Skip to main content

Discovery of Linear Non-Gaussian Acyclic Models in the Presence of Latent Classes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Abstract

An effective way to examine causality is to conduct an experiment with random assignment. However, in many cases it is impossible or too expensive to perform controlled experiments, and hence one often has to resort to methods for discovering good initial causal models from data which do not come from such controlled experiments. We have recently proposed such a discovery method based on independent component analysis (ICA) called LiNGAM and shown how to completely identify the data generating process under the assumptions of linearity, non-gaussianity, and no latent variables. In this paper, after briefly recapitulating this approach, we extend the framework to cases where latent classes (hidden groups) are present. The model identification can be accomplished using a method based on ICA mixtures. Simulations confirm the validity of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, P.W.: Statistics and causal inference (with discussion). Journal of the American Statistical Association 81, 945–970 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollen, K.A.: Structural Equations with Latent Variables. John Wiley & Sons, Chichester (1989)

    MATH  Google Scholar 

  3. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. In: Proc. Pacific Symposium on Biocomputing, vol. 7, pp. 175–186 (2002)

    Google Scholar 

  4. Kim, J., Zhu, W., Chang, L., Bentler, P.M., Ernst, T.: Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping 28, 85–93 (2007)

    Article  Google Scholar 

  5. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge (2000)

    Google Scholar 

  7. Shimizu, S., Kano, Y.: Use of non-normality in structural equation modeling: Application to direction of causation. Journal of Statistical Planning and Inference (in press, 2006)

    Google Scholar 

  8. Shimizu, S., Hyvärinen, A., Hoyer, P.O., Kano, Y.: Finding a causal ordering via independent component analysis. Computational Statistics & Data Analysis 50(11), 3278–3293 (2006)

    Article  MathSciNet  Google Scholar 

  9. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. J. of Machine Learning Research 7, 2003–2030 (2006)

    Google Scholar 

  10. Comon, P.: Independent component analysis. a new concept? Signal Processing 36, 62–83 (1994)

    Article  Google Scholar 

  11. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. Wiley, New York (2001)

    Google Scholar 

  12. Tanner, J., Israelsohn, W.: Parent-child correlation for body measurements of children between the ages one month and seven years. Ann.Hum.Genet. 26, 245–259 (1963)

    Article  Google Scholar 

  13. Lee, T.W., Lewicki, M., Sejnowski, T.: ICA mixture models for unsupervised classification of non-gaussian sources and automatic context switching in blind signal separation. IEEE Trans. on Pattern Recognition and Machine Intelligence 22(10), 1–12 (2000)

    Google Scholar 

  14. Mollah, M.N.H., Minami, M., Eguchi, S.: Exploring latent structure of mixture ICA models by the minimum β-divergence method. Neural Computation 18, 166–190 (2006)

    Article  MATH  Google Scholar 

  15. Minami, M., Eguchi, S.: Adaptive selection for minimum β-divergence method. In: Proc. the Fourth Int. Conf. on Independent Component Analysis and Blind Signal Separation (ICA 2003), Nara, Japan, pp. 475–480 (2003)

    Google Scholar 

  16. Pham, D.T., Garrat, P.: Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. Signal Processing 45, 1457–1482 (1997)

    Google Scholar 

  17. Muthén, B.O.: Beyond SEM: General latent variables modeling. Behaviormetrika 29, 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoyer, P.O., Shimizu, S., Kerminen, A.: Estimation of linear, non-gaussian causal models in the presence of confounding latent variables. In: Proc. the third European Workshop on Probabilistic Graphical Models (PGM2006), pp. 155–162 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shimizu, S., Hyvärinen, A. (2008). Discovery of Linear Non-Gaussian Acyclic Models in the Presence of Latent Classes. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics