Skip to main content

Constructing Good Covering Codes for Applications in Steganography

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TDHMS,volume 4920))

Abstract

Application of covering codes to data embedding improves embedding efficiency and security of steganographic schemes. In this paper, we describe several familes of covering codes constructed using the blockwise direct sum of factorizations. We show that non-linear constructions offer better performance compared to simple linear covering codes currently used by steganographers. Implementation details are given for a selected code family.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bierbrauer, J.: Introduction to Coding Theory. Chapman and Hall, CRC Press (2005)

    Google Scholar 

  2. Bierbrauer, J.: Crandall’s problem (unpublished, 1998), available from, http://www.ws.binghamton.edu/fridrich/covcodes.pdf

  3. Bierbrauer, J.: Nordstrom-Robinson code and A 7-geometry. Finite Fields and Their Applications 13, 158–170 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Carnielli, W.A.: On covering and coloring problems for rook domains. Discrete Mathematics 57, 9–16 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. North Holland, Amsterdam (1997)

    MATH  Google Scholar 

  7. Crandall, R.: Some notes on steganography. Posted on steganography mailing list (1998), http://os.inf.tu-dresden.de/~westfeld/crandall.pdf

  8. Davydov, A.A.: New constructions of covering codes. Designs, Codes and Cryptography 22, 305–316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces. IEEE Transactions on Information Theory 51, 4378–4387 (2005)

    Article  MathSciNet  Google Scholar 

  10. Davydov, A.A., Marcugini, S., Pambianco, F.: Minimal 1 -saturating sets and complete caps in binary projective spaces. Journal of Combinatorial Theory A 113, 647–663 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Etzion, T., Greenberg, G.: Constructions for perfect mixed codes and other covering codes. IEEE Transactions on Information Theory 39, 209–214 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Etzion, T., Mounits, B.: Quasi-perfect codes with small distance. IEEE Transactions on Information Theory 51, 3938–3946 (2005)

    Article  MathSciNet  Google Scholar 

  13. Fridrich, J., Goljan, M., Soukal, D.: Efficient Wet Paper Codes. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 204–218. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Fridrich, J.: Feature-Based Steganalysis for JPEG Images and its Implications for Future Design of Steganographic Schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)

    Google Scholar 

  15. Fridrich, J., Goljan, M., Du, R.: Steganalysis Based on JPEG Compatibility. In: Tescher, et al. (eds.) Proc. SPIE Multimedia Systems and Applications IV, SPIE, vol. 4518, Denver, CO. pp. 275–280 (August 2001)

    Google Scholar 

  16. Gabidulin, E.M., Davydov, A.A., Tombak, I.M.: Codes with covering radius 2 and other new covering codes. IEEE Transactions on Information Theory 37, 219–224 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Galand, F., Kabatiansky, G.: Information hiding by coverings. In: Proceedings of the IEEE Information Theory Workshop 2004, pp. 151–154 (2004)

    Google Scholar 

  18. Goppa, V.D.: Codes on algebraic curves. Soviet Math. Doklady 24, 170–172 (1981)

    MATH  Google Scholar 

  19. Hammons Jr, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The Z 4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Transactions on Information Theory 40, 301–319 (1994)

    Article  MATH  Google Scholar 

  20. Honkala, I.S.: On (k,t)-subnormal covering codes. IEEE Transactions on Information Theory 37, 1203–1206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaikkonen, M.K., Rosendahl, P.: New covering codes from an ADS-like construction. IEEE Transactions on Information Theory 49, 1809–1812 (2003)

    Article  MathSciNet  Google Scholar 

  22. Ker, A.: A General Framework for Structural Analysis of LSB Replacement. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 296–311. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Nordstrom, A.W., Robinson, J.P.: An optimum nonlinear code. Information and Control 11, 613–616 (1967)

    Article  MATH  Google Scholar 

  24. Östergå, P.: A coloring problem in Hamming spaces. European Journal of Combinatorics 18, 303–309 (1997)

    Article  MathSciNet  Google Scholar 

  25. Preparata, F.P.: A class of optimum nonlinear double-error-correcting codes. Information and Control 13, 378–400 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Provos, N.: Defending Against Statistical Steganalysis. In: 10th USENIX Security Symposium, Washington, DC (2001)

    Google Scholar 

  27. Sallee, P.: Model Based Steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2004)

    Google Scholar 

  28. Simmons, G.J.: The Prisoners’ Problem and the Subliminal Channel. In: Chaum, D. (ed.) Advances in Cryptology: Proceedings of Crypto 1983, pp. 51–67. Plenum Press (1984)

    Google Scholar 

  29. Stinson, D.R.: Resilient functions and large sets of orthogonal arrays. Congressus Numerantium 92, 105–110 (1993)

    MathSciNet  Google Scholar 

  30. Struik, R.: Covering Codes, Ph.D. dissertation, Eindhoven (1994)

    Google Scholar 

  31. Wan, Z.X.: Quaternary codes. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  32. Westfeld, A.: High Capacity Despite Better Steganalysis (F5–A Steganographic Algorithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. Zelinka, B.: On k-domatic numbers of graphs. Czechoslovak Math. Journal 33, 309–311 (1983)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yun Q. Shi

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bierbrauer, J., Fridrich, J. (2008). Constructing Good Covering Codes for Applications in Steganography. In: Shi, Y.Q. (eds) Transactions on Data Hiding and Multimedia Security III. Lecture Notes in Computer Science, vol 4920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69019-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69019-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69016-0

  • Online ISBN: 978-3-540-69019-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics