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Wireless networks gorithm which sends packets over shortest paths, and we use resource augmentation to
Data gathering analyze its performance when the objective is to minimize the average flow time. If inter-
Approximation algorithm ferences are modeled as in Bar-Yehuda et al. [R. Bar-Yehuda, O. Goldreich, A. Itai, On the
Distributed algorithm time complexity of broadcast in multi-hop radio networks: an exponential gap between
On-line algorithm determinism and randomization, Journal of Computer and Systems Sciences 45 (1) (1992)
Resource augmentation 104-126] we prove that the algorithm is (1 4+ €)-competitive, when the algorithm sends

packets a factor O(log(8/€) log A) faster than the optimal off-line solution; here § is the
radius of the network and A the maximum degree. We finally extend this result to a more
complex interference model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Wireless networks are used in many areas of practical interest, such as mobile phone communication, ad hoc networks,
and radio broadcasting. Moreover, recent advances in miniaturization of computing devices equipped with short range
radios have given rise to great interest in sensor networks for their relevance in many practical scenarios (environment
control, accident monitoring, etc.) [1,21].

In many applications of wireless networks data gathering is a critical operation for extracting useful information from
the operating environment: information collected from multiple nodes in the network should be transmitted to a sink that
may process the data, or act as a gateway to other networks. In the case of wireless sensor networks, sensor nodes have
limited computation capabilities, thus implying that data gathering is an even more crucial operation. For these reasons,
data gathering in sensor networks has received significant attention in the past few years; we restrict ourselves to cite only
two contributions, where further pointers to the literature can be found [1,10]. The problem also finds applications in Wi-Fi
networks when many users need to access a gateway using multi-hop wireless relay routing [5].
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Aninstance of the Wireless Gathering Problem (WGP) is given by a static wireless network which consists of several stations
(nodes) and one base station (the sink), modeled as vertices of a graph; over time data packets arrive at stations that have
to be gathered at the base station. In what follows we assume that time is discrete and that stations have a common clock,
hence time can be divided into rounds. Following Bar-Yehuda et al. [2], we adopt the half-duplex model, in which nodes can
either send or receive during a single round. Typically, not all nodes in the network can communicate with each other, hence
packets have to be sent through several nodes before they can be gathered at the sink; this is called multi-hop routing. The
crucial issue to be considered is interference: the communication between two pairs of nodes causes interference if either of
the receiver nodes also receives the communication signal intended for the other node. In case of interference, the receiver
node does not receive the packet (we do not assume any collision detection mechanism).

Realistic models of communication among nodes depend on many parameters that influence the performance of trans-
missions (see for example [1,25]); this raises many combinatorial optimization problems that received significant atten-
tion in the last few years. We notice that most solution methods proposed so far focus on polynomial time algorithms that
achieve provably good performance in the worst case. Unfortunately these methods are not suitable for practical implemen-
tations; in fact they are centralized and/or require solving complex combinatorial optimization problems [5,15,16]. Since
sensors have limited computational power and are unable to perform sophisticated coordination activities, sophisticated al-
gorithms that require solving complex combinatorial optimization problems are impractical for implementations and have
mainly theoretical interest. Communication algorithms that have been implemented and tested in real scenarios are not
only distributed but can be implemented with very limited overhead (see e.g. BMAC and DMAC [18,23]).

We notice that a formal analysis of the performance of simple algorithms suitable for practical implementation is still
missing. In this paper we continue the work initiated in [2,3,8] on the problem of analyzing simple distributed algorithms
that have good approximation guarantees in realistic scenarios. We emphasize that the algorithms analyzed are very simple
and that the challenge is not in their design but in their analysis. Namely, we consider fully distributed algorithms, i.e., each
node makes decisions of when to transmit independently of other nodes. Our model is more restricted than decentralized
algorithms which may allow information exchange between neighboring nodes before transmission to decrease the
possibility of interference even further.

In order to perform our analysis we make several assumptions that are discussed in what follows. First of all we assume
that time is discrete and that nodes share a common clock. We observe that this assumption is common to most (if not all)
research that aims to formally evaluate communication algorithms and that a synchronized network is necessary in many
applications of sensor networks. For these reasons, there is an extensive study on network synchronization; as a result,
known synchronization algorithms are very effective in practice, being able to reduce the time difference among clocks to a
few tens of microseconds (see for example [24]).

We also assume that each node has a unique identifier. We observe that there are scenarios where there are no node
identifiers; nevertheless, the assumption that nodes are uniquely identified is coherent with the limitations imposed by the
technology: it is known that even RFID tags have an identifier plugged in during their production. Moreover, there are basic
tasks that require unique identification of nodes in order to break symmetries.

Furthermore, we assume that all nodes of the network are connected by a routing tree and that each node is aware of the
distance (number of hops) to the sink. We observe that methods for building a routing tree are well known and adopted in
practice (see for example [11,17,26]). Namely, we assume that packets are routed through a breadth-first search (BFS) tree;
such a tree can be constructed efficiently using distributed algorithms [3]. The routing tree is then used for communication.
Because of interference, a node can receive at most one message from its children: if two or more children try to reach their
parent in the same round, then a conflict arises. Randomization is a tool that is well known for its simplicity and effectiveness
in practice in order to decrease the possibility of conflicts, in particular in the context of collision avoidance protocols.

A relevant parameter that has been considered in the literature is A, the maximum degree of a node in the network
[3,15,16]. We assume that all nodes know A (or an upper bound on it); we observe that such an information can be easily
obtained once the routing tree has been constructed.

To assess the quality of the algorithm we use resource augmentation, a technique that, in the context of machine

scheduling, was introduced by Kalyanasundaram and Pruhs [12]. The idea is to study the performance of on-line algorithms
which are given processors faster than those of the adversary. Intuitively, this is done to compensate an on-line scheduler
for its lack of future information. Such an approach has led to a number of interesting results showing that moderately
faster processors are sufficient to attain satisfactory performance guarantees for different scheduling problems; see for
example [12,22].
Related work. All of the above assumptions also underlie the seminal paper by Bar-Yehuda et al. [3], where the problem
of data gathering has been considered as a subproblem in wireless routing. The authors prove that a simple randomized
algorithm requires in expectation O((m + §) log A) rounds to gather m packets, where § is the radius of the network, and
A is the maximum degree of a node. Hence, their algorithm is in expectation an O(log A)-approximation of the optimal
maximum completion time. A restrictive assumption in Bar-Yehuda et al. [3] is that all packets are released simultaneously.
The authors pose as open problems the study of packets released over time and the analysis of objective functions different
from the maximum completion time.

The wireless gathering problem in a centralized setting was studied by Bermond et al. [5,4,6] and Bonifaci et al. [7,8].
Bermond et al. [5] showed that the problem of minimizing maximum completion time is NP-hard, even when all release
times are zero. In Refs. [7,8] we studied centralized and distributed algorithms for the wireless gathering problem with
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arbitrary release times. For the case of minimizing the maximum completion time, we presented a 4-competitive algorithm,
and proved that no shortest path following algorithm can be better than 4-approximate [7]. For the case of minimizing
maximum flow time, we presented an algorithm which, under resource augmentation by sending packets a factor 5
faster than an off-line algorithm, produces a solution with value at most the optimal off-line solution value. For both the
minimization of maximum flow time and of average flow time, we also showed that for any € > 0 no algorithm can be better
than §2(m'~¢)-approximate, without resource augmentation, unless P = NP [8]. We remark that distributed algorithms
considered in [8] require coordination among neighboring nodes to avoid interferences during transmission; this can be
accomplished through a suitable signaling protocol that however is not realistic in current sensor networks.

Kumar et al. [15,16] considered decentralized algorithms for wireless packet routing. They provide near-optimal
polynomial time routing and scheduling algorithms for solving throughput maximization problems in wireless ad hoc
networks. However, their algorithms are not distributed in the sense that nodes use information about neighboring nodes
in order to decrease interference and in some case hinge on the solution of a linear or a convex optimization problem. For
this reason the above results are mainly of theoretical interest.

As we remarked, there has been much work in recent years on various optimization issues in communication algorithms
for wireless and sensor networks; see [13,14,20,27] and references therein. However, to the best of our knowledge, a formal
analysis of the worst case performance of simple distributed algorithms that are suitable for implementation in real sensor
networks scenarios is still missing.

2. Preliminaries

We formulate WGP as a graph optimization problem. Given is an undirected graph G = (V, E) with |V| = n, sinks € V,
and a set of data packets M = {1, 2, ..., m} which arrive over time. We assume that each edge has unit length. For each
pair of nodes u, v € V we define the distance between u and v, denoted by d(u, v), as the length of a shortest path from u to
v in G. A layer of nodes is a set of all nodes at distance d from sink s, for some d. Each packet j € M has an origin v; € V and
arelease time rj € Z, at which it enters the network.

We assume that time is discrete; we call a time unit a round. Packet j can be sent for the first time in round r;. The rounds
are numbered 0, 1, 2, . ... During each round a node may either be sending a packet, be receiving a packet, or be inactive.
If d(u, v) = 1then u can send some packet j to v during a round. If node u sends a packet j to v in some round, then the
pair (u, v) is called a call of packet j during that round. Two calls (u, v) and (v/, V') interfere if d(u’, v) = 1ord(u, v') = 1,
otherwise the calls are compatible. The solution of WGP is a schedule of compatible calls such that all packets are sent to the
sink.

The above definition of interference is known in the literature as primary interference; we consider in Section 5 the
extension to incorporate secondary interference, i.e., interference between non-adjacent but proximate links in the network.

Given a schedule, let v be the node where packet j resides at time t. The quantity ; := min{t : vjt = s} is called the
completion time of packet j. We define F; := C; —r; as the flow time of packet j. We assume that packets cannot be aggregated.
As extra notation, let §; := d(vj, s) be the minimum number of calls required for packet j to reach s, and let § := maX;eum §;
(that s, § is the radius of the network).

In this paper we analyze distributed algorithms under the following assumptions. A network with a shortest paths routing
tree is given, and each node knows the next node on the path to the tree root (the sink), as well as d(v;, s), its distance to
the root. Further, we assume that each node is equipped with a clock and the clocks are synchronized, i.e., they indicate
the same time. This enables nodes to synchronize packet communications. Also, each node knows an upper bound on the
maximum node degree, called A.

3. Alower bound for distributed algorithms

It is known from previous work that WGP is NP-hard when minimizing the maximum completion time, the maximum
flow time or the total flow time [7,8]. The latter problems regarding flow times are in fact NP-hard to approximate within a
factor £2(m'~¢), for any € > 0[8]. Here we give an unconditional lower bound on the approximability of the maximum flow
time in a distributed setting where routing is done through an in-tree. We consider a scenario in which the conflicts between
transmissions from one layer of the tree to the next are resolved randomly: whenever several transmissions from a layer
occur in the same round, only a uniformly chosen one succeeds. We call this the random selection model. This assumption
seems natural for distributed algorithms, as they have no simple means of coordinating the transmitting nodes (or more
precisely, coordinating the transmitting nodes is as hard as the original communication task). We will give our lower bound
on a star network with the sink at the center. In this case, the gathering problem becomes similar to the problem of accessing
a single multiple-access channel. We can assume that every station processes packets in the order they are injected at the
station. As is standard in the literature, a (deterministic) distributed gathering protocol can be modeled as an automaton [19],
determined by an internal state and a transition function. Each internal state stipulates whether the pending packet is to be
transmitted towards the sink in the current round. Our other assumption is that the protocol is acknowledgment-based [9].
This means that the state of every node depends only on: (1) the number of nodes in the network; (2) the identity of the
node; (3) the number of rounds elapsed since the currently processed packet became the first in the FIFO buffer at the node.
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Proposition 3.1. In the random selection model, there are instances for which the expected competitive ratio of any
acknowledgment-based protocol is at least §2 (n) when minimizing the maximum flow time.

Proof. Consider any acknowledgment-based protocol in the random selection model; we give the lower bound on a star
network of n nodes, with the center of the star being the sink node. Because the protocol is acknowledgment-based, there
are two possibilities: either (1) there is some node v for which the protocol prescribes to wait for at least a round after a
new packet comes at the top of the node’s FIFO buffer; or (2) all nodes try to transmit in the round in which a new packet
comes at the top of the buffer.

In case (1), injecting n packets at node v, one every round for n rounds, allows the adversary to deliver every packet the
round after it has been released, so that the maximum flow time is 1. On the other hand, the maximum flow time of the
protocol is ® (n), because when the last packet is injected at most n/2 packets have been delivered (by our assumption that
v waits one extra round before transmitting). Thus in case (1) the lower bound is established. In the following we focus on
case (2).

In this case, the adversary will release n2" packets. The sequence consists of 2" consecutive phases, each of n rounds. In
the first round of each phase, two packets are released simultaneously on nodes 1 and 2 of the star, and in the jth round
(1 < j < n)a packet is released on node j + 1. In the last round of each phase no new packet is released. The adversary
delivers to the sink one of the packets released in the first round of a phase immediately, and the other packet in the following
round. The adversary then sends all other packets one round after their release dates, hence the maximum flow time of the
adversary is 2.

The protocol can obviously send only one of the packets released in the first round of the phase, and has to send the other
packet in a later round. We call the packet which is released but not sent by the protocol the target packet. We prove the
proposition by showing that the expected flow time of one of the n target packets is at least n.

Since we are in case (2), every node will transmit in the first round in which a new packet is injected into it. This means
that in each round of a phase some packet different from the target packet is also trying to access the sink.

Let X be the random variable indicating the flow time of a target packet. We know that X > 2. Because of the random
selection rule, at every round the target packet has a chance of 1/2 of reaching the sink (or less, depending on the protocol,
but that can only increase the flow time). In formulas, for all t suchthat1 <t < n,

PriX =t +1]X > t] = 1/2.

This means that Pr[X =t + 1] = 27
Consider the set of 2" target packets. For £ = 1, ..., 2" let X, = 1 be the event that target packet £ has flow time n.
Otherwise X; = 0. Then E[X,] = 2"+ forall £ = 1, ..., n and therefore the expected number of target packets with flow

time at least nis E [Zﬁll Xg:l = Zﬁll E[X,] = 2. Hence, in expectation at least one target packet has flow time £2(n). O

It is useful to compare Proposition 3.1 with the above cited result, that there is no polynomial time algorithm which can
approximate WGP within a factor sublinear in the number of packets when minimizing the maximum flow time, unless
P = NP. The latter condition is not required in Proposition 3.1. In [8] it was shown that, allowing a constant increase in
speed, one can obtain a solution with maximum flow time which is less than that of the optimal solution for the original
instance. Proposition 3.1 indicates that such a result is not attainable by distributed algorithms that choose randomly the
packets to be advanced. Most of the distributed algorithms that have been proposed for the gathering problem (for example,
the one in [3]) are of this type, but it would be interesting to extend this negative result to all distributed algorithms.

In the next section, we will analyze a distributed algorithm. It cannot determine which packet is advanced from each
layer to the next. Proposition 3.1 and the observations above should thus explain why we focus on the analysis of the total
flow time (as opposed to maximum flow time) and why we need to use resource augmentation.

4. A distributed algorithm and its analysis

4.1. The algorithm

We consider a distributed algorithm for Wap first introduced by Bar-Yehuda et al. in the context of minimizing the
maximum completion time for the gathering problem without release dates [3]. We focus on flow times.

To reduce interference between nodes, the algorithm uses node labels. A node at distance d from the sink is assigned label
d mod 3. Each node can be either active during a round or inactive; only active nodes will transmit a packet. A node will not
be active if its packet buffer is empty.

Before we describe the algorithm, we introduce a basic but crucial procedure which enables communication from a set
of active nodes. The procedure, first introduced and studied by Bar-Yehuda et al. [2], is called DEcAy and requires 2 log A
rounds; the time needed for a single execution of the procedure is called a phase.

We can now state a distributed algorithm for Wap (Algorithm 2). The protocol requires the existence of a basic
communication structure. Therefore, as a first step of the algorithm a breadth-first search (BFS) tree with the sink as the
root is constructed. This can be done in expected time O((n + § logn) log A) [3]. Since it is done only once, when starting
up the system, we will not count this time in defining the cost of the schedule.
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Algorithm 1 DEcAY(u, v) [2]
forj=1,2,...,2log Ado
u sends to v the oldest packet from its buffer;
u deactivates itself for the rest of the phase with probability 1/2.
end for

Algorithm 2 DiSTRIBUTEDGREEDY (DG) [3]
Construct a breadth-first search tree with root s
for each next phasek =1, 2, ... do
Activate each node with label k mod 3 having a nonempty packet buffer;
Execute DECAY(u, parent(u)) in parallel for each active node u.
end for

Although the algorithm does not model acknowledgment of packets explicitly, it is easy to include them, e.g. by doubling
the number of rounds, having communication in odd rounds and acknowledgments in even rounds, as in [3]. Using this,
we can assume that successful receipt of a packet (by the parent of the sending node in the BFS tree) is acknowledged
immediately. Only at that time it gets removed from the sender’s buffer.

By the transmission protocol in DG, where in phase k only nodes of layer k mod 3 transmit, if two nodes transmit, then
either they are at the same layer or they are at least distance 3 apart. Hence, in DG two nodes can only interfere if both
sender nodes are in the same layer.

A superphase consists of three consecutive phases (thus it lasts 6 log A rounds). Another important ingredient in the
analysis of DG is the following.

Theorem 4.1 ([3]). Let i be a layer of the tree containing some packet at the beginning of a superphase. There is probability at
least . := e~ '(1 — e~ ") that, during this superphase, DG sends a packet from a node u in layer i successfully to parent(u) in the
BFS tree.

This theorem shows that, during a superphase, each nonempty layer forwards a packet with probability u to the following
layer. Notice, however, that there is no guarantee on which particular packet is advanced.

4.2. The analysis

For our analysis we define three solution models. For a given instance of WGP, we relate the completion times of the
packets in these three models. This approach is similar to the approach of Bar-Yehuda et al. [3]. However, one additional
difficulty is that, because packets have release dates, the extra speed given to the algorithm does not directly translate into
shorter flow times.

We formulate the three models below. By advancing a packet we mean that the packet is sent from its current node to
its parent in the BFS tree.

e Model 1 is the previously discussed radio network model, where packets are routed according to the BFS tree, and each
layer advances with probability w at least one packet during every superphase.

e Model 2 consists of a chain of § + 1 nodes, where packets at the ith level of the previous model reside in node i of the
path. From each node of the path at most one packet can advance during every superphase, and the probability that this
occurs is exactly u.

e Model 3 also consists of a chain, but each layer advances with probability p := 1 — (1 — w)* at least one packet every
round (for some parameter o > 1 to be fixed later).

Note that the probabilities stated above (in all three models) assume that the node or layer considered contains some
packet to be advanced; otherwise, the probability that a packet is advanced from that node is obviously zero. It follows
from Theorem 4.1 that the solution generated by DG (at unit speed) is a solution which fits into Model 1.

Motivated by the negative results of Proposition 3.1 we focus on deriving a bound on the expected average flow time of
DG. We use resource augmentation to analyze the performance of DG. A o -speed algorithm sends data packets at a speed
that is o times faster than an off-line algorithm.

Through a sequence of steps we relate the expected flow times of Model 1 to those of Model 2. Subsequently, we
demonstrate that the expected flow time of o -speed DG is bounded by the expected flow time of a Model 3 solution. Finally,
we upper bound the expected flow times of a Model 3 solution in terms of the expected flow times of an optimal off-line
solution.

Lemma 4.2. The expected sum of flow times of a Model 1 schedule is at most the expected sum of flow times of a Model 2 schedule,
for every WGP instance.
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The proof of this lemma is given later as it requires some preliminary results. Lemma 4.2 extends the work of Bar-Yehuda
et al. [3] to the case of WGP with release dates. We use their proof techniques to derive a bound on the sum of flow times
for instances where packets may have release dates.

For the proofs we have to introduce some notation. Consider a distribution of packets among the levels, that is a
vector X = (Xg, ..., Xs) such that x; > 0 (level 0 consists of the sink node). A move vector is any (6 + 1)-dimensional
vector of nonnegative integers, m = (mq, ..., ms). Similarly, we can define an arrival vector a = (ay, ..., as). Partition
x' = Move(x, m, a) is obtained when m; packets are moved from level i to level i — 1 and a; new packets are released on
level i. We allow m; > x; by stipulating that, if m; > x;, then only x; packets are moved. More precisely, the number of
packets moved from level i is min(x;, m;). So x; = x; + a; — min(x;, m;) + mMin(x41, Mit1).

A move sequence is an infinite sequence M = (m!, m?, . ..) of move vectors; similarly we can define an arrival sequence
A = (@', a%, ...). We denote with Move*(x, M, A, t) the result of making t moves according to M and A, that is

Move*(x, M, A, 0) = X
Move*(x, M, A, t + 1) = Move(Move*(x, M, A, t), m', a").
We say that a move vector m dominates a move vector m if m; > m; for all i. This notion can be extended to move
sequences: M dominates M if M* dominates M’ for all t. We also define a partial order < on the set of distribution vectors,

where x < y if and only if there exists a move sequence M and an integer t such that x = Move*(y, M, 0, t). Bar-Yehuda
et al. showed the following relation between move vectors and distribution vectors.

Lemma 4.3 ([3]). If m dominates m and X <y then Move(x, m, 0) < Move(y, m, 0).
Corollary 4.4. If m dominates m and x < y then Move(x, m, a) < Move(y, m, a) for any arrival vector a.

Proof. Follows from Lemma 4.3, the fact that Move(x, m,a) = Move(x, m, 0) + a and the fact that x < y implies
X+a <y+aforanyvectora. O

Let tft(M, A) = Zzo Z#O(Move* (0, M, A, t));. Notice that this gives the total flow time when the move sequence of
the algorithm is M and the arrival sequence is A.

Lemma 4.5. If M dominates M then tft(M, A) < tft(]\7l, A).

Proof. By applying Corollary 4.4 repeatedly to the sequence of move vectors we obtain Move*(0, M, A, t) < Move"
(0, M, A, t) for all t. In particular this implies (Move*(0, M, A, t))o > (Move*(0, M, A, t)), for all t, and the claim follows
from the definition of tft. O

Armed with this lemma we can proceed to prove Lemma 4.2.

Proof of Lemma 4.2. The technique of the proof is similar to the one used by Bar-Yehuda et al. [3]. For completeness, we
give the entire proof. Consider an instance x!, x?, ..., x” of Model 1, where xf is the number of packets at level i at time
t < T.Recall that mf is the number of packets that moved from level i to level i — 1 at time t. When xf > 1 then, by
Theorem 4.1, Pr[m{ > 1] > . On the other hand when x; = 0 then m{ = 0 and clearly Pr[m{ > 1] = 0, which violates the

probabilistic assumption of Model 2. We therefore define the move sequence M = (m', m?2, . ..) as follows: ifx! > 1then
m! = m!, otherwise m! = 1. Also, let p;, := Pr[m¢ > 1]. By Theorem 4.1, p;; > w. Since M and M differ only when x! = 0,
for every t < T, Move™(0, M, A, t) = Move*(0, M, A, t). In particular, tft(M, A) = tft(M, A).

We now construct a move sequence M = (m', m?,...) with m; € {0, 1}. If m{ > 1then m! = 1 with probability
(Pie — W)/ Pic; otherwise m{ = 0. Since M dominates M, by Lemma 4.5 the total flow time of M is less than or equal to that
of M. Also, by construction of M,

Pr[i} = 0] = Pr[m; = 0] + Pr[m} > 1and m; = 0]
Dit — 1

it

= Pr{m; = 0] +pi -

=1-pu.
Thus the probability distribution of M is in accordance with Model 2. The result follows by taking expectations. O

Lemma 4.6. The expected sum of flow times of o -speed DG is at most the expected sum of flow times of a Model 3 schedule, for
o > 6alog A.

Proof. Let Fj, be the flow time of packet j in a o-speed DG schedule of the given instance. We define the flow time of a

packet j in a Model k solution with speed factor o as F(? k=1,2,3.
From Lemma 4.2 and the fact that DG is a Model 1 solution it follows that

E [Z F] =E {Z F,»EZB} <E [Z Fﬁ?} : )
Jj j j
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On the other hand, consider the consequence of speeding up the Model 2 schedule by a factor o > 6« log A: now, for
every 1/(6log A) superphases (that is, every round) the probability for each layer of advancing at least a packet becomes
1 — (1 — w)%; that is, the solution satisfies the constraints of a Model 3 schedule so that

) 3)
SER) @
J J
The claim follows by combining (1) and (2). O

We define a deterministic tandem queue (with unit processing times) as a chain of processors consisting of a sink My, and
a set of machines M;,i = 1, ..., 4. A job which has been processed on machine M; is sent to machine M;_;,i = 1, ..., 3.
The processing time of a job is 1 on each machine. New jobs can be released at integer times on any machine. In the next
lemma we relate the expected flow time of a Model 3 schedule to the flow time of a tandem queue, in which the machines
are the layers of the gathering tree. We then show in Lemma 4.8 the intuitively clear point that the optimal solution cannot
do better than such a tandem queue.

Lemma 4.7. The expected sum of flow times of a Model 3 schedule is at most 1/p? times the sum of flow times of a deterministic
tandem queue with unit processing times.

Proof. Consider a Model 3 schedule S. In a given round, the probability that all layers advance a packet is (at least) p®.
Suppose that we modify the schedule by not advancing any packet at all whenever some layer fails to advance a packet. In
this way we can only increase flow times. On the other hand, apart from a number of empty rounds in which no packet is
advanced, the schedule is equivalent to a schedule of a deterministic tandem queue with unit processing times, where each
packet j of the Model 3 instance is transformed into a job arriving at machine Ms;. Call this last schedule S” and consider any

interval of k rounds of S’. Since the probability that all layers advance a packet in S is at least p°, the expected number of
rounds required in S to advance the same number of packets as these k rounds do in schedule S’ is

kep - > (A=p) i+ =k-p Y Y (1 -pY)
i=0

i=0 j=0

=k-p’-) > A-p)=k-p’- Y A-pY) a-p")
j=0 i=j j=0 i=0

= k/p’.

If F/ is the flow time of packetj in ', we then have IE[F;?] < p*‘SFj’, for each packetj. O

Lemma 4.8. The sum of flow times of a deterministic tandem queue with unit processing times is at most the sum of flow times
of an optimal WGP schedule.

Proof. Let S be a deterministic tandem queue schedule, and let S* be a schedule where in each round each layer, except
layer 1, can advance any number of packets, and layer 1 can advance at most one packet. Notice that the optimal schedule
cannot do better than S*.

Consider schedule S*. Let M be the set of packets which have not arrived at the sink in round t. Because the schedule can
advance any number of packets over an edge, we have that if no packet is sent to the sink in S* in round t, then no packet in
M can arrive at the sink before or at round t, i.e,, 1 4 §; > t for each j € M;". We prove the lemma by demonstrating that
if some packet is sent to the sink in $* in round ¢, then also some packet is sent to the sink in S in round t. This suffices to
prove the lemma, because an optimal WGP schedule cannot advance packets faster than in schedule S*.

Suppose to the contrary that there is a first round t in which some packet is sent to the sink in $*, but no packet is sent to
the sinkin S. Let t’, t’ < t, be the last round before t in which no packet is sent to the sink in S*. Then, there is a set of t — t’
packets in S* which arrive at the sink in rounds (t’, t]. Hence, it follows from this and the observation above that there are
t — t’ packets j such thatt’ < rj 4 §; < t. Now consider schedule S; in this schedule t — t" — 1 packets are sent to the sink
in rounds (t’, t — 1], hence there is a packet j with t’ < rj 4 §; < t which has not arrived at the sink in round t. But then, j
must have been in layer 1 + i or higherinrounds t —i,i = 1, ..., §;. That is, j must have been in layer 1 4 §; or higher in
round r; < t — §; which gives a contradiction. O

Theorem 4.9. Let0 < € < land o = 6~ - log A - In(8/€). Then o-speed DG is in expectation (1 4 3€)-competitive when
minimizing the average flow time.
Proof. It follows from Lemmas 4.7 and 4.8 that the expected sum of flow times of o-speed DG is at most 1/p® times
the sum of flow times of an optimal off-line solution, for 0 = 6« log A. As o-speed DG is an on-line algorithm, DG is
o-speed p~®-competitive when minimizing average flow times. The probability p = 1 — (1 — u)* depends on the choice
of the speedup o. We set o := p~'In(8/e), which gives p = 1 — (1 — p)# ' M6/ > 1 — e=IG/0) — 1 _ ¢/§, so that
pP<(1—¢/8) P <ef <e2M+) =14 2¢ + €2 <1+3e. O

It also follows from the theorem that the competitive ratio of DG can be made arbitrarily close to 1 with an appropriate
increase in speed.
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5. An extension

The model that we considered so far for WGP assumes that a node can only cause interference at nodes that are adjacent
to it in the network. In practice, the interference caused by the radio signal can go beyond the transmission radius [25]. This
can be modeled by an integer d; > 1 that specifies the distance (expressed in number of hops) up to which the signal can
cause interference: two calls (u, v) and (¢, v) are now compatible if d(u, v) < d; and d(v/, v) < d; (we still require that u
is adjacent to v, and u’ to v").

Algorithm DG can be extended to this setting by assigning to a node in layer d the label d mod d; + 2 and then using
superphases consisting of d; 4 2 phases each. In this way one can avoid interference between nodes from different layers of
the tree. It is easy to see that Theorem 4.1 can be extended to this setting.

Using this fact, we can extend our analysis in the previous section to prove that, fore > 0Oando = ® (d,2 -log A-In(§/¢€)),
o-speed DG is in expectation (1 + €)-competitive when minimizing the average flow time. We notice that one d, factor is
due to the longer superphases, and the other one is due to DEcAY having to cope with larger neighborhoods (of size A%).

6. Conclusion and open problems

We considered the wireless gathering problem with the objective of minimizing the average flow time of data packets
when nodes are restricted in their computational and communication capabilities. We showed that a simple on-line
algorithm has favorable behavior when the objective function is minimizing the average flow: although the problem is
extremely hard to approximate in general, augmenting the transmission rate allows us to remain within a small factor of
the cost of an optimal solution for the problem without augmentation. We also showed for maximum flow a lower bound
on the competitive ratio of any acknowledgment-based algorithm, which depends on the size of the network.

The proposed algorithm is simple; however it assumes the existence of a common clock that is used to reduce
interferences. It would be interesting to extend the results by removing such an assumption. It is interesting for future
research to study other objective functions and to allow other routing than through a tree, in which case it will be challenging
to design and analyze congestion-avoiding algorithms with better ratios than those developed for trees.
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