Skip to main content

Solving the k-Winners-Take-All Problem and the Oligopoly Cournot-Nash Equilibrium Problem Using the General Projection Neural Networks

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

Abstract

The k-winners-take-all (k-WTA) problem is to select k largest inputs from a set of inputs in a network, which has many applications in machine learning. The Cournot-Nash equilibrium is an important problem in economic models . The two problems can be formulated as linear variational inequalities (LVIs). In the paper, a linear case of the general projection neural network (GPNN) is applied for solving the resulting LVIs, and consequently the two practical problems. Compared with existing recurrent neural networks capable of solving these problems, the designed GPNN is superior in its stability results and architecture complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopfield, J.J., Tank, D.W.: Computing with Neural Circuits: A Model. Science 233, 625–633 (1986)

    Article  Google Scholar 

  2. Kennedy, M.P., Chua, L.O.: Neural Networks for Nonlinear Programming. IEEE Trans. Circuits Syst. 35, 554–562 (1988)

    Article  MathSciNet  Google Scholar 

  3. Rodríguez-Vázquez, A., Domínguez-Castro, R., Rueda, A., Huertas, J.L., Sánchez-Sinencio, E.: Nonlinear Switched-Capacitor Neural Networks for Optimization Problems. IEEE Trans. Circuits Syst. 37, 384–397 (1990)

    Article  Google Scholar 

  4. Tao, Q., Cao, J., Xue, M., Qiao, H.: A High Performance Neural Network for Solving Nonlinear Programming Problems with Hybrid Constraints. Physics Letters A 288, 88–94 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xia, Y., Wang, J.: A Projection Neural Network and Its Application to Constrained Optimization Problems. IEEE Trans. Circuits Syst. I 49, 447–458 (2002)

    Article  MathSciNet  Google Scholar 

  6. Xia, Y., Wang, J.: A General Projection Neural Network for Solving Monotone Variational Inequalities and Related Optimization Problems. IEEE Trans. Neural Netw. 15, 318–328 (2004)

    Article  MathSciNet  Google Scholar 

  7. Xia, Y.: On Convergence Conditions of an Extended Projection Neural Network. Neural Computation 17, 515–525 (2005)

    Article  MATH  Google Scholar 

  8. Hu, X., Wang, J.: Solving Pseudomonotone Variational Inequalities and Pseudoconvex Optimization Problems Using the Projection Neural Network. IEEE Trans. Neural Netw. 17, 1487–1499 (2006)

    Article  Google Scholar 

  9. Hu, X., Wang, J.: A Recurrent Neural Network for Solving a Class of General Variational Inequalities. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 37, 528–539 (2007)

    Article  Google Scholar 

  10. Hu, X., Wang, J.: Solving Generally Constrained Generalized Linear Variational Inequalities Using the General Projection Neural Networks. IEEE Trans. Neural Netw. 18, 1697–1708 (2007)

    Article  Google Scholar 

  11. Liu, S., Wang, J.: A Simplified Dual Neural Network for Quadratic Programming with Its KWTA Application. IEEE Trans. Neural Netw. 17, 1500–1510 (2006)

    Article  Google Scholar 

  12. Pang, J.S., Yao, J.C.: On a Generalization of a Normal Map and Equations. SIAM J. Control Optim. 33, 168–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer, New York (2003)

    Google Scholar 

  14. Maass, W.: On the Computational Power of Winner-Take-All. Neural Comput. 12, 2519–2535 (2000)

    Article  Google Scholar 

  15. Wolfe, W.J.: K-Winner Networks. IEEE Trans. Neural Netw. 2, 310–315 (1991)

    Article  Google Scholar 

  16. Calvert, B.A., Marinov, C.: Another k-Winners-Take-All Analog Neural Network. IEEE Trans. Neural Netw. 11, 829–838 (2000)

    Article  Google Scholar 

  17. Marinov, C.A., Hopfield, J.J.: Stable Computational Dynamics for a Class of Circuits with O(N) Interconnections Capable of KWTA and Rank Extractions. IEEE Trans. Circuits Syst. I 52, 949–959 (2005)

    Article  MathSciNet  Google Scholar 

  18. Nagurney, A., Zhang, D.: Projected Dynamical Systems and Variational Inequalities with Applications. Kluwer, Boston (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, X., Wang, J. (2008). Solving the k-Winners-Take-All Problem and the Oligopoly Cournot-Nash Equilibrium Problem Using the General Projection Neural Networks. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics