Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5016))

Abstract

Pathway Logic (PL) is an approach to modeling and analysis of biological processes based on rewriting logic. This tutorial describes the use of PL to model signal transduction processes. It begins with a general discussion of Symbolic Systems Biology, followed by some background on rewriting logic and signal transduction. The representation and analysis of a small model Ras and Raf activation is presented in some detail. This is followed by discussion of a curated model of early signaling events in response to Epidermal Growth Factor stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apolzan, R.: Rapid prototyping applications of formal reasoning tools to biological cellular signalling networks (2005), http://mcs.une.edu.au/~iop/Data/Papers/

  2. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the PRISM model checker. In: Plotkin, G. (ed.) Proceedings of the Third International Conference on Computational Methods in System Biology (2005)

    Google Scholar 

  3. Calzone, L., Chabrier-Rivier, N., Fages, F., Gentils, L., Soliman, S.: Machine learning bio-molecular interactions from temporal logic properties. In: Plotkin, G. (ed.) Proceedings of the Third International Conference on Computational Methods in System Biology (2005)

    Google Scholar 

  4. Cardelli, L.: Abstract machines of systems biology. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS (LNBI), vol. 3737, pp. 145–168. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 351(1), 24–44 (2004)

    Google Scholar 

  6. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics 8, 210–219 (2007)

    Article  Google Scholar 

  7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́-Oliet, N., Meseguer, J., Talcott, C.: All About Maude: A High-Performance Logical Framework. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  8. Damm, W., Harel, D.: Breathing life into message sequence charts. Formal Methods in System Design 19(1) (2001)

    Google Scholar 

  9. Edwards, J.S., Covert, M., Palsson, B.O.: Metabolic modelling of microbes: The flux-balance approach. Environmental Microbiology 4(3), 133–140 (2002)

    Article  Google Scholar 

  10. Efroni, S., Harel, D., Cohen, I.R.: Towards rigorous comprehension of biological complexity: Modeling, execution and visualization of thymic t-cell maturation. Genome Research, Special issue on Systems Biology (in press, 2003)

    Google Scholar 

  11. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway Logic: Symbolic analysis of biological signaling. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 400–412 (January 2002)

    Google Scholar 

  12. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway Logic: Executable models of biological networks. In: Fourth International Workshop on Rewriting Logic and Its Applications. Electronic Notes in Theoretical Computer Science, vol. 71, Elsevier, Amsterdam (2002)

    Google Scholar 

  13. Pearson, G., et al.: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev, 153–183 (2001)

    Google Scholar 

  14. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4(2), 64–73 (2004)

    Article  Google Scholar 

  15. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11) (2007)

    Google Scholar 

  16. Genrich, H., Küffner, R., Voss, K.: Executable Petri net models for the analysis of metabolic pathways. Software Tools for Technology Transfer 3 (2001)

    Google Scholar 

  17. Ghosh, R., Tiwari, A., Tomlin, C.: Automated symbolic reachability analysis with application to delta-notch signaling automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 233–248. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Goss, P.J., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology using stochastic Petri nets. Proceedings of the National Academy of Science 95, 6750–6755 (1998)

    Article  Google Scholar 

  20. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming 8, 231–274 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Henzinger, T.A.: The theory of hybrid automata. In: 11th IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)

    Google Scholar 

  22. Hofestädt, R.: A Petri net application to model metabolic processes. Systems Analysis Modelling Simulation 16, 113–122 (1994)

    MATH  Google Scholar 

  23. Kam, N., Cohen, I.R., Harel, D.: The immune system as a reactive system: Modeling t cell activation with statecharts. In: Visual Languages and Formal Methods (VLFM 2001), pp. 15–22 (2001)

    Google Scholar 

  24. Kam, N., Harel, D., Kugler, H., Marelly, R., Pnueli, A., Hubbard, J., Stern, M.: Formal modeling of C.elegans development: A scenario-based approach. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 4–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Kolch, W.: Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 351, 289–305 (2000)

    Article  Google Scholar 

  26. Küffner, R., Zimmer, R., Lengauer, T.: Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 16, 825–836 (2000)

    Article  Google Scholar 

  27. Kyriakis, J.M., Avruch, J.: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807–869 (2001)

    Google Scholar 

  28. Cardelli, L.: Brane calculi interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, Springer, Heidelberg (2005)

    Google Scholar 

  29. Li, C., Ge, Q.W., Nakata, M., Matsuno, H., Miyano, S.: Modelling and simulation of signal transductions in an apoptosis pathway by using timed petri nets. Journal of Bioscience 32, 113–127 (2007)

    Article  Google Scholar 

  30. Lincoln, P., Tiwari, A.: Symbolic systems biology: Hybrid modeling and analysis of biological networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 660–672. Springer, Heidelberg (2004)

    Google Scholar 

  31. LoLA: Low Level Petri net Analyzer (2004), http://www.informatik.hu-berlin.de/~kschmidt/lola.html

  32. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Pacific Symposium on Biocomputing, vol. 5, pp. 341–352 (2000)

    Google Scholar 

  33. Meseguer, J.: Conditional Rewriting Logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  35. Milner, R.: Communicating and Mobile Systems: The pi-Calculus. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  36. Nielson, F., Nielson, H.R., Priami, C., Rosa, D.: Control flow analysis for bioambients. In: BioConcur (2003)

    Google Scholar 

  37. Päun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

    Google Scholar 

  38. Peterson, J.L.: Petri Nets: Properties, analysis, and applications. Prentice-Hall, Englewood Cliffs (1981)

    Google Scholar 

  39. Petri, C.A.: Introduction to general net theory. In: Brauer, W. (ed.) Net Theory and Applications. LNCS, vol. 84, pp. 1–19. Springer, Heidelberg (1980)

    Google Scholar 

  40. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)

    Google Scholar 

  41. Prez-Jimnez, M.J., Romero-Campero, F.J.: Modelling EGFR signalling cascade using continuous membrane systems (simulation). In: Plotkin, G. (ed.) Proceedings of the Third International Conference on Computational Methods in System Biology (2005)

    Google Scholar 

  42. Reddy, V.N., Liebmann, M.N., Mavrovouniotis, M.L.: Qualitative analysis of biochemical reaction systems. Computational Biological Medicine 26, 9–24 (1996)

    Article  Google Scholar 

  43. Regev, A., Panina, E., Silverman, W., Cardelli, L., Shaprio, E.: Bioambients: An abstraction for biological compartments (2004)

    Google Scholar 

  44. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific Press, Singapore (2001)

    Google Scholar 

  45. Schmidt, K.: LoLA: A Low Level Analyser. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  46. Seger, R., Krebs, E.G.: The mapk signaling cascade. FASEB J. 9(9), 726–735 (1995)

    Google Scholar 

  47. Shankar, N.: Symbolic analysis of transition systems. In: Proceedings of the International Workshop on Abstract State Machines, Theory and Applications, pp. 287–302. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  48. Stehr, M.-O.: A rewriting semantics for algebraic nets. In: Girault, C., Valk, R. (eds.) Petri Nets for System Engineering – A Guide to Modelling, Verification, and Applications, Springer, Heidelberg (2000)

    Google Scholar 

  49. Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway logic modeling of protein functional domains in signal transduction. In: Proceedings of the Pacific Symposium on Biocomputing (January 2004)

    Google Scholar 

  50. Talcott, C.: Formal executable models of cell signaling primitives. In: Margaria, T., Philippou, A., Steffen, B. (eds.) 2nd International Symposium On Leveraging Applications of Formal Methods, Verification and Validation ISOLA06, pp. 303–307 (2006)

    Google Scholar 

  51. Talcott, C.: Symbolic modeling of signal transduction in pathway logic. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) 2006 Winter Simulation Conference, pp. 1656–1665 (2006)

    Google Scholar 

  52. Talcott, C., Dill, D.L.: Multiple representations of biological processes. Transactions on Computational Systems Biology (2006)

    Google Scholar 

  53. Tiwari, A.: Abstractions for hybrid systems. Formal Methods in Systems Design 32(1), 57–83 (2008)

    Article  MATH  Google Scholar 

  54. Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing pathways using sat-based approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  55. Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. In: Silico Biology, vol. 3, p. 29 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Bernardo Pierpaolo Degano Gianluigi Zavattaro

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Talcott, C. (2008). Pathway Logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds) Formal Methods for Computational Systems Biology. SFM 2008. Lecture Notes in Computer Science, vol 5016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68894-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68894-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68892-1

  • Online ISBN: 978-3-540-68894-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics