N

HAL

open science

Annotation Framework Validation using Domain Models

Carlos Noguera, Laurence Duchien

» To cite this version:

Carlos Noguera, Laurence Duchien. Annotation Framework Validation using Domain Models. Model
Driven Architecture - Foundations and Applications, Jun 2008, Berlin, Germany. pp.48-62. inria-

00287856

HAL Id: inria-00287856
https://inria.hal.science/inria-00287856
Submitted on 13 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00287856
https://hal.archives-ouvertes.fr

Annotation Framework Validation using Domain
Models

Carlos Noguera and Laurence Duchien

Université des Sciences et Technologies de Lille, INRIA Lille Nord-Europe - LIFL
40, avenue Halley,
59655 Villeneuve d’Ascq, France
{noguera|laurence.duchien}@lifl.fr

Abstract. Frameworks and libraries that use annotations are becoming
popular. However, there is not enough software engineering support for
annotation development. In particular, the validation of constraints in
the use of annotations requires further support. In this paper we postu-
late that annotation frameworks are a projection of the domain model
into a programming language model. Using this idea, we have devel-
oped a tool that allows the annotation programmer to specify, and then
validate the constraints of the annotation framework regarding a given
annotated application using a domain model. To validate our approach
to the validation of constraints using models, we apply it to the Fraclet
annotation framework and compare it to the previous implementation.

1 Introduction

Large annotation frameworks [6,16] are becoming more and more common.
These kinds of frameworks, such as EJB3 [12], offer to the application program-
mer, in addition to classes and methods, annotations that provide an additional,
declarative way to use the framework. Annotation framework design and imple-
mentation rises a number of challenges. Among them, the problem of validating
that the application developers correctly use the annotations. It is interesting
for the framework programmer to be able to express the constraints of its anno-
tation framework, and to automatically check whether a program is valid with
respect to these constraints.

Previously, we have developed a technique and a tool to express these con-
straints, called AVal, that relies on meta-annotations. Constraints are then im-
plemented by the use of a meta-annotation framework, and are checked by an
annotation processor. In this paper, we extend AVal by investigating the re-
lationship between annotation frameworks and domain models. Based on this
relationship, we show that the constraints of an annotation framework can be
translated into constraints on a domain model. Furthermore, the validation of an
annotated program corresponds to the validation of the instance of the domain
model. We apply this technique to a case studie: Fraclet.

The paper is organized as follows: first, in the next section we motivate
the need for annotation validation, and present our existing approach called

AVal. Then, in Section 3 we present our proposal, by discussing the relation
between annotations and models, and their usefulness in annotation validation.
In Section 5 we present how models aid in the validation of a real-life annotation
framework, Fraclet. Finally, in Sections 6 and 7 we compare our work to similar
approaches, and conclude.

2 Annotation Validation

The Java type system for annotations is not expressive enough to assure that the
use of annotations is correct. This type system allows the annotation framework
developer to define the names, types and default values of (optional) properties,
as well as the Java program elements to which it can be attached. It, however,
leaves the responsibility of more complex checks to the annotation framework
developer.

Complex annotation frameworks impose further restrictions on the use of
annotations than those made available by the Java compiler. For example, in
EJB3, the @Id annotation that marks a field in an entity class as its identifier, can
only be placed in fields belonging to a class annotated as @Entity. Constraints
such as these are common among annotation framework specifications. These
kinds of constraints cannot be enforced by the Java compiler, and it is up to
the annotation developer to check them as part of the annotation’s processing
phase.

Annotation frameworks imply a number of constraints on their usage. This
is not different than for any other framework. However, in contrast to regular
frameworks, annotation frameworks are static entities; that is, their usage can
be checked during the compilation of the program. This is done so that the
errors are provided to the final developer as soon as possible. Given the static
nature of the semantics of annotations, their constraint checking is considerably
easier than that of its regular counterparts because, in general, no complex static
analysis must be performed.

We call the process of constraint checking validation of an annotated program.
This process takes as inputs the set of annotation types and a program carrying
the corresponding annotations. As output, a set of errors corresponding to the
violations of the constraints as they are used in the program are returned. In this
process we identify two actors: the developer of the annotation framework, i.e.,
the person that implemented the annotation types; and the program developer,
i.e., the person that wrote and annotated the program.

Although the process flow for the validation of an annotated program is
straightforward, the constraints actually checked strongly depend on the partic-
ular annotation framework. Each annotation framework imposes its particular
set of constraints that derive from the domain in which they lay. In general,
annotation validations are of two kinds, those dealing with the relationship be-
tween an annotation type and the code element on which it is placed, and those
dealing the annotation type’s properties, and its relationship with other anno-

tation types. We call the former code-wise validations, while the later, structural
validations.

2.1 AVal - Annotation-based Validation

To perform the validation of annotation frameworks AVal [13] applies the concept
of annotations itself by defining an annotation framework that contains a set
of meta-annotations for the domain of annotation constraints validation. These
validation meta-annotations are used to augment the definition of the annotation
framework under development with meta-data relevant to validating a given
constraint.

Annotating annotations with other annotations has the advantage to make
the constraints explicit in the annotation framework’s definition and local to the
annotation they apply to. AVal provides a number of built-in validations, and
means to add custom ones. It uses Spoon [14] for compile-time reflection and
annotation processing, and through it, provides integration to the Eclipse IDE.

Annotates

YN

Base Program Domain-Specific Validation Validation
Annotations meta-annotations Implementation

@

—

AVal source code processor

Fig. 1. AVal Architecture

2.2 Annotation Validation for Java

The concept of using meta-annotations to declare restrictions on use of Java

annotations is already included in the JDK. Indeed, the Java Language Spec-

ification [10] defines a Target annotation that must be placed on annotation

type definitions to restrict where instances of the annotation type can be placed.

However, asides from Target, no other validation annotations are provided.
AVal’s architecture is composed of four layers (Figure 1):

Base program: The (annotated) program that is to be validated. Elements
of the program are annotated by annotations defined on the annotation
framework layer.

Domain-Specific (Annotation) Language: The domain specific annotations.
Each annotation is meta-annotated by an AVal meta-annotation that ex-
presses the constraints for its validation.

Validation meta-annotations: AVal annotations that encode the constraints
to validate domain specific annotations. Each meta-annotation represents a
validation constraint, and is itself annotated with the class that is responsible
for the implementation of it.

Implementation: A class per validation meta-annotation. The class must im-
plement the vaiidator interface, and it uses the Spoon compile-time model of
base the program, annotation framework, and meta-annotation in order to
perform the validation.

AVal is implemented as a Spoon source code pre-processor that is executed
before the code generation or compilation phase in an annotation framework.
It traverses the base code looking for domain-specific annotations. Each time it
finds an annotated element, it checks the model of the annotation’s declaration
to see if it has any meta-annotations. In case the annotation has one or more
validators, the tool executes each implementation in the order in which they
are defined. In order to ease the specification of constraints, AVal provides a
number of annotations that represent commonly used rules. A subset of these
annotations, as well as their description is shown in Table 1, for a more complete
discussion on AVal’s annotations see [13].

l Annotation[Description

Inside (4AT) |The annotation must be placed on elements which are inside

elements annotated with AT

Requires(4T)|The annotation requires that the target of the annotation

also is annotated with AT

RefersTo(AT,N)|The property of the annotation must carry the same value

as the property called N belonging to AT

AValTarget (TE) | The annotation must have as target the program element TF
Table 1. Default constraint annotations in AVal

In order to validate complex constraints, the annotation framework devel-
oper can extend AVal with new meta-annotations. For this, a new annotation
type and its corresponding implementation (see Figure 1) must be provided. The
annotation type serves to mark the context of the constraint, while the actual
checking must be performed by traversing the AST of the program. This traver-
sal, of course, requires an intimate knowledge of the model used by the tool to
represent the program, and its associated API. Hence, the creation of new anno-
tations for AVal can be a tedious task. In order to ease the extension of AVal’s
annotations, an abstraction over the AST of the program is needed. Annotation
models is one possible abstraction.

3 Annotation Models

As we have seen in the previous sections, complex annotation frameworks require
validations that concern both other annotations and the program on which they
are used. But, where do these constraints come from? Consider the Inside val-
idation, if an annotation type A is required to reside inside another one, B, this
implies a relationship between them since it makes no sense for A to be present
in the program without its corresponding B. Now, suppose that both A and B
are classes in an UML class model, then the relationship induced by the Inside
validation could be described by means of a containment association between
them.

3.1 Annotation and Code Models

Extending this idea of modeling annotation types, we can see that structural
validations can be mapped to relationships and invariants on a model that rep-
resents the annotation types. We will call this model derived from the annotation
types an annotation model.

Code-wise validations, on the contrary, cannot be described in terms of the
annotation model alone, since they deal with constraints on the relationship
between the annotations and the program on which they are imposed. To inte-
grate code-wise validations into the model we need a representation of the target
language, in this case Java, so that an association between annotation models
and code models can be reasoned on. This model representation of the target
language, called code model, needs to be at the same level of abstraction as that
of the annotation model to be able to mark the references from one to the other,
i.e. to state that a given annotation is to be placed on a given code element.
This code model is the AST of the language.

In this way, the annotation model corresponds to the model of the domain,
defined by the annotation types and their corresponding constraints, while the
code-wise validations define a mapping between the annotation model and the
code model. Now, just as the annotations in the program conform to their an-
notation types, there is a model instance for both the annotation model and the
code model. Code-model instances would represent the concrete syntax tree of
a given program; while annotation-model instances would represent the annota-
tions present in the target program.

3.2 Example

To better understand the nature of the annotation models and their interac-
tion with the code model, let us suppose a simple annotation framework to
define SAX-based XML parsers called SAXSpoon. SAX frameworks traverse
the tags of an XML document up-calling a method each time a start or end
tag is found. In our annotation framework, we will define three annotations:

SaxSpoon

HandlesStart

SaxParser . start

pELT]

corresponding

1

i 0.t 1
1 Q HandlesEnd

1abuey

FELAT-]

Spoon l

1 1

CtMethod
CtClass

Fig. 2. SAXSpoon annotation model

SAXParser, HandlesStart and HandlesEnd. SAXParser identifies a class as be-
ing a SAX parser and it defines a single property that points to the DTD docu-
ment that defines the type of documents that the class will handle. HandlesStart
and HandlesEnd respectively identify the methods that handle the start and end
of a tag, given as parameter to each annotation. The corresponding annotation
model for this framework is depicted in Figure 2. In it, The package SaxSpoon
contains the annotation model, while the package Spoon contains the relevant
parts of the code model.

Code-wise constraints for SAXSpoon can be encoded as OCL expressions
on the relations between the SaxSpoon and Spoon packages; while structural
constraints can be encoded in the relationships between the elements of the
annotation model itself.

4 Validation using Annotation Models

As discussed before, it is possible to embed constraints on the annotation and
code model. These constraints are then checked against a model instance derived
from an annotated program. In order to do this, the annotation developer must
be able to declare the constraints on its annotation framework, and she must be
able to direct the way in which the annotation model instance is generated. For
this, we have extended AVal (as presented in Section 2.1) with annotations to
specify the instanciation of the model (Association and DefaultValue) as well
as the constraints on the model (0CLConstraint). The implementation for the
aforementioned annotations and its corresponding tool chain is called ModelAn,
and will be explained in the following Section.

4.1 ModelAn - Model Based Annotation Validation

ModelAn is a tool chain for the definition of annotation model constraints and
their corresponding validation. It is driven by annotations (as opposed to mod-
els), and it uses AVal as an underlying layer. The workflow for the use of ModelAn
is depicted in Figure 3. It starts from the annotation types defined as part of
the framework by the annotation framework developer. The set of annotation
types carry annotations that direct the Model Extraction engine in producing
the annotation model and its corresponding Model Instanciator. The program
written by the application developer is then fed to it, producing an annotation
model instance that conforms to the annotation model extracted before. Using
both the model and its instance, ModelAn uses a constraint checker to validate
the program, and report back to the application developer any violations. The
whole process is transparent to the application developer.

R .

Annotation Types Model Extraction Annotation Model

Annotation Framework
Developer l \
—
— — O m——

Annotated Program Model Instanciator Annotation Model Constraint Che
Instance

Application Developer '
i
i |

Fig. 3. ModelAn process flow

Model Extraction

The annotation model is extracted from the set of annotation types that compose
the framework. As a starting point, each annotation type is represented as an
element of the model with its corresponding attributes. In addition to this, each
element in the model is associated with the code element which it is supposed
to augment. This association is called the target of the annotation.

The model is then augmented by the annotation framework developer using
two annotations on the annotation types: Association and DefaultValue

Association Associations define the structural relations between annotations.
An association must define a name, a type and a defining query. The OCL
query is evaluated in the context of the annotation type on which it is placed,
and can only reason on associations on the code model because it itself

is defining the associations on the annotation model. For example, in the
SAXSpoon annotation framework, there is a relation between a SaxParser
and its start and end handlers. Therefore, the definition of the SaxParser
annotation type would be as follows:

@Association (name
type
query =

"HandlesStart.allInstances ()->select(self.target.Methods->includes (target))")

public @interface SaxParser {

String dtdURL() default "";

"Start",
HandlesStart.class,

}

In this example, the query traverses all the HandlesStart elements, looking
for those which are placed on methods which belong to the class annotated
with SaxParser. Hence, this query constructively defines the relation start.
A similar construction is used to define the relation between SaxParser and
HandlesEnd

DefaultValue Attributes in annotations often have default values. In the gen-
eral case, the default value is a static value (for example the empty string),
but in some cases, the default value depends on the place in which an an-
notation is placed. For example, suppose that the name of the tag that a
method handles is by default the name of the method. In this case, the de-
fault value cannot be known when the annotation type is defined, since it
will change depending on the use of the annotation. The annotation frame-
work developer can then state, using an OCL query, what the default value
of the property should be. In the case of SaxSpoon, the definition of the
HandlesStart would be:

public @interface HandlesStart{
@DefaultValue ("self.target.SimpleName")
String tagName ();

Model constraint definition

Once the annotation model has been defined, the developer can define the
constraints on it. In order to do this, ModelAn defines a single annotation,
OCLConstraint that is to be placed on the annotation type. The constraint is
represented by an OCL expression that is evaluated in the context of the anno-
tation model element that corresponds to the current annotation type.

OCLConstraint OCL expressions placed on annotation types can use the as-
sociations defined by the Association annotation to express the constraints
of the annotation framework. The OCLConstraint annotation is an AVal
annotation (see Section 2.2) that defines a single property that contains
the expression itself. In SaxSpoon, the annotation framework developer may
want to specify a constraint stating that a warning should be raised if a Sax
parser handles the Start, but not the end of a given tag. For this, a constraint
must be placed in the corresponds relation:

QAssociation (name "corresponds",

type HandlesEnd.class,

query =
"HandlesEnd.allInstances ()->select (handler|handler.tagName = self.tagName)")
Q@O0CLConstraint ("self.corresponds->size() = 1")

public @interface HandlesStart {
String tagName ();
}

In this example, a corresponds association is defined using the first Association
annotation, and the second 0CLConstraint annotation places an OCL con-
straint that uses it to specify that there should be a single corresponding tag
handler for the same tag.

Using the information defined by the Association, DefaultValue and OCL-
Constraint annotations, the model extraction engine generates an Ecore file
that contains the annotation model. The Ecore annotation model references the
SpoonEMF [2] Ecore model that represents the Java programming language,
i.e. the code model. The resulting annotation model for our running example is
shown in Figure 4. The OCL queries that define the associations in the model
are saved in this file by means of ecore-annotations on the references, while an
annotation on the element states the annotation type that this element models.
The OCL constraints are not included in the model itself.

Finally, the model extraction engine will generate a set of Spoon source code
processors that will instantiate the annotation model and the code model of a
given program.

Model Instanciator

The annotation model is instantiated by a source code processor generated by
the model extraction engine. The source code processor traverses the AST of the
target program, and using the Ecore file that contains the annotation model, cre-
ates an instance of the corresponding element for each annotation it encounters.
Once all the annotations in the program have their corresponding instance, the
source code processor executes the OCL queries present in each association in
order to populate them. At the end of the process, an in-memory instance of
the annotation model that represents the annotated program is available. This
instance can then be used to check the annotation framework constraints.

Constraint Checker

The constraints themselves are checked using AVal. The AVal source code pro-
cessor passes over the program after the model instantiator. Each time an anno-
tation with an OCL constraint is found, the OCL expression is evaluated on the
model’s instance. If the expression evaluates to false, an error is raised. Since
the constraint checker uses AVal, the errors are presented to the programmer in
the same format as Java compiler errors (see [13]).

H sA¥Parser
= dtdURL
i spoon. saxpoon.annotations. SAXParser
endTag
startTag)
correspondingEnd

B HandlesstartTag 5 HandlesEndTag

==}
= value value

i spoon. saxpoon. annotations HandlesStart Tag iz spoon. saxpoon. annotations. HandlesEndTag

correspondingStart

@Associations ({
@Association(name="startTag",
type = HandlesStartTag.class,
query= "HandlesStartTag.allInstances()->"+
"select (self.target.Methods->includes (target))"),
@Association(name="endTag",
type = HandlesEndTag.class,
query= "HandlesEndTag.allInstances()->"+
"select (self.target.Methods->includes (target))"),
b
public @interface SAXParser {
String dtdURL() default "";

¥

Q@Associations ({

@Association(name = "correspondingEnd",

type = HandlesEndTag.class,

query = "HandlesEndTag.alllInstances()->"+"

select (handler |handler.value = self.value)")
b
@0CLConstraint ("self.correspondingEnd->size () = 1")

public @interface HandlesStartTag {
String value ();

}

@Associations ({

@Association(name = "correspondingStart",

type = HandlesStartTag.class,

query = "HandlesStartTag.allInstances()->"+

"select (handler |handler.value = self.value)")
b
@0CLConstraint ("self.correspondingStart->size() = 1")

public Q@interface HandlesEndTag {
String value();

}

Fig. 4. SAXspoon Ecore Model and Annotated types

Although the process to validate the constraints of a program starting from the
annotation framework, all the way to obtaining the errors may seem long, it is
important to note that each of the actors see only a one-step process. Indeed,
for the annotation framework developer, only the model extraction step is neces-
sary, while for the application developer, the model instantiation and constraint
checking are a step of the compilation process, and therefore transparent. In
terms of advantages, the use of models to define the constraints of an anno-
tation framework allows the annotation framework developer to abstract away
from the code model, and reason about the relations in the domain model itself.
In the SaxSpoon example, this is evident in the constraint that establishes the
correspondence between start and end handlers. In this constraint, the annota-
tion framework developer does not refer to any code element in the constraint’s
expression, reasoning instead only on the actual domain of the annotation frame-
work. It is also important to note that this additional abstraction level comes
at no cost to the final application developer, since as we pointed out before,
the constraint checking is hidden behind the compilation of the program. The
framework developer, in contrast, is required to manipulate OCL expressions,
which can be complex at times, to define the associations and constraints of the
annotation framework. In order to reduce the use of OCL we expect to leverage
UML'’s stereotypes as a way to graphically specify the annotation model. This
is further discussed in Sections 6 and 7.

5 Case Study - Fraclet

Annotation [Location[Parameter [Description

Component Class |name Annotation to describe a Fractal com-
ponent.

Interface | Interface |name, signature Annotation to describe a Fractal busi-
ness interface.

Attribute Field |argument, value Annotation to describe an attribute of
a Fractal component.

Required Field |name, cardinality,| Annotation to describe a binding of a

contingency Fractal component.

Lifecycle | Method |value Annotation that marks a method as a
life-cycle callback. The parameter spec-
ifies the step of the life-cycle.

Controller| Field |value Annotation that marks a field as an ac-
cess point to the component’s reflective
services

Table 2. Overview of Fraclet annotations

Fraclet is an annotation framework for the Fractal component model [3]. The
Fractal component model defines the notions of component, component interface,
and binding between components. Each of these main notions is reflected in
the annotation framework defined by Fraclet. There are two implementations
of Fraclet [15], one using XDoclet2, and the other one using Javab annotations
and Spoon annotation processors. The annotations defined by Fraclet/Spoon are
summarized in Table 2.

In Figure 5, Fraclet/Spoon is used to augment a Java class in order to rep-
resent a Fractal primitive component. The Client class uses a Component anno-
tation to represent a component called helloworld.Client that provides a single
interface named r. Fields of this class are marked as attributes, required ports or
controller hooks. Finally, a method on the component is marked as a life-cycle
handler.

@Component (name = "helloworld.Client",
provides = @Interface(name = "r",
signature = Runnable.class))

public class Client implements Runnable {
private final Logger log = getLogger("client");

@Attribute(value="Hello world") private String message;
QRequires (name="s") private Service service;
@Controller ("name-controller") protected NameController nc;

@Lifecycle (CREATE) protected void whenCreated() {
log.info("helloworld.Client - created.");
}

public void run() {
this.service.print (this.message);

}

}

Fig. 5. Client Comoponent Fraclet Implementation

In order to define the constraints of each of these annotations, we have applied
the meta-annotations defined in Section 4.1 to extract an annotation model that
represents Fraclet. The resulting model is shown in the Figure 6.

Once, the model was defined, we discussed with the Fraclet developers in
order to learn the constraints that a correct Fraclet application must adhere
to. Then we translated the constraints to their corresponding OCL expressions.
These are the constraints and their corresponding translations:

A Component’s name must be unique in the application By default,
the name of a component is the simple name of the class on which the Component

H Lifecycle
E Controller = value
= value

#i= org.objectweb.fractal.fraclet.annotations. Lifecycle
il org.objectweb.fractal.fraclet.annotations.Controller
Controllers
Lifecycles
H Component
= name

fi= org.objectweb.fractal.fraclet.annotations.Component

Attributes
Required
H Attribute E Requires
= name = name
= value = cardinality
provides = contingency

iz org.objectweb.fractal.fraclet.annotations.Attribute
i org.objectweb.fractal.fraclet.annotations.Requires

RefersTo

H Interface
= name
= signature

{i= org.objectweb.fractal.fraclet.annotations. Interface

Fig. 6. Fraclet Annotation Model

annotation is placed. This is expressed using a DefaultValue annotation. The
definition of the component annotation is as follows:

public @interface Component {
@Default ("self.target.SimpleName")
@OCLConstraint ("Component.alllnstances ()->"+
"select (c:Component| ¢ <> self and c.name = self.name)->isEmpty()")
String name () default "";
/).
}

A Field on a Component cannot be at the same time Attribute and
Required

Q@O0CLConstraint ("Requires.alllInstances ()->"+
"forAll(r:Requires|r.target <> self.target)")
public @interface Attribute {

/)

}

A Required Interface must be defined. The name of the required inter-

face is by default the name of the field on which it is placed.

@O0CLConstraint ("self.RefersTo->size() = 1")
@Association(type = Interface.class, name="RefersTo",
query="Interface.allInstances()->select(ili.name = self.name)")
public @interface Requires {
@Default ("self.target.SimpleName") String name () default "";
}

The previous version of Fraclet (studied in [13]) used AVal and needed six
different annotations to perform the same tests we have implemented here with
only OCLConstraint. In addition to this, we were able to elegantly specify the
default values for the names of the Component and Attribute annotations, which

was not addressed in the previous AVal-based version.

6 Related Work

Related work in annotation framework validation and development can be aligned
along two axes: the development and validation of annotation frameworks and
the relationship between annotations and models.

Annotation Validation The need of validating annotations has been previously
addressed by academia. First, in [5] Cepa et. al. propose a mechanism to validate
the use of custom attributes (similar to annotations in the .NET platform) by
placing custom attributes on the definition of other custom attributes. This is
quite similar to the approach proposed in AVal, however, their technique only al-
lows for the definition of structural constraints, and no mechanism to extend the
constraints is provided. Also, they provide no explicit code or annotation model.
In [7], Eichberg et.al. propose to validate structural annotation constraints in
Java programs by representing a program as an XML document, and represent-
ing the constraints as XPath queries. In their approach, the XML schema of the
document acts as an implicit code model, but they do not provide an explicit an-
notation model. The lack of this model complicates the definition of constraints,
since no relation exists between annotations.

Finally, annotations are extensively used for the validation of programs [11,
8, 9]. However, this use of annotations differs from our intention, since our focus
is the validation of the use of annotations themselves, not of the program on
which they are placed.

Annotations and Models Annotations, seen as meta-data attached to a code
entity, are semantically close to stereotypes as defined in UML 2.0 [1]. Indeed,
it is common to represent annotations, during design, as stereotypes [4]. Nev-
ertheless, it is difficult to establish a direct mapping between stereotypes and
annotations given the particularities of annotations. For exmaple, annotations
do not allow for inheritance, an annotation can be placed on different code el-
ements (stereotypes are restricted to one), and most importantly, annotations
can refer to types that are defined in the program in which they are applied
since for example, annotations can contain as a property enums defined in the
program. This last characteristic is the most problematic, since it places anno-
tation models somewhere in between levels M1 and M2. Nevertheless, it seems
possible to construct a mapping between UML profiles and annotation models.
This will be the subject of future work.

The use of models for the development of annotation-based programs is ex-
plored in [16] by Wada et. al. They propose a full MDA approach that starts
from a model, and ends with an executable program. However, they start from
the idea that the annotation framework already exists, and therefore, provide
no support for the development of it. We believe their proposal and ours to be
complementary.

7 Conclusion

We presented a way to specify and validate constraints on annotation frameworks
based on models. As an implementation, we introduced ModelAn, an annotation
framework that allows the annotation framework developer to define an annota-
tion model and attach constraints to it. ModelAn also constructs a source code
processor that generates instances of the annotation model in order to validate
the constraints. The use of OCL constraints offers the developer a greater degree
of expressiveness when defining new kinds of constraints with respect to the ex-
tensibility options of AVal. In addition to this, the use of a code model and an
annotation model provides an abstraction over the direct manipulation of the
AST of the program, which results in more concise constraints.

The use of models to define the constraints of an annotation model allows
the annotation framework developer to abstract away from the code model, and
reason about the relations in the domain model itself. Using OCL also provides
a declarative way to express these constraints, and diminishes the prerequisite
knowledge of the underlying AST API that the annotation developer must have.
This two characteristics make ModelAn a more extensible annotation framework
validation platform than AVal.

As future work, we believe that the relation between annotations and mod-
els can be further exploited. In particular, we are working on a model-directed
approach that allow us to define an annotation framework from a set of UML
stereotypes and their corresponding constraints. This will be done by implement-
ing a model-to-model transformation that goes from a profile to an annotation
model, and then to the actual implementation. Also, annotation models can
prove to be of aid in the understanding of an annotated program, since they
make explicit the relation between annotations on it. Furthermore, if a program
uses different annotation frameworks to implement different concerns on different
domains, then each associated annotation model will provide a domain specific
view of the program.

References

1. OMG Unified Modelling Language Infrastructure (OMG UML) V.2.1.2, Nov. 2004.
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF.

2. O. Barais. SpoonEMF, une brique logicielle pour 'utilisation de 'IDM dans le
cadre de la réingénierie de programmes Java5. In Journées sur l’Inénierie Dirigée
par les Modeéles (IDM), June 2006. Poster.

3. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Ezper., 36(11-12):1257-1284, 2006.

4. V. Cepa and S. Kloppenburg. Representing Explicit Attributes in UML. In 7th
International Workshop on Aspect-Oriented Modeling (AOM), 2005.

5. V. Cepa and M. Mezini. Declaring and enforcing dependencies between. NET cus-
tom attributes. In G. Karsai and E. Visser, editors, GPCFE, volume 3286 of Lecture
Notes in Computer Science, pages 283—-297. Springer, 2004.

10.

11.

12.

13.

14.

15.

16.

A. Cisterino, W. Cazzola, and D. Colombo. Metadata-driven library design. In
Proceedings of Library Centric Software Development Worksshop, Oct. 2005.

M. Eichberg, T. Schéafer, and M. Mezini. Using Annotations to Check Structural
Properties of Classes. In M. Cerioli, editor, Fundamental Approaches to Software
Engineering, 8th International Conference, volume 3442 of Lecture Notes in Com-
puter Science, pages 237-252, Edinburgh, Scotland, 2005. Springer.

D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A tool for using speci-
fications to check code. In Proceedings of the ACM SIGSOFT ’94 Symposium on
the Foundations of Software Engineering, pages 87-96, 1994.

D. Evans and D. Larochelle. Improving security using extensible lightweight static
analysis. IEEE Software, 19(1):42-51, Jan./Feb. 2002.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, third edition, May 2005.

G. Hedin. Attribute extensions - a technique for enforcing programming conven-
tions. Nord. J. Comput, 4(1):93-122, 1997.

L. D. Michel and M. Keith. Enterprise JavaBeans, Version 3.0. Sun Microsystems,
May 2006. JSR-220.

C. Noguera and R. Pawlak. AVal: an extensible attribute-oriented programming
validator for java. Journal of Software Maintenance and Evolution, July 2007.

R. Pawlak, C. Noguera, and N. Petitprez. Spoon: Program analysis and transfor-
mation in java. Technical Report 5901, INRIA, may 2006.

R. Rouvoy, N. Pessemier, R. Pawlak, and P. Merle. Using attribute-oriented pro-
gramming to leverage fractal-based developments. In Proceedings of the 5th In-
ternational ECOOP Workshop on Fractal Component Model (Fractal’06), Nantes,
France, July 2006.

H. Wada and J. Suzuki. Modeling turnpike frontend system: A model-driven de-
velopment framework leveraging UML metamodeling and attribute-oriented pro-
gramming. In MoDELS, pages 584-600, 2005.

