PowerCompareSS is in PP. Let h be some #P-
parsimonious-complete function. PP-hardness of PowerCompareSS follows via a reduction from
PP-complete problem Compareh (see Lemma 2.3). As a reduction we can use, e.g., the function
cmph,h from Lemma 2.10. This completes the proof. q

3 Conclusions and Open Problems

We have shown that the problem of deciding in which of the two given voting games our designated
player has a higher power index value is PP-complete for both the Banzhaf and the Shapley-Shubik
power indices. For the case of Banzhaf, we have used the fact that the raw Banzhaf power index is
#P-parsimonious-complete. For the case of Shapley-Shubik, we have shown that the raw Shapley-
Shubik power index is #P-many-one-complete but not #P-parsimonious-complete. Nonetheless,
using the index’s properties we were able to show the PP-completeness of PowerCompareSS. We
believe that these results are interesting and practically important. Below we mention one particular
application.

In the context of multiagent systems, the Shapley-Shubik power index is often used to distribute
players’ payoffs, i.e., each player’s payoff is proportional to his or her power index value. Recently
Elkind [Elk07] asked about the exact complexity of the following problem: Given a weighted voting
game G = (w1, w2, . . . , wn; q), is it profitable for players 1 and 2 to join? That is, if G′ = (w1 +
w2, w3, . . . , wn; q), is it the case that SS(G′, 1) > SS(G, 1)+SS(G, 2). Using Lemma 2.10 and the fact
that #P is closed under addition we can easily show that this problem reduces to PowerCompareSS

3We assume that neither ϕf nor ϕg ever outputs a malformed instance of X3C. This property is easy to enforce
via the following modification: Whenever either ϕf or ϕg is about to output a malformed instance, replace it with a
fixed, correct one that has no solutions.

10

and thus is in PP. We believe that Elkind’s problem is, in fact, PP-complete and that the techniques
presented in this paper will lead to the proof of this fact. However, at this point the exact complexity
of the problem remains open.

Acknowledgments We thank Jörg Rothe and Edith Elkind for helpful discussions on the topic
of weighted voting games and Jörg Rothe for hosting a visit during which this work was done in
part.

References

[Ban65] J. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers Law
Review, 19:317–343, 1965.

[BBS86] J. Balcázar, R. Book, and U. Schöning. The polynomial-time hierarchy and sparse
oracles. Journal of the ACM, 33(3):603–617, 1986.

[DKNS01] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Proceedings of the 10th International World Wide Web Conference, pages
613–622. ACM Press, March 2001.

[DP94] X. Deng and C. Papadimitriou. On the complexity of comparative solution concepts.
Mathematics of Operations Research, 19(2):257–266, 1994.

[DS79] P. Dubey and L. Shapley. Mathematical properties of the Banzhaf power index. Math-
ematics of Operations Research, 4(2):99–131, May 1979.

[Elk07] E. Elkind, November 2007. Personal communication.

[Gil77] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6(4):675–695, 1977.

[HMRS98] H. Hunt, M. Marathe, V. Radhakrishnan, and R. Stearns. The complexity of planar
counting problems. SIAM Journal on Computing, 27(4):1142–1167, 1998.

[HRSZ98] L. Hemaspaandra, K. Rajasethupathy, P. Sethupathy, and M. Zimand.
Power balance and apportionment algorithms for the United States
Congress. ACM Journal of Experimental Algorithmics, 3(1), 1998. URL
http://www.jea.acm.org/1998/HemaspaandraPower.

[Kre88] M. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36(3):490–509, 1988.

[MM01] Y. Matsui and T. Matsui. NP-completeness for calculating power indices of weighted
majority games. Theoretical Computer Science, 263(1–2):305–310, 2001.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PK90] K. Prasad and J. Kelly. NP-completeness of some problems concerning voting games.
International Journal of Game Theory, 19(1):1–9, 1990.

11

[Sim75] J. Simon. On Some Central Problems in Computational Complexity. PhD thesis, Cornell
University, Ithaca, N.Y., January 1975. Available as Cornell Department of Computer
Science Technical Report TR75-224.

[SS54] L. Shapley and M. Shubik. A method of evaluating the distribution of power in a
committee system. American Political Science Review, 48:787–792, 1954.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[Val79] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

[Vol94] H. Vollmer. On different reducibility notions for function classes. In Proceedings of the
11th Annual Symposium on Theoretical Aspects of Computer Science, pages 449–460.
Springer-Verlag Lecture Notes in Computer Science #775, February 1994.

[Zan91] V. Zankó. #P-completeness via many-one reductions. International Journal of Foun-
dations of Computer Science, 2(1):76–82, 1991.

12

