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Abstract. This paper addresses the problem of inferring students’ strate-
gies when they interact with data-modeling software that is used for ped-
agogical purposes. This software enables students to learn about statis-
tical data by building and analyzing their own models. Automatic recog-
nition of students’ activities when interacting with pedagogical software
is challenging. Students can pursue several plans in parallel and inter-
leave the execution of these plans. The algorithm presented in this paper
decomposes students’ complete interaction histories with the software
into hierarchies of interdependent tasks that may be subsequently com-
pared with ideal solutions. This algorithm is evaluated empirically using
commercial software that is used in many schools. Results indicate that
the algorithm is able to (1) identify the plans students use when solving
problems using the software; (2) distinguish between those actions in stu-
dents’ plans that play a salient part in their problem-solving and those
representing exploratory actions and mistakes; and (3) capture students’
interleaving and free-order action sequences.

1 Introduction

We report on the development of algorithms for recognizing students’ plans
when interacting with pedagogical systems for data-generation and analysis.
This work is a first step towards building a collaborative pedagogic agent that
will support students in their problem-solving and teachers in their analysis
of students’ modeling and understanding of statistical data. TinkerPlots, the
system we use in this paper, gives students great flexibility in representing and
analyzing statistical data. It is in essence a data-analysis “construction kit” that
allows students to create and analyze a large number of statistical models [8].
While this makes for a rich educational environment, it does pose significant
problems for teachers. When an entire classroom of students is using TinkerPlots
at the same time, there is no way for a teacher to keep track of what each child
is doing, especially since they may be following divergent paths in solving the
problem. Without some sort of support, teachers are left with the end-result
of students’ work on the computer screen, or looking over the shoulder of each
student for at most a minute or two.



Automatic plan recognition is an open problem in AI, and the task of recog-
nizing users’ plans when interacting with software systems is particularly chal-
lenging. Ideally designed systems are flexible, allowing users the convenience of
choosing among multiple action sequences for performing the same function, and
the ability to perform these action sequences in relatively free order. Traditional
algorithms for plan recognition assume a goal-oriented agent whose activities
are consistent with its knowledge base and who forms a single encompassing
plan [9]. In contrast, one of the objectives of flexible pedagogical software is
to allow students to explore and experiment during their interaction process.
In these settings, students may interchangeably pursue multiple, interleaving
plans; they may be confused about which appropriate plan to take, and they
may make mistakes. Recognizing students’ actions by exhaustively considering
every possible way in which a student can use these systems is infeasible.

This paper describes a computationally tractable algorithm for intelligently
recognizing students’ problem-solving strategies based on their complete interac-
tion history with the system. The algorithm composes the action sequences from
a user’s interaction into a series of interdependent plans. It infers the plan that
the user was using to complete each activity, and compares this plan with an
ideal solution that was designed by domain experts. At the end of this process,
the algorithm outputs a hierarchy of the plans that students used during the
session and the extent to which they differed from the ideal solutions.

The algorithm was tested using the commercial system TinkerPlots, used
world-wide to teach students in grades 4-8 about statistics and mathematics [5].
In TinkerPlots, students actively model stochastic events and construct mod-
els that generate data. TinkerPlots is highly flexible, allowing for data to be
modeled, generated, and analyzed in many different ways using an open-ended
interface. Our empirical studies focused on two different problems in which stu-
dents used TinkerPlots to model and analyze stochastic data.

In AI, plan recognition has been used in a range of applications, such as
modeling discourse structure from speech and inferring transportation routines
from GPS data [11, 10]. Past work in the intelligent tutoring domain has focused
on inferring students’ activities for the purpose of providing feedback by the
tutor. These models have been used for modeling how students solve math [6,
3] and physics problems [4, 14], their help requests from pedagogical software or
their misuse of it [13, 2]. Many of these works construct a probabilistic model
of students’ problem-solving strategies that is subsequently used to update the
tutor’s beliefs about students’ likely future actions given their behavior. In these
cases, the tutor is an active participant in the student’s learning process and
ambiguities or uncertainties about the students’ plan of action are resolved by
querying the student [1].

In contrast, the work reported in this paper addresses the problem of recog-
nizing students’ actions given their complete interaction histories. The system
does not intervene with the student’s activities during the course of interaction.
Straightforward adaptation of probabilistic techniques for this purpose is diffi-
cult, because the size of probabilistic models is typically exponential in the length



of the history they consider, and students’ complete interaction histories often
span hundreds of actions. In addition, the model parameters must be trained
from data or stipulated by a domain expert. Both of these techniques require
considerable effort in the domain we consider.

1.1 Example Scenario: The Two-Dice Problem

To illustrate the algorithm we will use the following example, drawn from a
set of problems posed to seventh grade students using TinkerPlots. “We rolled
two dice over and over a huge number of times and kept track of their sums.
For example, when the first die came up 5 and the second die came up 6, we
recorded their sum of 11. Using TinkerPlots, build a model that you can use to
roll two dice 1,000 times and see whether 11 came up more often than 12.”

The purposes behind this exercise are for children to learn about the joint
distribution of non-ordered random events and to explore how sample distribu-
tions vary, even if they are drawn from the same population. Each roll of two
dice generates a pair of values, one for each die. There are two events that make
up the sum 11, namely (5,6) and (6,5), while there is only one event that makes
up the sum 12, namely (6,6). Since each of these events is equally likely, in theory
the sum 11 will occur more often than the sum 12. (Of course, as students run
their models, they will discover that, while this is generally true, there will be
samples in which there are more 12s than 11s, especially if the sample size is
small.)

One of the possible approaches towards modeling this situation using Tin-
kerPlots is shown in Figure 1. The model includes a sampler device comprising
two spinners, shown in Figure 1(a), each of which is a model of one die. The
sampler will randomly select a value for each of its spinners every time it is run.
Each spinner has six possible values. The surface area specified for each value
determines its weight in the sample. Effectively, this sampler models a joint
probability distribution over two independent random variables with six values
distributed uniformly. The value of “Repetitions”, set to 1,000 in this example,
determines the number of times the sampler is run. The value of “Spins”, set to
“1” in this example, determines the number of rolls of the two dice at each run.

Figure 1(b) shows some of the data generated by the sampler once it has run.
Each pair in the table represents a roll of two dice. This pair has been separated,
by instigating a “Separate Individual Draws” function in the sampler. To the
right is a graphical representation of all of the sums in the form of a histogram.
Figure 1(a) shows an additional way to model this problem. Here, a single die is
used that is thrown twice at each repetition, hence the value of “spins” is set to
“2”. There are many other ways to use TinkerPlots to solve this problem.

2 Recipes, Planning and Plan Recognition

Students interact with TinkerPlots through a series of rudimentary operations
that create, modify or delete objects such as spinners, plots, and outcomes. We



Fig. 1: TinkerPlots Sessions Snapshot

(a) Two Possible Sampler Models

(b) Displaying Sampler Data as a Histogram

will use the term basic actions to refer to these operations, which can often be
carried out by a single keystroke or mouse action. TinkerPlots interactions are
recorded as a linear sequence of basic actions in order of their occurrence. Each
basic action uses a unique tag to refer to an object, which is transparent to the
user. A subset of such an interaction sequence is shown in the leaves of the trees
in Figure 3. For example, the basic action New(Spinner(S1)) adds a new spinner
with ID S1. These actions are serially labeled in order of occurrence. (Due to
layout constraints, the leaves in this figure are not aligned on the same plane.)

We model students’ reasoning about problems using abstract entities, called
complex actions, which capture higher-level, more abstract TinkerPlots activi-
ties, such as adding two dice to a sampler, computing the sum of a roll of two
dice, or fitting sampler data to plot. Complex actions can be decomposed into
sub-actions [7]. A sub-action can be a basic TinkerPlots action or it can be a
complex action itself. A useful distinction between complex and basic actions is
that students can “see” both basic and complex actions, while the TinkerPlots
system can only “see” and register basic actions.

A recipe for a complex action is an ideal sequence of operations for fulfilling
the complex action. Formally, a recipe is a set of sub-actions and constraints such
that performing those sub-actions under those constraints constitutes completing
the action [12]. These sub-actions are referred to as the recipe’s constituents.
Figure 2 presents recipes for solving the two-dice problem and its constituent
sub-actions. Each recipe for a complex action is represented as a tree of depth
two, in which the leaves correspond to the recipe’s constituent actions (whether
basic or complex), and the root corresponds to the complex action. Basic actions



Fig. 2: Recipes for Solving the Two-Dice Problem. Dashed edges represent temporal
constraints between actions.

Solve the Two Dice Problem

New(Sampler(s)) New(Plot(p)) Add Two Dice
(s)

s.SetRepeats(1,000) s.Run Plot Identical Sums
(Sampler s, Plot p)

Add two Dice
(Sampler s)

Add One Die
(Sampler s)

Add One Die
(Sampler s)

s.SetSpins(1)

Add Two Dice
(Sampler s)

Add One Die
(Sampler s)

s.SetSpins(2)

Add One Die
(Sampler s)

New(s.Spinner(c)) Create Cases 1, . . . , 6
(Spinner c)

Set Uniform Distribution
(Spinner c)

Plot Identical Sums
(Sampler s, Plot p)

p.add(s.Outcome) Combine Outcomes
(5,6),(6,5)

Rename Outcome
(5,6)(6,5) to 11

Rename Outcome
(6,6) to 12

Plot Identical Sums
(Sampler s, Plot p)

s.individualDraws s.Sum(individualDraws) Drag(s.Outcome, p)

Create Six Cases
(Spinner c)

New(s.c.Case(v1)) s.c.SetValue(v1 , 1)) New(s.c.Case(v6)) s.c.SetValue(v6 , 6))

are outlined in plain boxes, while complex actions are outlined in shadowed
boxes. TinkerPlots objects are identified by a unique tag, and recipe actions use
parameters to refer to the TinkerPlots objects they modify. For example the
recipe for the complex action AddTwoDice (s) modifies the sampler object that
is bound to the parameter s.

The order in which actions are performed in a recipe can be constrained by
including temporal constraints between actions, represented as a dotted edge.
Actions within the same recipe can occur in any order as long as they meet
the specified temporal constraints. For example, in the recipe for the action
SolveTheTwoDiceProblem, both actions AddTwoDice (s) and s.SetRepeats(1,000)
can come in any order as long as they both occur before the basic action s.Run.

In addition to the constraints embedded in the recipes, some action com-
binations are disallowed by the TinkerPlots system itself. For example, it is
impossible to add a spinner to a sampler until the sampler has been created. For
expository convenience, we do not show these constraints in the recipes.

Recipes may be ambiguous, in the sense that there may be several recipes for
completing the same complex action. For example, Figure 2 shows two possible
recipes for completing the complex action AddTwoDice (s). One possible recipe
uses a single die that is rolled twice. It includes the sub-actions AddOneDie (s)
and s.SetSpins(1). The other recipe uses two dice that are rolled once. It includes



Fig. 3: A Sample Plan

Solve the Two Dice Problem

new(Sampler(S1))

- 1 -

new(Plot(P1))

- 9 -

S1.setRepetitions
(100)

- 10 -

S1.run

- 11 -

S1.setRepetitions
(1000)

- 12 -

S1.run

- 13 -

Plot Identical Sums
( S1, P1)

.. .. ..

Add Two Dice
(S1)

Add One Die
(S1)

new(S1.Spinner(D1))

- 2 -

new(S1.Spinner(D2))

- 3 -

Add One Die
(S1)

Add Six Cases
(D1)

New(S1.D1.Case(V1))

-4 -

New(S1.D2.Case(V1))

- 5 -

Add Six Cases
(D2)

S1.D1.SetValue(V1 , 1)

- 6 -

S1.D2.SetValue(V1 , 1)

- 7 -

S1.setSpins(1)

- 8 -

two sub-actions AddOneDie (s) and the sub-action s.SetSpins(1). In addition, the
same action may be a constituent of several different recipes. For example, the
complex action AddOneDie (s) appears in both recipes for the complex action
AddTwoDice (s).

2.1 Planning

Planning is the process by which students use recipes to compose basic and
complex actions towards completing tasks using TinkerPlots. We say that a
recipe for a complex action is fulfilled by a set of temporally-ordered sub-actions
if (1) there is a one-to-one correspondence from each of the sub-actions to one of
the recipe’s constituents; (2) all of the sub-actions agree on the identification tags
for the TinkerPlots objects that are modified by the recipe; and, (3) the order
between sub-actions is consistent with the temporal constraints that are defined
between recipe constituents. Formally, a plan is an ordered set of basic and
complex actions, such that each complex action is decomposed into sub-actions
that fulfill a recipe for some task. Each time a recipe for a complex action is
fulfilled in a plan, there is an edge from the complex action to its sub-actions,
representing the recipe constituents. For example, in Figure 3, the recipe for the
complex action AddTwoDice(S1) is fulfilled by the two AddOneDie(S1) actions
and the action S1.SetSpins(1).

Each tree in Figure 3 represents a plan that was carried out by the student.
The leaves of the trees represent the basic actions corresponding to the user’s
interaction history. (For expository convenience, we have only included a subset
of this interaction history.) The plan that emanates from the complex action



SolveTheTwoDiceProblem shows that the student was able to complete the two-
dice problem.

In a plan, the constituent sub-actions of complex actions may interleave with
other actions. In this way, the plan combines the free-order nature of TinkerPlots
recipes with the exploratory nature of students’ learning strategies. Formally, we
say that two ordered complex actions interleave if at least one of the sub-actions
of the first action occurs after some sub-action of the second action.

An example of interleaving actions in this plan are the two complex actions
AddOneDie (S1) We can see this because a constituent of the recipe for the
first AddOneDie (S1) (the action AddSixCases (D2)) occurs after a constituent
of the recipe for the second AddOneDie (S1) (the action AddSixCases(D1)). In
Figure 3, there are crossing edges between the constituent sub-actions of any
two interleaving actions.

Also shown in Figure 3 are two basic actions outlined in dashed boxes
(S1.SetRepeats(100) and S1.run) that were not necessary for solving the two-
dice problem. This happened because the user first ran the sampler for 100
repetitions, before running the sampler for 1,000 repetitions, as required by the
problem formulation. These could represent a student’s exploration or a mistake.

3 Plan Recognition

The task of plan recognition in the TinkerPlots domain is to infer students’ plans
based on their interaction history and a set of recipes. A naive approach would
search through the space of all possible plans that are consistent with a user’s
interaction, the recipes, and their constraints. This approach is not feasible. For
each possible action in the plan, we would need to consider all possible expansions
of basic and complex sub-actions as long as their order is permitted by the recipe
constraints. In the worst case, the number of possible plans to consider will be
factorial in the number of basic actions in an interaction sequence.

However, certain qualities of the TinkerPlots domain serve to constrain the
search process. First, it is not possible to generate an infinite plan using Tinker-
Plots recipes. Therefore, we can choose the recipes to be fulfilled in an incremen-
tal fashion, ordered by depth. We define the “depth” of a recipe for a complex
action as the maximum depth of the tree for any plan to complete the complex
action4. Second, the sub-actions of a complex action will always agree on the
identification tags of those TinkerPlots objects that are modified by the complex
action. Therefore, we do not need to consider any action combination that dis-
agree on the ID tags. We can also ignore those action combinations disallowed
by the TinkerPlots system.

As a result, we can construct the following algorithm that incrementally
builds a sequence of plans to explain a user’s interaction history from the leaves
upwards. Each step t of the algorithm maintains an ordered set of actions, de-
noted Pt. Each of these actions is a root of a tree that is a partial plan that

4 For example, the depth of the recipe for solving the two-dice problem is three, because
there is no possible plan for this task whose depth is greater than three.



explains some subset of the user’s interaction history. P0 is initialized to include
all of the basic actions in the interaction history. Let G be the set of recipes,
and let the recipe in G for a complex action C be denoted as RC . The algorithm
proceeds as follows:

For each RC in G, sorted by depth
Initialize Pt+1 with Pt

For any sequence St+1 of actions in Pt+1 that fulfill RC :
Add a new action C in Pt+1, positioned after the first action in St+1

Let St be the set of actions in Pt corresponding to St+1

Add edges from C in Pt+1 to all actions in St

Remove all actions in St+1 from Pt+1

A key step in this algorithm is the selection of actions in Pt+1 to fulfill
the recipe for RC . We select these actions in any order that is allowed by the
temporal constraints of the recipe for RC . In particular, the actions in Pt+1

may be non-contiguous; this allows the algorithm to capture interleaving plans.
This step is greedy, because once a complex action is chosen to fulfill RC , it is
removed from Pt+1 and will not be considered again. Therefore, there may be
instances where the algorithm fails because it picked the wrong actions to fulfill
a recipe in earlier steps. An interesting consequence is that the order in which
we traverse the actions in Pt+1 can affect the way in which the algorithm fulfills
recipe, and thus, its output. We currently do so by traversing Pt+1 sequentially,
from the last action to the first. A different order may fulfill different recipes,
and produce a different plan.

The complexity of this approach can be computed as follows. Let n be the
length of a student’s interaction sequence. The number of times a recipe can be
fulfilled is bounded by n. In the worst case, it will take a complete pass over the
actions in Pt to fulfill the recipe. The number of actions in Pt is bounded by n.
Therefore, it will take at most n2 steps to exhaust all of the possible applica-
tions of RC . In fact, a slightly more sophisticated implementation complete this
process in linear time. Given that the size of the recipes is constant, we conclude
that the complexity of the algorithm is quadratic in the length of the interaction
history.

We demonstrate part of this process in Figure 4. We show the complete
interaction history of the user in Figure 4(a), outlined in bold. (This is the same
interaction history of the plan in Figure 3). These actions are presented top-to-
bottom in order of their occurrence. Each sub-figure in Figure 4 shows the partial
plans that the algorithm maintains for recipes of a given depth. When fulfilling a
recipe for a complex action, we draw directed edges from the sub-actions to the
complex action. For instance, in the step shown in Figure 4 (b), the algorithm
fulfills two separate instances of the recipe AddSixCases (d), one for spinner ID
D1 and one for spinner ID D2. These complex actions interleave, as can be seen
from the crossing edges.

In the step shown in Figure 4(d), the algorithm chooses to fulfill one of
two possible recipes for completing the complex action AddTwoDice (s). This
choice is possible because of the basic action S1.SetSpins(1), which is a unique



Fig. 4: The execution of the algorithm on a user’s interaction history. Crossing edges
represent interleaving actions.n e w ( S a m p l e r ( S 1 ) )n e w ( S 1 . S p i n n e r ( D 1 ) )n e w ( S 1 . S p i n n e r ( D 2 ) )n e w ( S 1 . D 1 . C a s e ( L 1 ) )n e w ( S 1 . D 1 . C a s e ( L 2 ) )n e w ( S 1 . D 1 . C a s e ( L 3 ) )n e w ( S 1 . D 1 . C a s e ( L 4 ) )n e w ( S 1 . D 1 . C a s e ( L 5 ) )n e w ( S 1 . D 1 . C a s e ( L 6 ) )S 1 . D 1 . S e t U n i f o r m P r o bn e w ( S 1 . D 2 . C a s e ( L 1 ) )n e w ( S 1 . D 2 . C a s e ( L 2 ) )n e w ( S 1 . D 2 . C a s e ( L 3 ) )n e w ( S 1 . D 2 . C a s e ( L 4 ) )n e w ( S 1 . D 2 . C a s e ( L 5 ) )n e w ( S 1 . D 2 . C a s e ( L 6 ) )S 1 . D 2 . S e t U n i f o r m P r o bS 1 . D 1 . s e t V a l u e ( L 1 , 1 )S 1 . D 1 . s e t V a l u e ( L 2 , 2 )S 1 . D 1 . s e t V a l u e ( L 3 , 3 )S 1 . D 1 . s e t V a l u e ( L 4 , 4 )S 1 . D 1 . s e t V a l u e ( L 5 , 5 )S 1 . D 1 . s e t V a l u e ( L 6 , 6 )S 1 . D 2 . s e t V a l u e ( L 1 , 1 )S 1 . D 2 . s e t V a l u e ( L 2 , 2 )S 1 . D 2 . s e t V a l u e ( L 3 , 3 )S 1 . D 2 . s e t V a l u e ( L 4 , 4 )S 1 . D 2 . s e t V a l u e ( L 5 , 5 )S 1 . D 2 . s e t V a l u e ( L 6 , 6 )S 1 . s e t S p i n s ( 1 )S 1 . s e t R e p e t i t i o n s ( 1 0 0 )S 1 . r u nn e w ( P l o t ( P 1 ) )S 1 . s e t R e p e t i t i o n s ( 1 , 0 0 0 )S 1 . r u nP l o t O u t c o m e ( S 1 , P 1 )

S 1 . s e t R e p e t i t i o n s ( 1 0 0 )S 1 . r u nS o l v e 2 D i c e P r o b l e mn e w ( S a m p l e r ( S 1 ) )A d d 2 D i c e ( S 1 ) )S 1 . s e t R e p e t i t i o n s ( 1 0 0 )S 1 . r u nn e w ( P l o t ( P 1 ) )S 1 . s e t R e p e t i t i o n s ( 1 , 0 0 0 )S 1 . r u nP l o t O u t c o m e ( S 1 , P 1 )n e w ( S a m p l e r ( S 1 ) )A d d 1 D i e ( S 1 )A d d 1 D i e ( S 1 )S 1 . s e t S p i n s ( 1 )S 1 . s e t R e p e t i t i o n s ( 1 0 0 )S 1 . r u nn e w ( P l o t ( P 1 ) )S 1 . s e t R e p e t i t i o n s ( 1 , 0 0 0 )S 1 . r u nP l o t O u t c o m e ( S 1 , P 1 )
n e w ( S a m p l e r ( S 1 ) )n e w ( S 1 . S p i n n e r ( D 1 ) )n e w ( S 1 . S p i n n e r ( D 2 ) )S 1 . D 1 . S e t U n i f o r m P r o bS 1 . D 2 . S e t U n i f o r m P r o bS 1 . A d d S i x C a s e s ( D 1 )S 1 . A d d S i x C a s e s ( D 2 )S 1 . s e t S p i n s ( 1 )S 1 . s e t R e p e t i t i o n s ( 1 0 0 )S 1 . r u nn e w ( P l o t ( P 1 ) )S 1 . s e t R e p e t i t i o n s ( 1 , 0 0 0 )S 1 . r u nS 1 P l o t O u t c o m e ( P 1 )

n e w ( S a m p l e r ( S 1 ) )n e w ( S 1 . S p i n n e r ( D 1 ) )n e w ( S 1 . S p i n n e r ( D 2 ) )n e w ( S 1 . D 1 . C a s e ( L 1 ) )n e w ( S 1 . D 1 . C a s e ( L 2 ) )n e w ( S 1 . D 1 . C a s e ( L 3 ) )n e w ( S 1 . D 1 . C a s e ( L 4 ) )n e w ( S 1 . D 1 . C a s e ( L 5 ) )n e w ( S 1 . D 1 . C a s e ( L 6 ) )S 1 . D 1 . S e t U n i f o r m P r o bn e w ( S 1 . D 2 . C a s e ( L 1 ) )n e w ( S 1 . D 2 . C a s e ( L 2 ) )n e w ( S 1 . D 2 . C a s e ( L 3 ) )n e w ( S 1 . D 2 . C a s e ( L 4 ) )n e w ( S 1 . D 2 . C a s e ( L 5 ) )n e w ( S 1 . D 2 . C a s e ( L 6 ) )S 1 . D 2 . S e t U n i f o r m P r o bS 1 . D 1 . s e t V a l u e ( L 1 , 1 )S 1 . D 1 . s e t V a l u e ( L 2 , 2 )S 1 . D 1 . s e t V a l u e ( L 3 , 3 )S 1 . D 1 . s e t V a l u e ( L 4 , 4 )S 1 . D 1 . s e t V a l u e ( L 5 , 5 )S 1 . D 1 . s e t V a l u e ( L 6 , 6 )S 1 . D 2 . s e t V a l u e ( L 1 , 1 )S 1 . D 2 . s e t V a l u e ( L 2 , 2 )S 1 . D 2 . s e t V a l u e ( L 3 , 3 )S 1 . D 2 . s e t V a l u e ( L 4 , 4 )S 1 . D 2 . s e t V a l u e ( L 5 , 5 )S 1 . D 2 . s e t V a l u e ( L 6 , 6 )S 1 . s e t S p i n s ( 1 )S 1 . s e t R e p e t i t i o n s ( 1 0 0 )S 1 . r u nS 1 . i n d i v i d u a l D r a w sn e w ( P l o t ( P 1 ) )S 1 . s e t R e p e t i t i o n s ( 1 , 0 0 0 )S 1 . r u nc r e a t e S u m ( S 1 . i n d i v i d u a l D r a w s )S 1 . a d d ( s u m S e p a r a t e D r a w s , P 1 )( a ) U s e r I n t e r a c t i o nH i s t o r y ( b ) ( c ) ( d ) ( e ) ( f )
constituent action for one of the recipes for CreateTwoDice (s) but not for the
other. In the step shown in Figure 4(e), the algorithm succeeds in collapsing the
complex action Solve Two-Dice Problem, and terminates, because it cannot fulfill
any more recipes. As shown in the final step in Figure 4(f), the algorithm has
determined that two actions (S1.SetRepeats (100) and S1.Run) were redundant.

3.1 Evaluation

We collected eight TinkerPlots interaction histories of six people using Tinker-
Plots to solve the two-dice problem, and two people using TinkerPlots to solve
another problem involving the modeling of ordered stochastic events. Two of
these people were middle school students in an after-school TinkerPlots club.
Three were adults who had experience with using technology in education, but
not with TinkerPlots. One was an adult who was very familiar with TinkerPlots.
The middle school students had been using TinkerPlots for several months and
did the two-dice problem as part of their regular after-school work. The three
adults who were not familiar with TinkerPlots watched a 5-minute introductory
video, saw a brief demonstration of the Sampler functions, then did the problem.



In all cases, an experimenter tracked the activities of each participant (e.g., what
samplers were created, when actions were interleaved, etc.).

We considered the plan constructed by an algorithm to be “correct”, if the
actions in the plan corresponded to the students’ actual activities using the
software, including the interleaving of action sequences. The algorithm was able
to recognize the strategies for all of these interaction histories but one. In this
instance, a student solved the two dice problem twice, using the same sampler in
both solutions. The algorithm recognized one solution, but not the other. This
is because the plan recognition algorithm grows a sequence of trees, so the same
action cannot simultaneously fulfill several recipes.

One approach to be able to consider all ways of fulfilling a recipe, is to build
possible partial plans in parallel, rather than greedily. Once the current par-
tial plan reaches a dead-end, the algorithm backtracks. Because partial plans
in TinkerPlots may interleave, there is no straightforward way to accomplish
this without having to construct a separate partial plan for each possible way
a recipe can be fulfilled. This naive approach is exponential in the length of in-
teraction, hence computationally intractable. We intend to see whether dynamic
programming can be used to make this process more efficient.

Lastly, it is important to note that even a partial account of students’ inter-
actions can still convey information about the techniques they used and their
approach that is useful to teachers. For example, the greedy algorithm was still
able to recognize all of the constituent actions for the second application of the
recipe for the two-dice problem.

4 Conclusion and Future Work

This work presented a simple and computationally efficient algorithm for rec-
ognizing students’ interactions with data-modeling software. The algorithm is
able to capture the nature of interaction of users with flexible computer soft-
ware, which allow users to interleave their activities in relatively free order. We
showed that the algorithm was successfully able to recognize students’ plans
when solving two separate problems using a commercially available application.

This work is a first step towards a pedagogical agent that is truly collab-
orative, in the sense that it provides the right machine-generated support for
its users. For teachers, this support consists of notification of students’ perfor-
mance both after and during class. For students, this support will guide their
problem-solving in a way that maximizes their learning experience while mini-
mizing interruption.

To this end, we are currently pursuing work in several directions. First, we are
constructing vivid, coherent representations of students’ plans to show teachers.
These presentations need to support a “birds’ eye view” of class performance
during a session, as well as the ability to focus on the behavior of individual stu-
dents. We will develop algorithms that enable teachers to access the state of the
system at critical points in students’ work. The system state conveys different
information from a plan, in that it provides a snapshot of the TinkerPlots ob-



jects a user is using at a given point in time, rather than a post-session analysis
of students’ interaction. Our future research will include developing algorithms
for keeping track of the state of the system and experimenting with present-
ing teachers with some combination of plan information and state information.
Lastly, we are pursuing a machine-learning approach towards learning recipes
from data by observing students’ interaction.
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