Skip to main content

The Induced Disjoint Paths Problem

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5035))

Abstract

For a graph G and a collection of vertex pairs {(s 1, t 1), ...,(s k , t k )}, the disjoint paths problem is to find k vertex-disjoint paths P 1, ..., P k , where P i is a path from s i to t i for each i = 1, ..., k. This problem is one of the classic problems in combinatorial optimization and algorithmic graph theory, and has many applications, for example in transportation networks, VLSI layout, and recently, virtual circuits routing in high-speed networks.

As an extension of the disjoint paths problem, we introduce a new problem which we call the induced disjoint paths problem. In this problem we are given a graph G and a collection of vertex pairs {(s 1, t 1), ...,(s k , t k )}. The objective is to find k paths P 1, ..., P k such that P i is a path from s i to t i and P i and P j have neither common vertices nor adjacent vertices for any distinct i, j.

This problem setting is a generalization of the disjoint paths problem, since if we subdivide each edge, then desired disjoint paths would be induced disjoint paths. The problem is motivated by not only the disjoint paths problem but also the recognition of an induced subgraph. The latter has been developed in the recent years, and this is actually connected to the Strong Perfect Graph Theorem [4], and the recognition of the perfect graphs [2].

In this paper, we shall investigate the complexity issues of this problem. The induced disjoint paths problem has several variants depending on whether k is a fixed constant or a part of the input, whether the graph is directed or undirected, and whether the graph is planar or not. We show that the induced disjoint paths problem is

(i) solvable in polynomial time when k is fixed and G is a directed planar graph,

(ii) solvable in linear time when k is fixed and G is an undirected planar graph,

(iii) NP-hard when k = 2 and G is an acyclic directed graph,

(iv) NP-hard when k = 2 and G is an undirected general graph.

(i) generalizes the result by Schrijver [22], while (ii) generalizes the result by Reed, Robertson, Schrijver and Seymour [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bienstock, D.: On the complexity of testing for even holes and induced odd paths. Discrete Math. 90, 85–92 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P.D., Vuskovic, K.: Recognizing Berge graphs. Combinatorica 25, 143–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chudnovsky, M., Kawarabayashi, K., Seymour, P.D.: Detecting even holes. J. Graph Theory 48, 85–111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect theorem. Annals of Mathematics 64, 51–219 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cornuéjols, G., Conforti, M., Kapoor, A., Vusksvic, K.: Even-hole-free graphs I. Decomposition theorem. J. Graph Theory 39, 6–49 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornuéjols, G., Conforti, M., Kapoor, A., Vusksvic, K.: Even-hole-free graphs. II. Recognition algorithm. J. Graph Theory 40, 238–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing 5, 691–703 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fellows, M.R.: The Robertson-Seymour Theorems: a survey of applications. In: Comtemporary Mathematics, vol. 89, pp. 1–18. American Mathematical Society (1987)

    Google Scholar 

  9. Fellows, M.R., Kratochvil, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13, 266–282 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical Computer Science 10, 111–121 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M.: On the computational complexity of combinatorial problems. Networks 5, 45–68 (1975)

    MathSciNet  MATH  Google Scholar 

  12. Kawarabayashi, K., Kobayashi, Y.: A linear time algorithm for the induced disjoint paths problem in planar graphs (manuscript)

    Google Scholar 

  13. Kobayashi, Y.: An extension of the disjoint paths problem, METR 2007-14, Department of Mathematical Informatics, University of Tokyo (2006)

    Google Scholar 

  14. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. SIGDA Newsletter 5(3), 31–36 (1975)

    Article  Google Scholar 

  15. Mohar, B., Thomassen, C.: Graphs on Surfaces. The Johns Hopkins University Press, Baltimore, London (2001)

    MATH  Google Scholar 

  16. Reed, B.: Rooted routing in the plane. Discrete Applied Math. 57, 213–227 (1995)

    Article  MATH  Google Scholar 

  17. Reed, B.A., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in planar graphs in linear time. In: Contemporary Mathematics, vol. 147, pp. 295–301. American Mathematical Society (1993)

    Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors. VII. Disjoint paths on a surface. Journal of Combinatorial Theory Ser. B 45, 212–254 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Robertson, N., Seymour, P.D.: Graph minors. XI. Circuits on a surface. Journal of Combinatorial Theory Ser. B 60, 72–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory Ser. B 63, 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage problems (manuscript)

    Google Scholar 

  22. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM Journal on Computing 23, 780–788 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  24. Seymour, P.D.: Disjoint paths in graphs. Discrete Mathematics 29, 293–309 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shiloach, Y.: A polynomial solution to the undirected two paths problem. Journal of the ACM 27, 445–456 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thomassen, C.: 2-linked graphs. European Journal of Combinatorics 1, 371–378 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrea Lodi Alessandro Panconesi Giovanni Rinaldi

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawarabayashi, Ki., Kobayashi, Y. (2008). The Induced Disjoint Paths Problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2008. Lecture Notes in Computer Science, vol 5035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68891-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68891-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68886-0

  • Online ISBN: 978-3-540-68891-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics