
Parameterized Minimum Leaf Out-Branching
Problems

Gregory Gutin1, Igor Razgon2, and Eun Jung Kim1

1 Department of Computer Science
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
gutin(eunjung)@cs.rhul.ac.uk

2 Department of Computer Science
University College Cork, Ireland

i.razgon@cs.ucc.ie

Abstract. Given a digraph D, the Minimum Leaf Out-Branching problem
(MinLOB) is the problem of finding in D an out-branching with the minimum
possible number of leaves, i.e., vertices of out-degree 0. We describe three pa-
rameterizations of MinLOB and prove that two of them are NP-complete for
every value of the parameter, but the third one is fixed-parameter tractable
(FPT). The FPT parametrization is as follows: given a digraph D of order
n and a positive integral parameter k, check whether D contains an out-
branching with at most n − k leaves (and find such an out-branching if it
exists). We find a problem kernel of order O(k · 16k) and construct an al-
gorithm of running time O(2O(k log k) + n2 log n), which is an ‘additive’ FPT
algorithm.

1 Introduction

We say that a subgraph T of a digraph D is an out-tree if T is an oriented tree
with only one vertex s of in-degree zero (called the root). The vertices of T of
out-degree zero are called leaves. If T is a spanning out-tree, i.e. V (T) = V (D),
then T is called an out-branching of D. Given a digraph D, the Minimum Leaf
Out-Branching problem (MinLOB) is the problem of finding in D an out-
branching with the minimum possible number of leaves. Denote this minimum
by `min(D). When D has no out-branching, we write `min(D) = 0. The Min-
LOB problem has applications in the area of database systems, cf. the patent
[8]. Notice that not every digraph D has an out-branching. It is not difficult to
see that D has an out-branching (i.e., `min(D) > 0) if and only if D has just
one strong initial connectivity component [3]. Since the last condition can be
checked in linear time [3], we may often assume that `min(D) > 0.

Since MinLOB generalizes the hamiltonian directed path problem, Min-
LOB is NP-hard. In this paper, we consider three parameterizations of Min-
LOB and show that two of them are NP-complete for every value of the para-
meter, but the third one is fixed-parameter tractable.

2 G. Gutin, I. Razgon, and E.J. Kim

We recall some basic notions of parameterized complexity here, for a more
in-depth treatment of the topic we refer the reader to [7, 11, 19].

A parameterized problem Π can be considered as a set of pairs (I, k) where
I is the problem instance and k (usually an integer) is the parameter. Π is called
fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided
in time O(f(k)|I|c), where |I| is the size of I, f(k) is a computable function,
and c is a constant independent from k and I. Let Π and Π ′ be parameterized
problems with parameters k and k′, respectively. An fpt-reduction R from Π
to Π ′ is a many-to-one transformation from Π to Π ′, such that (i) (I, k) ∈ Π
if and only if (I ′, k′) ∈ Π ′ with |I ′| ≤ g(k) for a fixed computable function
g and (ii) R is of complexity O(f(k)|I|c). A reduction to problem kernel (or
kernelization) is an fpt-reduction R from a parameterized problem Π to itself.
In kernelization, an instance (I, k) is reduced to another instance (I ′, k′), which
is called the problem kernel ; |I ′| is the size of the kernel.

It is easy to see that a decidable parameterized problem is FPT if and only
if it admits a kernelization (cf. [11, 19]); however, the problem kernels obtained
by this general result have impractically large size. Therefore, one tries to
develop kernelizations that yield problem kernels of smaller size. The survey
of Guo and Niedermeier [12] on kernelization lists some problem for which
polynomial size kernels and exponential size kernels were obtained. Notice
that a kernelization allows one to obtain so-called additive FPT algorithms,
i.e., algorithms of running time O(nO(1) + g(k)), where g(k) is independent of
n, that are often significantly faster than their ‘multiplicative’ counterparts.

All digraphs in this paper are finite with no loops or parallel arcs. We use
terminology and notation of [3]; in particular, for a digraph D, V (D) and A(D)
denote its vertex and arc sets.

2 Parameterizations of MinLOB

The following is a natural way to parameterize MinLOB.

MinLOB Parameterized Naturally (MinLOB-PN)
Instance: A digraph D.
Parameter: A positive integer k.
Question: Is `min(D) ≤ k ?

Clearly, this problem is NP-complete already for k = 1 as for k = 1
MinLOB-PN is equivalent to the hamiltonian directed path problem. Let v
be an arbitrary vertex of D. Transform D into a new digraph Dk by adding k
vertices v1, v2, . . . , vk together with the arcs vv1, vv2, . . . , vvk. Observe that D
has a hamiltonian directed path terminating at v if and only if `min(D) ≤ k.
Since the problem is NP-complete of checking whether a digraph has a hamil-
tonian directed path terminating at a prescribed vertex, we conclude that
MinLOB-PN is NP-complete for every fixed k.

Parameterized Minimum Leaf Out-Branching Problems 3

Clearly, `min(D) ≤ n−1 for every digraph D of order n. Consider a different
parameterizations of MinLOB.

MinLOB Parameterized Below Guaranteed Value (MinLOB-
PBGV)
Instance: A digraph D of order n with `min(D) > 0.
Parameter: A positive integer k.
Question: Is `min(D) ≤ n− k ?
Solution: An out-branching B of D with at most n − k leaves or the
answer NO to the above question.

Note that we consider MinLOB-PBGV as a search problem, not just as
a decision problem. In the next section we will prove that MinLOB-PBGV is
fixed-parameter tractable. We will find a problem kernel of order O(k ·16k) and
construct an additive FPT algorithm of running time O(2O(k log k) + n2 log n).
To obtain our results we use notions and properties of vertex cover and tree
decomposition of underlying graphs.

The parametrization MinLOB-PBGV is of the type below a guaranteed
value. Parameterizations above/below a guaranteed value were first consid-
ered by Mahajan and Raman [18] for the problems Max-SAT and Max-Cut;
such parameterizations have lately gained much attention, cf. [9, 13–15, 19] (it
worth noting that Heggernes, Paul, Telle, and Villanger [15] recently solved
the longstanding minimum interval completion problem, which is a parame-
trization above guaranteed value). For directed graphs there have been only a
couple of results on problems parameterized above/below a guaranteed value,
see [4, 10]. In particular, Bang-Jensen and Yeo [4] proved that the following
problem is FPT. Let ms(D) denote the minimum number of arcs in a strongly
connected spanning subgraph of D.

Minimum Spanning Strong Subdigraph
Instance: A strongly connected digraph D of order n.
Parameter: A positive integer k.
Question: Is ms(D) ≤ 2(n− 1)− k ?

Observe that ms(D) ≤ 2(n − 1) for every strongly connected digraph D
since a strongly connected spanning subgraph of D can be constructed as
follows: find an out-branching B+ and in-branching B− rooted at the same
vertex of D; clearly, B+ ∪B− is strongly connected.

Let us denote by K1,p−1 the star digraph of order p, i.e., the digraph with
vertices 1, 2, . . . , p and arcs 12, 13, . . . , 1p. Our success with MinLOB-PBGV
may lead us to considering the following stronger (than MinLOB-PBGV) pa-
rameterizations of MinLOB.

4 G. Gutin, I. Razgon, and E.J. Kim

MinLOB Parameterized Strongly Below Guaranteed Value
(MinLOB-PSBGV)
Instance: A digraph D of order n with `min(D) > 0.
Parameter: An integer k ≥ 2.
Question: Is `min(D) ≤ n/k ?

Unfortunately, MinLOB-PSBGV is NP-complete for every fixed k ≥ 2. To
prove this consider a digraph D of order n and a digraph H obtained from D
by adding to it the star digraph K1,p−1 on p = bn/(k − 1)c vertices (V (D) ∩
V (K1,p−1) = ∅) and appending an arc from vertex 2 of K1,p−1 to an arbitrary
vertex y of D. Observe that `min(H) = p− 1 + `min(D, y), where `min(D, y) is
the minimum possible number of leaves in an out-branching rooted at y, and
that 1

k |V (H)| = p + ε, where 0 ≤ ε < 1. Thus, `min(H) ≤ 1
k |V (H)| if and only

if `min(D, y) = 1. Hence, the hamiltonian directed path problem with fixed
initial vertex (vertex y in D) can be reduced to MinLOB-PSBGV for every
fixed k ≥ 2 and, therefore, MinLOB-PSBGV is NP-complete for every k ≥ 2.

3 Solving MinLOB-PBGV

As noted in the introduction, we may safely assume that the given digraph has
at least one out-branching. Let D be a digraph and let B be an out-branching
of D. Let P be the set of parents of leaves of B, i.e., P is the set of all such
vertices u that at least one child of u is a leaf in B. We partition the vertices
of P into the sets BP (bad parents) and GP (good parents) where BP consists
of all the vertices of P whose out-degree in B is at least 2, and GP are those
vertices whose out-degree in B is 1. (We’d like to emphasize that it is essential
that we consider in this definition the out-degree of the vertices in B, not in
the whole graph D.) We call a leaf u of B a good leaf if its parent belongs to
GP , otherwise it is a bad leaf.

Definition 1. We call B a normalized out-branching if D has no arc uv such
that both u and v are leaves and v is a bad leaf.

The following two lemmas reveal interesting properties of normalized out-
branchings.

Lemma 1. A normalized out-branching of D can be constructed in polynomial
time.

Proof. Pick an arbitrary out-branching B of D, this can be done in a poly-
nomial time [3]. If B is normalized (this clearly can be checked in polynomial
time), just stop and return it. Otherwise, let uv ∈ A(D) such that both u
and v are leaves and v is a bad leaf. Let w be the parent of v and consider
the out-branching B′ obtained from B by removal of wv and addition of uv.

Parameterized Minimum Leaf Out-Branching Problems 5

Observe that B′ has less leaves than B. Indeed, u is not a leaf in B′ while w is
not transformed to a leaf due to being a bad parent. Since any out-branching
has at least one leaf, after less than n such transformations, we obtain a nor-
malized out-branching. ut

For the next lemma we need the following definitions. Let D be a digraph.
The underlying graph UG(D) of D is obtained from D by omitting all orienta-
tion of arcs and by deleting one edge from each resulting pair of parallel edges.
A vertex cover of D is a vertex cover of UG(D).

Lemma 2. Let D be a digraph of order n ≥ 3 and let B be a normalized
out-branching of D. Then at least one of the following statements is true.

1. B has at most n− k leaves
2. D has a vertex cover of size at most 2k − 3.

Proof. Assume that B has at least n− k + 1 leaves. Then the number of non-
leaf vertices is at most k − 1. Note that the number of good leaves does not
exceed the number of non-leaf vertices because each good leaf has a parent but
no two good leaves share the same parent. Furthermore, the non-leaf vertices
together with good leaves constitute a vertex cover of D because, by definition
of a normalized branching there is no arc between two bad leaves. Therefore
we may conclude that D has a vertex cover of size at most 2(k− 1). A slightly
more precise evaluation allows us to reduce this number to 2k − 3.

Notice that the root r of B does not belong to GP . Indeed, if r ∈ GP then
the only child of r is the respective good leaf, which, in turn, has no children.
Thus, D has only two vertices which contradicts our assumption. Hence, the
number of good leaves does not exceed the number of non-root non-leaf vertices
of B, which is at most k − 2. Consequently, the size of the vertex cover is at
most 2k − 3. ut

In the rest of this section we assume that the digraph D under consideration
has at least 3 vertices.

It follows from the combination of Lemma 1 and Lemma 2 that there is
a polynomial algorithm that given an instance (D, k) of the MinLOB-PBGV
problem either returns a solution or specifies a vertex cover of D of size at
most 2k − 3. Using the following lemma, we will be able to show that in the
latter case there is an elegant way of kernelization.

Lemma 3. Let (D, k) be an instance of the MinLOB-PBGV problem and let
U be a vertex cover of D. Then (D, k) can be reduced in polynomial time to
an instance (D′, k) of this problem where |V (D′)| = O(|U |4|U |).

6 G. Gutin, I. Razgon, and E.J. Kim

Proof. The strategy of this proof can be called ‘folding-unfolding’: We first
partition the set of vertices of V (D) \ U into classes (the folding stage) and
show that the number of distinct classes cannot be too large. Then we show
that the number of vertices within each class cannot be too large (the unfolding
stage).

Let us partition the vertices of V (D) \ U into equivalence classes so that
the vertices within each equivalence class have the same sets of in- and out-
neighbors. Let us evaluate the largest possible number of such equivalence
classes. Let u ∈ U and v ∈ V (D)\U . Note that there may be 4 possibilities for
the set A(u, v) of arcs between u and v: A(u, v) = ∅, |A(u, v)| = 2, A(u, v) =
{uv}, or A(u, v) = {vu}. Consequently, there may be at most 4|U | possibilities
of setting all adjacencies between U and v. Therefore the number of distinct
equivalence classes does not exceed 4|U |.

In order to proceed it is more convenient to think about MinLOB-PBGV
problem as a problem of constructing an out-branching with at least k non-leaf
vertices rather than at most n−k leaf vertices (clearly these two representations
are equivalent).

Let D′ be a digraph obtained from D as follows. For each equivalence class
which contains t > 2|U | vertices remove t − 2|U | arbitrary vertices from this
class. We claim that (D, k) is a ’YES’ instance of the MinLOB-PBGV problem
if and only if (D′, k) is.

Assume that (D′, k) is a ’YES’ instance and let B′ be an out-branching
of D′ having at least k non-leaf vertices. If no vertex has been removed then
D = D′, i.e., B′ is the desired out-branching of D and (D, k) is a ’YES’
instance. Otherwise note that the vertices within an equivalence class of size
two or more have at least one in-neighbor in D. Otherwise D has two or more
vertices with in-degree 0 and hence no out-branching in contradiction to our
assumption. Consequently the in-degree of each removed vertex is at least 1.

Therefore for each removed vertex v we can pick up an arbitrary in-
neighbor u in D and add the arc uv to B′. Let B be the resulting digraph. It
is not hard to observe that B is an out-branching of D with at least k non-leaf
vertices. Therefore (D, k) is a ’YES’ instance, as required.

Assume that (D, k) is a ’YES’ instance and let B be an out-branching of D
with at least k non-leaf vertices. Let S be a set of vertices of V (D) \U having
the following properties.

– Each non-leaf vertex of V (D) \ U belongs to S
– Let u be a non-leaf vertex of U such that all the children of u in B are

leaves and belong to V (D) \ U . Then exactly one child of u belongs to S
– No other vertices are contained in S.

Let B∗ be a digraph obtained by removal from B all the vertices of (V (D)\
U)\S. The first property of S ensures that all the non-leaf vertices of B remain

Parameterized Minimum Leaf Out-Branching Problems 7

in B∗. Therefore B∗ is an out-tree. The second property ensures that all the
non-leaf vertices of B remain non-leaf vertices in B∗. Since no non-leaf vertices
are introduced by transformation from B to B∗ we may conclude that B and
B∗ have the same set of non-leaf vertices.

In order to proceed, we calculate the size of S. Each non-leaf vertex of S
has a child in U and no two vertices share the same child. Hence the number
of non-leaf vertices of S is at most |U |. Each leaf vertex of S has a parent in
U and, by the second property, no two leaf vertices of S share a parent. That
is the number of leaf vertices of S is at most |U | and |S| ≤ 2|U |.

Let Z1, . . . , Zl be the equivalence classes of V (D) \ U mentioned above.
Denote S ∩ Zi by Si. Then we have proven the following statement.

Statement 1 It is possible to pick up |Si| ≤ 2|U | vertices from each Zi to
form a set S which together with U constitute the vertex set for a subgraph
B∗ of D which is an out-tree with at least k non-leaf vertices and the set of
non-leaf vertices of B∗ is the set of non-leaf vertices of an out-branching of D.

Taking into account that for each i all the vertices within Zi have the same
neighborhood, we can formulate a stronger statement.

Statement 2 Pick up |Si| ≤ 2|U | arbitrary vertices from each Zi. The selected
vertices form a set S which together with U constitute the vertex set for a
subgraph B∗ of D which is an out-tree with at least k non-leaf vertices and the
set of non-leaf vertices of B∗ is the set of non-leaf vertices of an out-branching
of D.

Note that for each i, |Si| ≤ |V (D′) ∩ Zi|. This is clear if V (D′) ∩ Zi =
V (D)∩Zi. Otherwise, it follows from the fact that |V (D′)∩Zi| = 2|U |, while
|Si| ≤ 2|U |. Taking into account the construction of D′ and Statement 2, we
get the following:

Statement 3 There is a subgraph B∗ of D′ which is an out-tree with at least
k non-leaf vertices and the set of non-leaf vertices of B∗ is the set of non-leaf
vertices of an out-branching of D.

If the in-degree of each vertex u of V (D′) \ V (B∗) in D′ is at least 1, we
can extend B∗ to an out-branching of D′ with the same non-leaf vertices as
shown above (i.e. selecting an in-neighbor for each vertex of V (D′) \ V (B∗)
and adding appropriate arcs to B∗). Therefore, in this case (D′, k) is a ’YES’
instance. Otherwise, there is a vertex u ∈ V (D′) \ V (B∗) whose in-degree is
D′ is zero. Note that the transformation from D to D′ does not change the
degrees (both in- and out-) of the vertices of V (D)\U and does not reduce the
degrees of vertices of U from non-zero to zero. It follows that the in-degree of
u in D is also zero. Consequently u is the root of any out-branching of D. In

8 G. Gutin, I. Razgon, and E.J. Kim

particular, it is a non-leaf vertex of any out-branching of D (because otherwise
|V (D)| = 1 in contradiction to our assumption). It follows that u is a non-leaf
vertex of B∗ and cannot belong to V (D′) \ V (B∗). This contradiction shows
that (D′, k) is a ’YES’ instance of the considered problem.

Thus we have shown that the the MinLOB-PBGV problem with parameter
k on D can be reduced to the MinLOB-PBGV problem with parameter k on
digraph D′, |V (D′)| ≤ 2|U |4|U |+ |U |, which completes the proof of the present
lemma. ut

Combining Lemmas 1, 2 and 3 we immediately obtain the following theo-
rem.

Theorem 4. The MinLOB-PBGV problem is FPT. In particular, there is a
polynomial-time algorithm which given an instance (D, k) of the MinLOB-
PBGV problem, either produces a solution or reduces the instance (D, k) to an
instance (D′, k) where |V (D′)| = O(k · 16k).

Thus we have shown that the MinLOB-PBGV problem has a kernel of order
proportional to k · 16k. Now we have to clarify how we explore this kernel in
order to get the desired out-branching. A straightforward exploration of all
possible out-branchings (using, e.g., the main algorithm of [16]) is not a good
choice because the number of different out-branchings may be up to pp−1,
where p = |V (D′)| = (k · 16k). Indeed, by the famous Kelly’s formula the
number of spanning trees in the complete graph Kp on p vertices equals pp−2.
In the complete digraph on p vertices, one can get p out-branchings from each
spanning tree of Kp by assigning a vertex to be the root.

In order to achieve a better running time we provide an alternative way
of showing the fixed-parameter tractability of the MinLOB-PBGV problem
based on the notion of tree decomposition.

A tree decomposition of an (undirected) graph G is a pair (X, U) where
U is a tree whose vertices we will call nodes and X = {Xi : i ∈ V (U)} is a
collection of subsets of V (G) (called bags) such that

1.
⋃

i∈V (U) Xi = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi,

and
3. for each v ∈ V (G) the set of nodes {i : v ∈ Xi} form a subtree of U .

The width of a tree decomposition ({Xi : i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−
1}. The treewidth of a graph G is the minimum width over all tree decompo-
sitions of G. We use the notation tw(G) to denote the treewidth of a graph
G.

By a tree decomposition of a digraph D we will mean a tree decomposition
of the underlying graph UG(D). Also, tw(D) = tw(UG(D)).

Parameterized Minimum Leaf Out-Branching Problems 9

Theorem 5. There is a polynomial algorithm that, given an instance (D, k)
of the MinLOB-PBGV problem, either finds a solution or establishes a tree
decomposition of D of width at most 2k − 3.

Proof. Combining Lemma 1 and Lemma 2, there is a polynomial algorithm
which either finds a solution or specifies a vertex cover C of D of size at
most 2k − 3. Let I = {v1, . . . , vs} = V (D) \ C. Consider a star U with nodes
x0, x1, . . . , xs and edges x0x1, x0x2, . . . , x0xs. Let X0 = C and Xi = X0 ∪ {vi}
for i = 1, 2, . . . , s and let Xj be the bag corresponding to xj for every j =
0, 1, . . . , s. Observe that ({X0, X1, . . . , Xs}, U) is a tree decomposition of D
and its width is at most 2k − 3. ut

Theorem 5 shows that an instance (D, k) of the MinLOB-PBGV prob-
lem can be reduced to another instance having treewidth O(k). Using stan-
dard dynamic programming techniques we can solve this instance in time
2O(k log k)nO(1). On the first glance it seems that this running time makes the
above kernelization redundant. However, although the O(k · 16k) kernel is not
polynomial, yet it is much smaller than 2O(k log k). Therefore if we first find a
kernel and then establish the tree decomposition, the resulting dynamic pro-
gramming algorithm runs in time 2O(k log k) + nO(1) without changing the con-
stant at k log k. More precisely, Theorem 4 and Theorem 5 imply the following
corollary.

Corollary 1. Let D a digraph. Assume that for this digraph a tree-decomposition
of width 2k− 3 is specified. Assume also that given this tree-decomposition the
MinLOB-PBGV problem can be solved in time 2ck log knO(1). Then for any in-
stance (D, k), the MinLOB-PBGV problem can be solved in time O(2ck log k+dk+
n2 + nk log n), where d is a constant.

Proof. The additional dk at the exponent follows from replacing nO(1) by
(k16k)O(1). It remains to clarify where n2 +nk log n comes from. Observe that
the polynomial part of the algorithm produces a normalized out-branching
and partitions into equivalence classes the vertices which lie outside of the
specified vertex cover. The normalization can be carried out in two stages.
In the first stage all the arcs violating the normalized out-branching property
are detected. This can be done in a time proportional to the number of arcs,
i.e. O(n2). On the second stage all these arcs are eliminated. After that the
branching is normalized because the elimination routine does not produce new
eliminating arcs. 1 Thus the normalization can be done on O(n2). The parti-
tion into equivalence classes can be done by sorting the rows of the adjacency
matrix according to any selected lexicographic order and traversing the rows

1 Moreover, elimination of an arc can cause another arc to be non-violating.

10 G. Gutin, I. Razgon, and E.J. Kim

of the resulting matrix. The sorting can be done in time O(n log n) multiplied
by the comparison cost, i.e. O(k). ut

The above results imply the following:

Theorem 6. The MinLOB-PBGV problem can be solved by an additive FPT
algorithm of running time O(2O(k log k) + n2 log n).

4 Further Research

We have proved that MinLOB-PBGV is FPT. It would be interesting check
whether MinLOB-PBGV admits significantly more efficient FPT algorithms,
i.e., algorithms of complexity O(cknO(1)), where c is a constant. The same
question is of interest for the following related problem, which is the natural
parametrization of the Maximum Leaf Out-Branching problem.

MaxLOB Parameterized Naturally (MaxLOB-PN)
Instance: A digraph D.
Parameter: A positive integer k.
Question: Does D have an out-branching with at least k leaves ?

Alon et al. [1, 2] proved this problem is FPT for several special classes of
digraphs such as strongly connected digraphs and acyclic digraphs and Bonsma
and Dorn [5] proved that the problem is FPT. Note that in the three papers,
MaxLOB-PN algorithms are of running time O(2k(log k)O(1) · nO(1)).

Acknowledgements We are grateful to Bruno Courcelle for useful dis-
cussions related to his fundamental theorem. Research of Gutin and Kim was
supported in part by an EPSRC grant. Part of the paper was written when
Razgon was vising Department of Computer Science, Royal Holloway, Univer-
sity of London.

References

1. N. Alon, F. Fomin, G. Gutin, M. Krivelevich and S. Saurabh, Parameterized Algorithms
for Directed Maximum Leaf Problems. Proc. ICALP 2007, LNCS 4596 (2007), 352-362.

2. N. Alon, F. Fomin, G. Gutin, M. Krivelevich and S. Saurabh, Better Algorithms and
Bounds for Directed Maximum Leaf Problems. Proc. Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2007, India. To appear in LNCS.

3. J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications. Springer,
2000; freely available online at www.cs.rhul.ac.uk/books/dbook/

4. J. Bang-Jensen and A. Yeo, The minimum spanning strong subdigraph problem is fixed
parameter tractable. To appear in Discrete Applied Math.

5. P.S. Bonsma and F. Dorn, An FPT Algorithm for Directed Spanning k-Leaf. Preprint
046-2007, Combinatorial Optimization & Graph Algorithms Group, TU Berlin, Nov.
2007.

Parameterized Minimum Leaf Out-Branching Problems 11

6. B. Courcelle, The expression of graph properties and graph transformations in monadic
second-order logic. In Handbook of graph grammars and computing by graph transforma-
tions, Vol. 1 : Foundations (G. Rozenberg ed.), World Scientific, 1997, 313–400.

7. R.G. Downey and M.R. Fellows, Parameterized Complexity , Springer,1999.
8. A. Demers and A. Downing, Minimum leaf spanning tree. US Patent no. 6,105,018,

August 2000.
9. H. Fernau, Parameterized Algorithmics: A Graph-theoretic Approach. Habilitation thesis,

U. Tübingen, 2005.
10. H. Fernau, Parameterized Algorithmics for Linear Arrangement Problems. Manscript,

July 2005.
11. J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.
12. J. Guo and R. Niedermeier, Invitation to Data Reduction and Problem Kernelization.

ACM SIGACT News 38 (2007), 31–45.
13. G. Gutin, A. Rafiey, S. Szeider and A. Yeo, The Linear Arrangement Problem Parame-

terized Above Guaranteed Value. Theory of Computing Systems 41 (2007), 521–538.
14. G. Gutin, S. Szeider and A. Yeo, Fixed-Parameter Complexity of Minimum Profile Prob-

lems. To appear in Algorithmica.
15. P. Heggernes, C. Paul, J.A. Telle, and Y. Villanger, Interval completion with few edges.

Proc. STOC 2007 - 39th ACM Symposium on Theory of Computing, 374 – 381.
16. S. Kapoor and H. Ramesh, An Algorithm for Enumerating All Spanning Trees of a

Directed Graph. Algorithmica 27 (2000), 120–130.
17. T. Kloks, Treewidth-Computations and approximations, Springer-Verlag LNCS 842, 1994.
18. M. Mahajan and V. Raman, Parameterizing above guaranteed values: MaxSat and Max-

Cut. J. Algorithms 31 (1999), 335–354.
19. R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford University Press,

2006.

