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Abstract— The main goal of this study consists in the devel-
opment of the worst case additive attack (WCAA) for |M|-ary
quantization-based data-hiding methods using as design criteria
the error probability and the maximum achievable rate of reliable
communications. Our analysis focuses on the practical scheme
known as a distortion compensation dither modulation (DC-
DM). From the mathematical point of view, the problem of the
worst case attack (WCA) design using probability of error as a
cost function is formulated as the maximization of the average
probability of error subject to the introduced distortion for a
given decoding rule. When mutual information is selected as
a cost function, a solution of the minimization problem should
provide such an attacking noise probability density function (pdf)
that will maximally decrease the rate of reliable communica-
tions for an arbitrary decoder structure. The obtained results
demonstrate that, within the class of additive noise attacks, the
developed attack leads to a stronger performance decrease for
the considered class of embedding techniques than the additive
white Gaussian or uniform noise attacks.

Index Terms— Quantization-based, data-hiding, additive at-
tacks, distortion compensation, dither modulation, probability
of error, mutual information

I. I NTRODUCTION

Data-hiding techniques aim at reliably communicating the
largest possible amount of information under given distortion
constraints. Their resistance against different attacks determine
the possible application scenarios. The knowledge of the WCA
allows to create a fair benchmark for data-hiding techniques
and makes it possible to provide reliable communications with
the use of appropriate error correction codes.

In general, the digital data-hiding can be considered
as a game between the data-hider and the attacker. This
three-parties two-players game were already investigatedby
O’Sullivan et al. [1] where two set-ups are analyzed. In the
first one, the host is assumed to be available at both encoder
and decoder prior to the transmission, the so-calledprivate
game. In the second one, the host is only available at the
encoder as in Figure 1, i.e., thepublic game. The performance
is analyzed with respect to the maximum achievable rate when
the decoder is aware of the attacking channel and therefore the
maximum likelihood (ML) decoding is applied.

The knowledge of the attacking channel at the decoder is
not a realistic case for most practical applications. Somekh-
Baruch and Merhav considered the data-hiding problem in
terms of maximum achievable rates and error exponents. They
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assumed that the host data is available either at both encoder
and decoder [2] or only at the encoder [3] and supposed that
neither encoder nor decoder is aware of the attacker strategy.
In their consideration, the class of potentially applied attacks
is significantly broader than in the previous study case [1]
and includes any conditional pdf that satisfies a certain energy
constraint. Although the solution of the problem is classically
presented in terms of the achievable rate establishing the
maximum number of messages|M| that can be reliably
communicated, the error exponents solution is interestingin
many practical applications where the objective is to minimize
the probability of error at a given communications rate.

Quantization-based data-hiding methods have attracted at-
tention in the watermarking community. They are a practical
implementation of a binning technique for channels whose
state is non-causally available at the encoder considered by
Gel’fand-Pinsker [4]. Recently it has been also demonstrated
[5] that quantization-based data-hiding performance coincides
with the spread-spectrum (SS) data-hiding at the low-WNR by
taking into account the host statistics and by abandoning the
assumption of an infinite image to watermark ratio.

The quantization-based methods have been widely tested
against a fixed channel and assuming that the channel tran-
sition pdf is available at the decoder. Aminimum Euclidean
distance (MD) decoder is implemented as a low-complexity
equivalent of the ML decoder under the assumption of a pdf
created by the symmetric extension of a monotonically non-
increasing function [6].

It is a common practice in the data-hiding community to
measure the performance in terms of the error rate for a given
decoding rule as well as the maximum achievable rate of
reliable communications. In this paper we will analyze the
WCAA using both criteria.

In this paper we restrict the encoding to the quantization-
based one and the channel to the class of additive attacks only.
We assume that the attacker might be informed of the encoding
strategy and also of the decoding one for the error exponent
analysis, while both encoder and decoder are uninformed of
the channel. Furthermore, the encoder is aware of the host
image but not of the attacking strategy.

It is important to note that the optimality of the attack
critically relies on the input alphabet even under power-limited
attacks. McKellips and Verdu showed that the additive white
Gaussian noise (AWGN) is not the WCAA for discrete input
alphabets such as pulse amplitude modulation [7]. Similar con-
clusion for data-hiding was obtained by Pérez-Gonźalezet al.
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[8], who demonstrated that the uniform noise attack performs
worse that the AWGN attack for some watermark-to-noise
ratios (WNRs). In [9], Ṕerez-Gonźalez et al. demonstrated
that the AWGN cannot indeed be the WCAA because of its
infinite support. Vila-Forćenet al. [10] and Goteti and Moulin
[11] solved independently the min-max problem for distortion-
compensated dither modulation (DC-DM) [12] in terms of
probability of error for the fixed decoder, binary signalingand
the subclass of additive attacks. Simultaneously, Vila-Forcén
et al. [13] and Tzoschoppeet al. [14] derived the WCAA for
the DC-DM using the mutual information as objective function
for the additive attacks and binary signaling.

This paper aims at establishing the information-theoretic
limits of |M|-ary quantization-based data-hiding techniques
and developing a benchmark that can be used for the fair
comparison of different quantization-based methods.

The selection of the distortion compensation parameter
α′ (see Section II-B) fixes the encoder structure for the
quantization-based methods. Although the optimalα′ can
easily be determined when the power of the noise is available
at the encoder prior to the transmission [15], this is not
always feasible for various practical scenarios. Nevertheless,
the availability of the attacking power and of the attackingpdf
is a very common assumption in most data-hiding schemes.
We will demonstrate that for a specific decoder (MD decoder)
it is possible to calculate the optimalα′ independently of the
attack variance and pdf for the block error probability as a
cost function.

The paper is organized as follows. Problem formulation
is given in Section II. The investigation of the WCAA for
a fixed quantization-based data-hiding scenario is performed
in Section III, where the cost function is the probability of
error. The information-theoretic analysis of Section IV derives
the information bounds where the cost function is the mutual
information between the input message and the channel output.

Notations: We use capital letters to denote scalar random
variablesX, bold capital letters to denote vector random vari-
ablesX and corresponding small lettersx andx to denote the
realizations of scalar and vector random variables, respectively.
An information message and a set of messages with cardinality
|M| is designated asm ∈ M,M = {1, 2, . . . , |M|},
respectively. A host signal distributed according to the pdf
fX(x) is denoted byX ∼ fX(x); Z ∼ fZ(z), W ∼ fW(w)
andV ∼ fV(v) represents the attack, the watermark and the
received signal, respectively. The step of quantization isequal
to ∆ and the distortion-compensation factor is denoted asα′.
The variance of the watermark isσ2

W and the variance of the
attack isσ2

Z . The watermark-to-noise ratio (WNR) is given

by WNR = 10 log10 ξ, where ξ =
σ2

W

σ2

Z

. The set of natural
numbers is denoted asN and IN denotes theN ×N identity
matrix.

II. PROBLEM FORMULATION

A. Data-hiding formulation of the Gel’fand-Pinsker problem

1) Gel’fand-Pinsker set-up: The Gel’fand-Pinsker problem
[4] has been recently revealed as the appropriate theoretical

framework of data-hiding communications with side informa-
tion (Figure 1). The random variableX stands for the host
signal, which is independent and identically distributed (i.i.d.)
and available non-causally at the encoder.

Encoderφ fV|W,X(v|w,x)

DMC

Decoderψ

X

m W V m̂

Fig. 1. Gel’fand-Pinsker channel coding with side information available at
the encoder.

We define the encoder as a mappingφ : M×XN → WN ,
assuming thatm ∈ M, x ∈ XN andw ∈ WN .

The channel givenX is assumed to be a discrete memory-
less channel (DMC) described by the corresponding transition

pdf: fV|W,X(v|w,x) =
N
∏

i=1

fV |W,X(vi|wi, xi).

The decoder estimates the embedded message from the
output of the channelψ : VN → M. Within the Gel’fand-
Pinsker set-up, the decoder is aware of the channel pdf and
therefore optimal decoding can be performed. A jointly typical
decoder is used in [4] as an equivalent to the ML one for the
simplicity of the analysis.

For the above channel, the capacity is:

C = max
pU,W |X(·,·|·)

[I(U ;V ) − I(U ;X)] , (1)

whereU stands for an auxiliary random variable withU ∈ U ,
|U| = min{|W|, |Y|} + |X | − 1.

2) Gel’fand-Pinsker data-hiding problem: The above
Gel’fand-Pinsker set-up describes the general framework of
communications with side-information. However, it is needed
to introduce the distortion constraints and the key management
to convert it to the hidden communications scenario.

The Gel’fand-Pinsker data-hiding set-up is presented in
Figure 2. The encoder is now a mappingφ : M × XN ×
K → WN , where the keyK ∈ K,K = {1, 2, . . . , |K|}.
The stego dataY is obtained using the embedding mapping:
ϕ : WN × XN → YN . The decoder estimates the embedded
message asψ : VN × K → M. According to this scheme,
a key is available at both encoder and decoder. Nevertheless,
key management is outside of the scope of this paper and we
will not consider it further.

Encoderφ Embedderϕ fV|Y(v|y)

DMC

Decoderψ

X

K

m W Y V m̂

Fig. 2. Gel’fand-Pinsker data-hiding set-up.

Two constraints apply to the Gel’fand-Pinsker framework
in the data-hiding scenario: the embedding and the channel
constraints [1]. Letd(·, ·) be a nonnegative function andσ2

W ,
σ2
Z be two positive numbers, the embedder is said to satisfy

the embedding constraint if:
∑

x∈XN

∑

y∈YN

d(x,y)fX,Y(x,y) ≤ σ2
W , (2)
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whered(x,y) = 1
N

N
∑

i=1

d(xi, yi).

Analogously, the channel is said to satisfy the channel
constraint if:

∑

y∈YN

∑

v∈VN

d(y,v)fY,V(y,v) ≤ σ2
Z . (3)

We define a code(|M|, N) subject to the distortion con-
straintσ2

W as the message setm ∈ M, |M| = 2NR, encoding
functionφ and embedding functionϕ such that the embedding
constraint (2) is satisfied.

The average block error probability of a code(|M|, N)
subject to the embedding constraintσ2

W , a channel transition
pdf fV|Y(v|y) subject to the channel constraintσ2

Z , for
a given decoding ruleψ and assuming equiprobable input
distribution is:

P
(N)
B =

1

|M|

∑

m∈M
Pr [ψ(V,K) 6= m|M = m] . (4)

Given a block error probability, a rateR = 1
N log2 |M| is

said to be achievable for the given distortions pair(σ2
W , σ

2
Z) if

there exists a code(|M|, N) such thatP (N)
B → 0 asN → ∞.

In the following we will refer to the block error probability
simply as error probability.

Costa set-up: Costa considered the Gel’fand-Pinsker
problem for the i.i.d. Gaussian case and mean square error
distance [16]. Costa set-up is presented in Figure 3. The
embedderϕ performsY = W + X, X ∼ N (0, σ2

XIN ). It
is possible to write the channel output as:V = X + W + Z,
whereZ ∼ N (0, σ2

ZIN ), and the estimate of the messagem̂
is obtained at the decoder givenV.

Encoderφ + + Decoderψ

X Z

m W Y V m̂

Fig. 3. Costa data-hiding set-up.

The auxiliary random variable was chosen asU = W+αX

with optimization parameterα. Costa has shown that an opti-
mal value of this parameter can be chosen asαopt =

σ2

W

σ2

W
+σ2

Z

assuming that encoder knows in advance the noise variance.
In this case, the proposed set-up achieves host interference
cancellation and:

R(αopt) = CAWGN =
1

2
log2

(

1 +
σ2
W

σ2
Z

)

(5)

that corresponds to the AWGN channel capacity without host
interference.

B. Quantization-based data-hiding techniques

Aiming at reducing the Costa codebook exponential com-
plexity, a number of practical data-hiding algorithms exploit
structured codebooks instead of random ones. The most fa-
mous discrete approximations to Costa problem are known
as DC-DM [12] and scalar Costa scheme (SCS) [15]. The
structured codebooks are designed using quantizers (or lattices

Q1(x) 1 1
-�

∆
≀≀≀≀

Q2(x) 2 2
-�

∆
≀≀≀≀

(a)

Q1(x) 1 1
-�

∆
≀≀≀≀

Q|M|(x) |M| |M|

-�
∆

≀≀≀≀
. . .

(b)

Fig. 4. DM embedding quantizers: (a) binary signaling and (b)M-ary
signaling.

[17]) which should achieve host interference cancellation. In
this case, the auxiliary random variable is given by:

U = W + α′X = α′Qm(X), (6)

where Qm(·) denotes a vector or scalar quantizer for the
messagem.

Assuming that the channel transition pdf is given by some
additive noise pdf, within the class of quantization-basedmeth-
ods, we focus our analysis on DC-DM and dither modulation
(DM) [12].

In the case of scalar DM, the stego data is obtained by the
encoderφ : M × X → Y applying a message dependent
quantizer (or lattice) to the host data, i.e.:

φDM(m,x) = y = Qm(x),m ∈ M, (7)

as it is shown in Figure 4.
Here, we use quantizers designed using subtractive dither-

ing; i.e., each quantizer is a shifted version of the others [18]:

Qm(x) = Q(x+ dm) − dm, (8)

wheredm represents the subtractive dither of them-th message
andQ(·) stands for a fixed quantizer with quantization step
∆ assuming high rate quantization regime. The variance of
the stego data is equal to the variance of a uniform pdf
U(−∆/2,∆/2) resulting from the quantization noise,σ2

W =
∆2

12 . In this case the pdf of the stego data is assumed to be a
train of δ-functions as the result of quantization.

For the DC-DM case, the stego data is obtained as follows:

φDC-DM(m,x, α′) = y = x+ α′(Qm(x) − x), (9)

where0 < α′ ≤ 1 is the analogue of the Costa optimization
parameterα. If α′ = 1, the DC-DM (9) simplifies to the
DM (7). The embedding distortion for the DC-DM isσ2

W =

α′2 ∆2

12 . In this case, the pdf of the stego image is represented
by a train of uniform pulses of width2B = (1−α′)∆ centered
at the quantizer reconstruction level as a result of the distortion
compensation1. An example of such a pdf corresponding to the
communications of the messagem = 1 is given in Figure 5
whereTh = ∆

2|M| denotes the distance between two neighbor
quantizer decision and reconstruction levels.

1The analysis is performed here in the framework of Eggerset al.
disregarding the host pdf impact. If host pdf is taken into account, we refer
readers to [5], [19] for more details.
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2 21 1 1
-�

2B

-�

∆

-�

Th

Fig. 5. DC-DM output pdf for the messagem = 1 and binary signaling.

It is not always possible to know in advance the attacking
pdf needed for the optimal ML decoding. Within the class of
additive attacks, one can nevertheless assume that if the attack
pdf is created by the symmetric extension of a monotonically
non-increasing function, the ML decoder reduces to the MD
decoder [6]:

m̂MD = arg min
m∈M

||v −Qm(v)||2. (10)

Using the MD decoding rule, the correct decoding region
Rm and the complementary error regionRm associated to a
messagem, are defined as it is depicted in Figure 6 [8].

2 21 1 1

R1 R1 R1R1 R1 R1
R1

-�

∆

-�

Th

Fig. 6. DM and DC-DM correct decoding regionR1 and error decoding
regionR1 for the messagem = 1 and binary signaling when the MD decoder
is used.

III. E RROR PROBABILITY AS A COST FUNCTION

When the average error probability is selected as a cost
function, we formulate the problem of Figure 2 as:

P
∗(N)
B = min

φ,ψ
max

fV |Y (·|·)
PB(φ, ψ, fV |Y (·|·)). (11)

The error probability depends on the particular
encoder/decoder pair(φ, ψ) and the attacking channel
fV|Y(v|y), i.e.,PB(φ, ψ, fV |Y (v|y)) = Pr[m̂ 6= m|M = m].
Here, we assume that the attacker knows both encoder
and decoder strategies and selects its attacking strategy
accordingly. Both encoder and decoder select their strategy
without knowing the attack in advance. Although this is
a very conservative set-up, it is also important for various
practical scenarios. One can then compute the reliability
function for the class of attack channels as:

E(R) = lim sup
N→∞

[

−
1

N
log2 P

∗(N)
B

]

(12)

that can be used for further error exponents analysis.
The more advantageous set-up for the data-hider is based on

the assumption that the decoder selects its strategy knowing
the attacker choice:

min
φ

max
fV |Y (·|·)

min
ψ
PB(φ, ψ, fV |Y (·|·)). (13)

Here, the attacker knows only the encoding function, which
is fixed prior to the attack, and the decoder is assumed to be
aware of the attack pdf.

In the general case, Somekh-Baruch and Merhav [2] have
shown the following inequalities for the above scenarios:

min
φ,ψ

max
fV |Y (·|·)

PB(φ, ψ, fV |Y (·|·))

≥ min
φ

max
fV |Y (·|·)

min
ψ
PB(φ, ψ, fV |Y (·|·)) (14)

= min
φ

max
fV |Y (·|·)

PB(φ, ψML , fV |Y (·|·)), (15)

where the equality (15) assumes that the decoder is aware of
the attacking pdf and therefore the minimization at the decoder
results in the optimal ML decoding strategyψML .

In many practical benchmarking approaches, the perfor-
mance of various data-hiding methods is measured in front
of fixed attacks that are known to be the worst ones in
some communication scenarios. Nevertheless, some particular
applications might not necessarily use the WCA. Therefore, it
is interesting to bound the system performance for any attack:
this problem can be formulated as the data-hiding performance
for the fixed attack like the AWGN or the uniform noise attacks
with a given pdff̃V |Y (·|·):

min
φ

max
fV |Y (·|·)

PB(φ, ψML , fV |Y (·|·))

≥ min
φ
PB(φ, ψML , f̃V |Y (·|·)), (16)

where the equality holds if, and only if, the fixed attack pdf
f̃V |Y (·|·) coincides with the WCA.

Using (15) one can write:

min
φ

max
fV |Y (·|·)

PB(φ, ψMD , fV |Y (·|·))

≥ min
φ

max
fV |Y (·|·)

PB(φ, ψML , fV |Y (·|·)), (17)

with equality if, and only if, the MD decoder coincides with
the optimal ML decoder.

In the analysis of the WCAA using the error probability as
a cost function, we will further assume that the MD decoder
is applied. Using (16) and assuming the MD decoding rule,
one can write:

min
φ

max
fV |Y (·|·)

PB(φ, ψMD , fV |Y (·|·))

≥ min
φ
PB(φ, ψMD , f̃V |Y (·|·)), (18)

where the equality holds if, and only if, the fixed attack pdf
f̃V |Y (v|y) coincides with the WCAA.

In the class of additive attacks, the attacking channel tran-
sition pdf is only determined by the pdf of the additive noise
fZ(z). Finally, in this analysis we assume independence of the
error probability on the quantization bin where the received
signal v lies (because the error regionRm (Figure 6) has
periodical structure and the host pdffX(x) is assumed to be
asymptotically constant within each quantization bin).

Applying (18) to the quantization-based data-hiding (Sec-
tion II-B), assuming an additive attacking scenario (Figure 3),
the MD decoding rule (10) and high-rate, one has:

min
α′

max
fZ(·)

PB(α′, ψMD , fZ(·)) ≥ min
α′

PB(φ, ψMD , f̃Z(·)),

(19)



5

where the encoder optimization is reduced to the selection of
an optimal parameterα′ and the channel to the selection of
the worst additive noise pdf.

The problem (19) implies that the attacker might know both
encoding and decoding strategy. Here, we target finding the
WCAA pdf and the optimum fixed encoding strategy inde-
pendently of the particular attacking case which guarantees
reliable communications and provides an upper bound on the
error probability.

Considering the previously discussed quantization-based
techniques and the MD decoder, and assuming that the mes-
sagem is communicated, the probability of correct decoding
P cB is determined as [8]:

P cB = Pr[||V −Qm(V )||2 < ||V −Qm′(V )||2 :

∀ m′ ∈ M,m′ 6= m] = Pr[V ∈ Rm|M = m].

The error probability can be obtained asPB = 1−P cB . We can
represent the error probability as the integral of the equivalent
noise pdffZeq|M = fZ ∗ fDC-DM over the error regionRm:

PB =

|M|
∑

m=1

pM (m)

∫

Rm

fZeq|M (zeq|M = m)dzeq. (20)

For the|M|-ary case, it is possible to write the probability of
error as a sum of integrals as:

PB = 2

|M|
∑

m=1

pM (m)

·
∞
∑

k=0

∫ (k+1)∆−∆/2|M|

k∆+∆/2|M|
fZeq|M (zeq|M = m)dzeq. (21)

Concerning the DM, the pdf offZeq
(·) is a periodical repe-

tition of the noise pdffZ(·). In the case of DC-DM the pdf
is given by the convolution of the attacking pdf with the self-
noise pdf (periodic uniform pdf) [8].

The following subsections are dedicated to the analysis of
the error probability (21) for the fixed attacks, i.e., AWGN
and uniform noise. Finally, the WCAA has been derived for
both |M|-ary DM and|M|-ary DC-DM.

A. Additive white Gaussian noise attack

This section contains the error probability analysis of the
|M|-ary DM and DC-DM techniques under the AWGN attack.

1) DM analysis: In the DM case, the equivalent noise pdf
is given by:

fZeq|M (zeq|M = m) =
1

√

2πσ2
Z

e
− zeq

2

2σ2

Z , (22)

where σ2
Z denotes the variance of the attack. The error

probability can be therefore calculated using (21).
2) DC-DM analysis: In the DC-DM case the equivalent

noise pdf is given by [8]:

fZeq|M (zeq|M= m) =
1

2B

(

Q

(

zeq−B

σZ

)

−Q

(

zeq+B

σZ

))

,

where Q is the Q-function, Q(x) = 1√
2π

∫ x

0
e−t

2/2dt, and
B is the half-width of the self-noise pdf. The analytical

10-2

10-1

100

-5 0 5 10 15 20 25

P
B

WNR, [dB]

α′ = 1

α′ = 0.8

α′ = 0.7

α′ = 0.5

(a)

10-2

10-1

100

-5 0 5 10 15 20 25

P
B

WNR, [dB]

α′ = 1

α′ = 0.8

α′ = 0.7

α′ = 0.5

(b)

Fig. 7. Error probability analysis result for the AWGN attackcase: (a) binary
signaling and (b) quaternary signaling.

expression for the error probability (20) does not exist, and it
is evaluated numerically using (21). The error probabilityfor
the DM and the DC-DM under the AWGN attack is depicted
in Figure 7.

B. Uniform noise attack

It was shown [8] that the uniform noise attack produces
higher error probability than the AWGN attack for some par-
ticular WNR in the binary signaling case. This fact contradicts
the common belief that the AWGN is the WCAA for all data-
hiding methods since it has the highest differential entropy
among all pdfs with bounded variance.

We consider the uniform noise attackZ ∼ U(−η, η) with
varianceσ2

Z = η2

3 assuming that the MD decoder is used.
1) DM analysis: The equivalent noise pdf is given by a

train of uniform pulses. In the case when the power of the
attack is not strong enough, i.e., all noise samples are within
the quantization bin of the sent message, the error probability
is zero. For stronger attacks the error probability is defined
by the integral of the equivalent noise pdf (a uniform pdf)
over the error region using (21). The analytical solution when
η < 2|M|+1

|M|
∆
2 in the |M|-ary case is:

PB(α′ = 1, ψMD , fUnif.
Z (·))

=











0, η < ∆
2|M| ;

1 − ∆
2|M|η ,

∆
2|M| ≤ η < 2|M|−1

|M|
∆
2 ;

∆
η

|M|−1
|M| ,

2|M|−1
|M|

∆
2 ≤ η < 2|M|+1

|M|
∆
2 .

(23)

In the third case, the error probability decreases while the
WNR decreases as well. This effect is caused by the entrance
of the noise into the nearest correct region and a smaller por-
tion of the attack power is present in the error region. Because
of this effect we have a non strictly decreasing probabilityof
error as a function of the WNR. Ifη > 2|M|+1

|M|
∆
2 , the error

probability starts increasing again since the received pdfenters
again the error region. The performance of the DM in the
uniform noise attack is presented in Figure 8.

2) DC-DM analysis: Under the uniform noise attack, the bit
error probability is equal to the integral of the equivalentnoise
pdf fZeq|M (zeq|M = m) (a trapezoidal function) over the
error region (21). The resulting analytical equation forη+B <
∆ − Th in the |M|-ary case is:

PB(α′, ψMD , fUnif.
Z (·))

=







0, Th > η +B;
k1

8|M|2 , |η −B| < Th < η +B;

min{ 1
2B ,

1
2η} · k2, Th < |η −B|,

(24)



6

10-2

10-1

100

-5 0 5 10 15 20 25

P
B

WNR, [dB]

α′ = 1

α′ = 0.8

α′ = 0.7

α′ = 0.5

(a)

10-2

10-1

100

-5 0 5 10 15 20 25

P
B

WNR, [dB]

α′ = 1

α′ = 0.8

α′ = 0.7

α′ = 0.5

(b)

Fig. 8. Error probability for the uniform noise attack case:(a) binary signaling
and (b) quaternary signaling.
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Fig. 9. Comparison of the AWGN and the uniform noise attacks in terms
of the error probability for the minimum distance decoding rule: (a) binary
signaling and (b) quaternary signaling.

where k1 = (2(η + B)|M| − ∆)(2m|M|(η + B) +

4n|M| + m∆), k2 =
(

(η+B)−|η−B|
2 + ((η −B) − Th)

)

,

m = min{1/2B,1/2η}
|η−B|−(η+B) and n = −m(η + B). If η + B >

∆−Th, the error probability decreases as in the DM case. The
corresponding performance of the DC-DM under the uniform
noise attack is presented in Figure 8. Since we are assuming
fixed decoder, the error probability for the binary case can be
higher than 0.5.

The experimental results presented in Figure 9 allow to
conclude that the AWGN attack is not the WCAA for the
assumed fixed decoder structure in the|M|-ary case. Thus, the
main goal of the following section consists in the development
of the WCAA for the considered embedding scenarios.

C. The worst case additive attack

The problem of the WCAA for digital communications
based on binary pulse amplitude modulation (PAM) was
considered in [7] using the error probability under attack
power constraint. In this paper, the problem of the WCAA
is addressed for the quantization-based data-hiding methods.

The problem (18) for the DM with the fixed MD decoder
(10) can be reformulated as:

min
α′

max
fZ(·)

PB(α′, ψMD , fZ(·)), (25)

where the encoder is optimized over allα′ such that
0 < α′ ≤ 1, and the attacker selects the attack pdffZ(·)
maximizing the error probabilityPB . Since the encoder must
be fixed in advance in the practical set-ups, we will first
solve the above min-max problem as an internal maximization
problem for a given encoder/decoder pair:

max
fZ(·)

PB(α′, ψMD , fZ(·)) = max
fZ(·)

∫

Rm

fV (v|M = m)dv,

(26)
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Fig. 10. WCAA optimization resulting pdfs for differentα′ and WNR,
binary signaling.
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Fig. 11. WCAA optimization resulting pdfs for differentα′ and WNR,
quaternary signaling.

where0 < α′ ≤ 1, subject to the constraints:
∫ ∞

−∞
fZ(z)dz = 1,

∫ ∞

−∞
z2fZ(z)dz ≤ σ2

Z , (27)

where the first constraint follows from the pdf definition and
σ2
Z constrains the attack power.
We will derive the WCAA based on (26) for the fixedα′

and use it for the solution of (25) accordingly. The distortion
compensation parameterα′ leading to the minimum error
probability will be the solution to (25).

Unfortunately, no close analytical solution has been found.
The resulting attacking pdfs obtained using numerical opti-
mization are presented in Figure 10 and Figure 11 for different
WNRs andα′ values assuming∆ = 2.

The obtained pdfs are non-monotonic functions. Thus, the
MD decoder is not equivalent to the ML decoder. The obtained
error probabilities are depicted in Figure 12, where the maxi-
mum is equal to 1 since we are assuming that the decoder is
fixed (MD decoder) and it is completely known to the attacker.
In a different decoding case when it is possible to invert the
bit values, the maximum error probability will be equal to 0.5.

Motivated by the obtained pdfs and in order to receive
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Fig. 12. WCAA error probability optimization result: (a) binary signaling
and (b) quaternary signaling

mathematically tractable results, we approximate the WCAA
by a so-called3 − δ attack whose pdf is presented in Fig-
ure 13. The3 − δ attack provides a simple and powerful
attacking strategy, which approximates the WCAA and might
be used for testing different data-hiding algorithms. In order
to demonstrate how accurate this approximation is, one needs
to compare the average error probability caused by this attack
versus the numerically obtained results.

−T 0 T

A A
1 − 2A

Fig. 13. 3 − δ attack,0 ≤ A ≤ 0.5.

For this purpose, the optimization of the3 − δ attack
parameters has been performed for the DC-DM considering
the DM as a particular case forα′ = 1. WhenT − B < Th,
the error probability is equal to the integral of the equivalent
noise pdffZeq|M (zeq|M = m) over the error regionRm:

PB =
A

B
(T +B − Th), (28)

where 2B = (1 − α′)∆, Th = ∆
2|M| and A =

σ2

Z

2T 2 . It is
maximized for the following selection ofT = Topt1 :

Topt1 =
∆(1 − |M|(1 − α′))

|M|
. (29)

The value ofTopt1 should be always positive, implying that
α′ > |M|−1

|M| . It can be demonstrated thatTopt1 → 0 asα′ →
|M|−1
|M| . For a given attack varianceσ2

Z = 2T 2A > 0 and
Topt1 → 0, one hasA → 0.5 (its maximum value to satisfy
the technical requirement to pdf in Figure 13). Simplifying
(28) for α′ → |M|−1

|M| implies thatPB → 1.

If α′ > |M|−1
|M| andT = Topt1 , the error probability is given

by:

PB =
σ2
Z |M|α′2

24 · σ2
W (1 − α′)(1 − |M|(1 − α′))

. (30)

This result is valid ifTopt1 − B < Th, and this constraint
implies thatα′ < 1− 1

3|M| . For this case, the minimum of the
error probability is achieved at:

α′
opt =

2(|M| − 1)

2|M| − 1
. (31)

In the case when the previous condition does not hold, the
error probability is calculated as:PB = 2A. The maximum is
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Fig. 14. Error probability analysis result for the3−δ attack case: (a) binary
signaling and (b) quaternary signaling.
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Fig. 15. Error probability comparison between the numerical optimization
results and the3 − δ attack case: (a) binary signaling and (b) quaternary
signaling

found for the minimum possibleT = Topt2 = Th + B, and
the error probability is:

PB =
σ2
Z |M|2α′2

3 · σ2
W (1 + |M|(1 − α′))2

. (32)

The corresponding performance for the DM and the DC-
DM under the 3-δ attack is presented in Figure 14. The
comparison presented in Figure 15 demonstrates that the 3-
δ attack produces asymptotically the same error probabilityas
the optimization results presented in Figure 10 and Figure 11.

The optimization results (Figure 10 and Figure 11) demon-
strate that for very low-WNR the WCAA structure does not
necessarily corresponds to the 3-δ attack. Nevertheless, the 3-
δ attack is one of the possible choices, which achieves the
maximal error probability and therefore can be used as the
WCAA as it is shown in Figure 15. The previously analyzed
AWGN and the uniform noise attacks are compared with the
WCAA in Figure 16, demonstrating that the gap between the
AWGN attack and the real worst case attack can be larger than
5dB in terms of the WNR.

The error probability as a function of the distortion com-
pensation parameter for a given WNR demonstrates that the
3 − δ attacking scheme is worse than either the uniform or
the Gaussian ones (Figure 17). If the noise attack is known,
it is possible to select such anα′ that minimizes the error
probability for the given WNR in Figure 17. For example,
if WNR = 0dB and Gaussian noise is applied, the optimal
distortion compensation factor isα′ = 0.53, resulting in
PB = 0.23. Nevertheless, the encoder and the decoder are
in general uninformed of the attacking strategy in advance
and a mismatch in the attacking scheme may cause a bit error
probability2 of 1, while for α′ = 0.66 the maximum bit error
probability isPB = 0.33.

In order to find the optimal compensation parameter value
that will allow the data-hider to upper bound the error

2In general the maximum bit error probability is equal to 1 for the fixed
MD decoder.
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Fig. 16. Error probability analysis result for different attacking strategies: (a)
DM performance, binary signaling, (b) DM performance, quaternary signaling,
(c) DC-DM for α′ = 0.8 performance, binary signaling and (d) DC-DM for
α′ = 0.8 performance, quaternary signaling.
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Fig. 17. Error probability comparison as a function of the distortion
compensation parameter for the3 − δ, Gaussian and uniform attacks and
binary signaling: (a) WNR= 0dB, (b) WNR= 5dB, (c) WNR= 10dB and
(d) WNR = 15dB.

probability introduced by the WCAA, we analyzed (30) and
(32). Surprisingly, it was found that, independently of the
operational WNR,α′ = α′

opt guarantees the lowest error
probability of the analyzed data-hiding techniques under the
WCAA (Figure 18). Having this bound on the error probabil-
ity, it is possible to guarantee reliable communications using
proper error correction codes. Therefore, one can select such
a fixed distortion compensation parameterα′ = α′

opt at the
uninformed encoder and the MD decoder, which guarantees
a bounded error probability. Substituting (31) into (30), one
obtains the upper bound on the error probability:

PB(α′
opt) =

1

6
|M|(|M| − 1)ξ−1. (33)

IV. M UTUAL INFORMATION AS A COST FUNCTION

The analysis of the WCA with mutual information as a
cost function is crucial for the fair evaluation of quantization-
based data-hiding techniques. It provides the information-
theoretic performance limit (in terms of achievable rate of
reliable communications) that can be used for benchmarking
of different practical robust data-hiding techniques.
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Fig. 18. Error probability analysis result as a function of the distortion
compensation parameterα′ for the 3− δ attack: (a) binary signaling and (b)
quaternary signaling.

P. Moulinet al. [1] considered the maximum achievable rate
in the Gel’fand-Pinsker set-up (1) as a max-min problem:

C = max
φ

min
fV |Y (·|·)

[I(U ;V ) − I(U ;X)] , (34)

for a blockwise memoryless attack, the embedder distortion
constraintσ2

W and the attacker distortion constraintσ2
Z .

In the case of practical quantization-based methods the
mutual information is measured between the communicated
messageM and the channel outputV [9]: Iφ,fV |Y (·|·)(M ;V ),
where the subscript means that the mutual information depends
on both encoder design and attack pdf.

It was shown in [9] that modulo operation does not reduce
the mutual information betweenV and M if the host is
assumed to be flat within the quantization bins. Consequently:

Iφ,fV |Y (·|·)(M ;V ) = Iφ,fV |Y (·|·)(M ;V ′), (35)

where V ′ = Q∆(V ) − V , and the above problem can be
reformulated as:

max
φ

min
fV |Y (·|·)

Iφ,fV |Y (·|·)(M ;V ′). (36)

Rewriting the inequalities (14)–(16) for the mutual infor-
mation as a cost function, we have:

max
φ

min
fV |Y (·|·)

Iφ,fV |Y (·|·)(M ;V ′) ≤ max
φ

Iφ,f̃V |Y (·|·)(M ;V ′),

with equality if, and only if, the fixed attack̃fV |Y (·|·) coin-
cides with the WCAA. Thus, the decoder in Figure 3 is not
fixed and we assume that the channel attack pdffV |Y (·|·) is
available at the decoder (informed decoder) and, consequently,
ML decoding is performed. Under previous assumptions of
quantization-based embedding and additive attack, it is possi-
ble to rewrite (36) as:

max
α′

min
fZ(·)

Iα′,fZ(·)(M ;V ′). (37)

As for the error probability analysis case, we address the
problem of the WCAA and the optimal encoding strategy for
the WCAA. It is known [20] that the mutual information can
be expressed as a Kullback-Leibler distance (KLD):

Iα′,fZ(·)(M ;V ′) = D(fM,V ′(m, v′)||fV ′(v′)pM (m))

=

∫

fM,V ′(m, v′) log2

fV ′|M (v′|M = m)

fV ′(v′)
dv′, (38)

wherefM,V ′(m, v′) is the joint pdf of the input message and
the modulo of the channel output,pM (m) denotes the marginal
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Fig. 19. Mutual information analysis result for the AWGN attack case and
different α′ and WNR values: (a) and (b) binary signaling and (c) and (d)
quaternary signaling.

pdf of the input messages andfV ′(v′) the marginal pdf of the
modulo of the channel output.

In fact, (38) can be written as the KLD between the received
pdf when one of the symbols has been sent, and the average
of the pdfs of all possible symbols. Assuming equiprobable
symbols in the|M|-ary signaling case, one obtains [9]:

Iα′,fZ(·)(M ;V ′) =
1

|M|

|M|
∑

m=1

D
(

fV ′|M (v′|M = m)||fV ′(v′)
)

= D
(

fV ′|M (v′|M = 1)||fV ′(v′)
)

, (39)

where D
(

fV ′|M (v′|M = m)||fV ′(v′)
)

=
D

(

fV ′|M (v′|M = 1)||fV ′(v′)
)

since fV ′|M (v′|M = 1)
and fV ′|M (v′|M = m) are the same pdf shifted for all
m ∈ M andfV ′(v′) = 1

|M|
∑|M|
m=1 fV ′|M (v′|M = m).

The next section is dedicated to the analysis of the DM and
the DC-DM under the AWGN attack, the uniform noise attack
and the WCAA.

A. Additive white Gaussian noise attack

When the DM and the DC-DM undergo the AWGN, no
closed analytical solution to the mutual information minimiza-
tion problem exists; the minimization was therefore performed
using numerical computations. The results of this analysisfor
the binary and quaternary cases are shown in Figure 19.

B. Uniform noise attack

It was shown [8] that the uniform noise attack is stronger
than the AWGN attack for some WNRs when the error
probability is used as a cost function. One of the properties
of the KLD measure states that it is equal to zero if, and only
if, the two pdfs are equal. In case the uniform noise attack
is applied, this condition holds for some particular valuesof
WNR for the mutual information given by (39). It can be
demonstrated thatI(M ;V ′) = 0 when ξ = α′2

k2 , k ∈ N for
the |M|-ary signaling. This particular behaviour allows the
attacker to achieve zero rate of communication with smaller
attacking power than was predicted by the data-hider. the
mutual information of quantization-based data-hiding tech-
niques for the uniform noise attacking case with binary and
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Fig. 20. Mutual information analysis result for the uniform noise attack case:
(a) global performance analysis and (b) magnification of the low-WNR regime
with binary signaling; (c) global performance analysis and (d) magnification
of the low-WNR with quaternary signaling.

quaternary signaling is depicted in Figure 20. It demonstrates
that the efficiency of the attack strongly depends on the
value of the distortion compensation parameter, and shows the
oscillating behaviour at the low-WNR detailed in Figure 20(b)
and Figure 20(d).

The uniform noise attack guarantees that it is not possible
to communicate using the DC-DM atξ ≤ α′2, and therefore
distortion compensation parameterα′ has a strong influence
on the performance at the low-WNR. As a consequence,
ξ = α′2 represents the WNR corresponding to zero rate
communication, if the attacking variance satisfiesσ2

Z ≥ Dw

α′2 .

C. The worst case additive attack

The problem of the WCAA using the mutual information
as a cost function can be formulated using (37). Since the
encoder must be fixed in advance as for the probability of error
analysis case, we solve the max-min problem as a constrained
minimization problem:

min
fZ(·)

Iα′,fZ(·)(M ;V ′) = min
fZ(·)

D
(

fV ′|M (v′|M = 1||fV ′(v′)
)

,

(40)
where0 < α′ ≤ 1. The constraints in (40) are the same as with
the error probability oriented analysis case (27). Unfortunately,
this problem has no closed form solution and it was solved
numerically.

The obtained results are presented for differentα′ values in
Figure 21. In comparison with the AWGN and the uniform
noise attacks, they demonstrate that the developed attack
produces the maximum possible loss in terms of the mutual
information for all WNRs (Figure 22).

In the analysis of the WCAA using the error probability
as a cost function, the optimalα′ parameter was found.
Unfortunately, it is not the case in the mutual information
oriented analysis, and its value varies with the WNR. In
Figure 23 the optimumα′ values as a function of the WNR are
presented for different input distributions in comparisonwith
the optimum SCS parameter [15]. It demonstrates that SCS
optimum distortion compensation parameter designed for the
AWGN is also a good approximation for the WCAA case.
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Fig. 21. Mutual information analysis result for the WCAA case:(a) binary
signaling and (b) quaternary signaling.
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Fig. 22. Comparison of different attacks using mutual information as a cost
function: (a)α′ = 0.95, binary signaling, (b)α′ = 0.5, binary signaling, (c)
α′ = 0.95, quaternary signaling and (d)α′ = 0.5, quaternary signaling.

Recalling (37), we can conclude that it is not possible to find
a unique optimumα′ for the mutual information analysis case,
contrarily to the error probability one when the decoder was
fixed to the suboptimum MD decoder. The data-hider cannot
select a value of the distortion compensation blindly, which
guarantees reliable communications at any given rate.

It is possible to observe a saturation of the optimum
value of α′ in Figure 23 for small dimensionality and large
WNR. Therefore, it is possible to select an optimumα′ if
the WNR range is known, located in the high-WNR regime
and requirements of small dimensionality apply. For example,
working in the high-WNR with WNR> 5dB and |M| = 2,
optimumα′ can be chosen asα′ = 0.71.

Using the optimumα′ for each WNR, the resulting mutual
information (40) is presented in Figure 24(a) for different
cardinality of the input alphabet compared to the performance
of the AWGN using the optimizedα = αopt parameter [1].The
obtained performance demonstrates that the developed WCAA
is worser than the AWGN whenever the optimum distortion
compensation parameter is selected.

The pdfs of the WCAA for different cardinality of the
input alphabet and WNRs are presented in Figure 25. There
is a strong impact of the optimization precision on the pdf
shape although the mutual information value remains constant,
and therefore high precision has been used to generate the
presented results (optimization tolerance up to10−12 was
used). Nevertheless, the presented pdfs are not unique and
different shapes might achieve the same performance.

Previous results [9] have already proven that the optimal
WCAA pdf must be strictly inside the bin (and following
the AWGN cannot be the WCAA). However, it is possible to
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Fig. 23. Optimum distortion compensation parameterα′ when the mutual
information is selected as a cost function.
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Fig. 24. Maximum achievable rate for different cardinality of the input
alphabet under the WCAA compared to the AWGN (a) for|M| → ∞ and
(b) for |M| < ∞.

achieve nearly optimal solutions with larger support of thepdf.
The periodical repetition of the constellations yields a similar
effective attack whilst using a larger power. In the presented
experiments, the bin width was chosen as∆ = 2.

The support of the presented WCAA pdfs does not vary
significantly. The optimum distortion compensation parameter
α′ increments with the WNR and so the power of the embed-
ded signal while the self-noise support decrements. Thus, the
support of the attack remains nearly the same for all WNRs.
Larger variations can be observed for the high-WNR and high
dimensionality, where the optimumα′ variation is smaller.

It is possible to observe in Figures 24(a) and 25 that the
impact of the WCAA is very similar to a truncated Gaussian
and that the difference in terms of the mutual information
is negligible. Although the AWGN is not the WCAA, its
performance is an accurate and practical approximation to
the WCAA in the asymptotic case when|M| → ∞. For
|M| <∞, the difference might be important for some WNRs
and it is needed to consider the real WCAA as it is presented
in Figure 24(b).

V. CONCLUSIONS

In this paper we addressed the problem of the WCAA for the
quantization-based data-hiding techniques from the probability
of error and mutual information perspectives. The comparison
between the analyzed cost functions demonstrated that in a
rigid scenario with a fixed decoder, the attacker can decrease
the rate of reliable communication more severely than by using
either the AWGN or the uniform noise attacks. We showed
that the AWGN attack is not the WCAA in general, and we
obtained an accurate and practical analytical approximation to
the WCAA, the so-called3− δ attack, when the cost function
is the probability of error for the fixed MD decoder. For the
3 − δ attack,α′ = 2(|M|−1)

2|M|−1 was found to be the optimal
value for the MD decoder that allows to communicate with
an upper bounded probability of error for a given WNR. This
value could be fixed without prior knowledge of the attacking
pdf.
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Fig. 25. Pdfs of the WCAA for different input distribution andWNRs.

The analysis results obtained by means of numerical op-
timization showed that there exists a worse attack than the
AWGN when the mutual information was used as a cost
function. Contrarily to the error probability analysis case,
the optimal distortion compensation parameter (α′) depends
on the operational WNR for the mutual information analysis
case. The particular behaviour of the mutual information
under uniform noise attack was considered, achieving zero-
rate communication for attacking variancesσ2

Z such that
σ2
Z ≥ Dw

α′2 . The presented results should serve as a basis for
the development of fair benchmarks for various data-hiding
technologies.
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