Skip to main content

Flexible Component Analysis for Sparse, Smooth, Nonnegative Coding or Representation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Abstract

In the paper, we present a new approach to multi-way Blind Source Separation (BSS) and corresponding 3D tensor factorization that has many potential applications in neuroscience and multi-sensory or multidimensional data analysis, and neural sparse coding. We propose to use a set of local cost functions with flexible penalty and regularization terms whose simultaneous or sequential (one by one) minimization via a projected gradient technique leads to simple Hebbian-like local algorithms that work well not only for an over-determined case but also (under some weak conditions) for an under-determined case (i.e., a system which has less sensors than sources). The experimental results confirm the validity and high performance of the developed algorithms, especially with usage of the multi-layer hierarchical approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. John Wiley and Sons, New York (2004)

    Google Scholar 

  2. Hazan, T., Polak, S., Shashua, A.: Sparse image coding using a 3D non-negative tensor factorization. In: International Conference of Computer Vision (ICCV), pp. 50–57 (2005)

    Google Scholar 

  3. Heiler, M., Schnoerr, C.: Controlling sparseness in non-negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 56–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Miwakeichi, F., Martnez-Montes, E., Valds-Sosa, P., Nishiyama, N., Mizuhara, H., Yamaguchi, Y.: Decomposing EEG data into space−time−frequency components using parallel factor analysi. NeuroImage 22, 1035–1045 (2004)

    Article  Google Scholar 

  5. Mørup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M.: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29, 938–947 (2006)

    Article  Google Scholar 

  6. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  7. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing (New revised and improved edition). John Wiley, New York (2003)

    Google Scholar 

  8. Dhillon, I., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: Neural Information Proc. Systems, Vancouver, Canada, pp. 283–290 (2005)

    Google Scholar 

  9. Berry, M., Browne, M., Langville, A., Pauca, P., Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis (in press, 2006)

    Google Scholar 

  10. Bobin, J., Starck, J.L., Fadili, J., Moudden, Y., Donoho, D.L.: Morphological component analysis: An adaptive thresholding strategy. IEEE Transactions on Image Processing (in print, 2007)

    Google Scholar 

  11. Elad, M.: Why simple shrinkage is still relevant for redundant representations? IEEE Trans. On Information Theory 52, 5559–5569 (2006)

    Article  MathSciNet  Google Scholar 

  12. Kovac, A.: Smooth functions and local extreme values. Computational Statistics and Data Analysis 51, 5155–5171 (2007)

    Article  MathSciNet  Google Scholar 

  13. Tao, T., Vidakovic, B.: Almost everywhere behavior of general wavelet shrinkage operators. Applied and Computational Harmonic Analysis 9, 72–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daubechies, I., Defrrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Pure and Applied Mathematics 57, 1413–1457 (2004)

    Article  MATH  Google Scholar 

  15. Cichocki, A., Zdunek, R.: Multilayer nonnegative matrix factorization. Electronics Letters 42, 947–948 (2006)

    Article  Google Scholar 

  16. Cichocki, A., Zdunek, R.: NTFLAB for Signal Processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama, Japan (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cichocki, A., Phan, A.H., Zdunek, R., Zhang, LQ. (2008). Flexible Component Analysis for Sparse, Smooth, Nonnegative Coding or Representation. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics