Skip to main content

Computer Simulation of Vestibuloocular Reflex Motor Learning Using a Realistic Cerebellar Cortical Neuronal Network Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Abstract

The vestibuloocular reflex (VOR) is under adaptive control to stabilize our vision during head movements. It has been suggested that the acute VOR motor learning requires long-term depression (LTD) and potentiation (LTP) at the parallel fiber – Purkinje cell synapses in the cerebellar flocculus. We simulated the VOR motor learning basing upon the LTD and LTP using a realistic cerebellar cortical neuronal network model. In this model, LTD and LTP were induced at the parallel fiber – Purkinje cell synapses by the spike timing dependent plasticity rule, which considers the timing of the spike occurrence in the climbing fiber and the parallel fibers innervating the same Purkinje cell. The model was successful to reproduce the changes in eye movement and Purkinje cell simple spike firing modulation during VOR in the dark after low and high gain VOR motor learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J.S.: A Theory of Cerebellar Function. Mathematical Biosciences 10, 25–61 (1971)

    Article  Google Scholar 

  2. Blazquez, P.M., Hirata, Y., Heiney, S.A., Green, A.M., Highstein, S.M.: Cerebellar Signatures of Vestibule-ocular Reflex Motor Learning. J. Neurosci. 23, 9742–9751 (2003)

    Google Scholar 

  3. Boyden, E.S., Katoh, A., Raymond, J.L.: Cerebellum-dependent Learning: The Role of Multiple Plasticity Mechanisms. Annu. Rev. Neurosci. 27, 581–609 (2004)

    Article  Google Scholar 

  4. Gilbert, P.F.C., Thach, W.T.: Purkinje Cell Activity During Motor Learning. Brain Res. 128, 309–328 (1977)

    Article  Google Scholar 

  5. Hansel, C., Linden, D.J., D’Angelo, E.: Beyond Parallel Fiber LTD: the Diversity of Synaptic and Nonsynaptic Plasticity in the Cerebellum. Nature Neurosci. 4, 467–475 (2001)

    Google Scholar 

  6. Hirano, T.: Depression and Potentiation of the Synaptic Transmission Between a Granule Cell and a Purkinje Cell in Rat Cerebellar Culture. Neurosci. Lett. 119, 141–144 (1990)

    Article  Google Scholar 

  7. Hirata, Y., Highstein, S.M.: Acute Adaptation of the Vestibuloocular Reflex: Signal Processing by Floccular and Ventral Parafloccular Purkinje Cells. J. Neurophysiol. 85, 2267–2288 (2001)

    Google Scholar 

  8. Hirata, Y., Lockard, J.M., Highstein, S.M.: Capacity of Vertical VOR Adaptation in Squirrel Monkey. J. Neurophysiol. 88, 3194–3207 (2002)

    Article  Google Scholar 

  9. Hirata, Y., Takeuchi, I., Highstein, S.M.: A Dynamical Model for the Vertical Vestibuloocular Reflex and Optokinetic Response in Primate. Neurocomputing 52-54, 531–540 (2003)

    Article  Google Scholar 

  10. Inagaki, K., Hirata, Y., Blazquez, P., Highstein, S.: Model of VOR motor Learning with Spiking Cerebellar Cortical Neuronal Network. In: Proceedings of 16th Annu. CNS Meeting (2006)

    Google Scholar 

  11. Ito, M.: The Cerebellum and Neural Control. Raven Press (1984)

    Google Scholar 

  12. Ito, M.: Long-term Depression. Annu. Rev. Neurosci. 12, 85–102 (1989)

    Article  Google Scholar 

  13. Kano, M., Rexhausen, U., Dreessen, J., Konnerth, A.: Synapticexcitation Produces a Long-lasting Rebound Potentiation of Inhibitory Synaptic Signals in Cerebellar Purkinje Cells. Nature 356, 601–604 (1992)

    Article  Google Scholar 

  14. Kuki, Y., Hirata, Y., Blazquez, P.M., Heiney, S.A., Highstein, S.M.: Memory Retention of Vestibuloocular Reflex Motor Learning in Squirrel Monkeys. Neuroreport 15, 1007–1011 (2004)

    Article  Google Scholar 

  15. Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Gomi, H., Kawato, M.: Temporal Firing Patterns of Purkinje Cells in the Cerebellar Ventral Paraflocculus During Ocular Following Responses in Monkeys II. Complex spikes. J. Neurophysiol. 80, 832–848 (1998)

    Google Scholar 

  16. Lisberger, S.G., Sejnowski, T.: Motor Learning in a Recurrent Neural Network Model Based on the Vestibulo-ocular Reflex. Nature 360, 159–161 (1992)

    Article  Google Scholar 

  17. Marr, D.: A Theory of Cerebellar Cortex. J. Physiol. 202, 437–470 (1969)

    Google Scholar 

  18. Medina, J.F., Garcia, K.S., Nores, W.L., Taylor, N.M., Mauk, M.D.: Timing Mechanisms in the Cerebellum: Testing Predictions of a Large-scale Computer Simulation. J. Neurosci. 20, 5516–5525 (2000)

    Google Scholar 

  19. Nagao, S., Kitazawa, H.: Effects of Reversible Shutdown of the Monkey Flocculus on the Retention of Adaptation of the Horizontal Vestibulo-ocular Reflex. Neuroscience 118, 563–570 (2003)

    Article  Google Scholar 

  20. Ojakangas, C.L., Ebner, T.J.: Purkinje Cell Complex and Simple Spike Changes During a Voluntary Arm Movement Learning Task in the Monkey. J. Neurophysiol. 68, 2222–2236 (1992)

    Google Scholar 

  21. Omata, T., Kitama, T., Mizukoshi, A., Ueno, T., Kawato, M., Sato, Y.: Purkinje Cell Activity in the Middle Zone of the Cerebellar Flocculus During Optokinetic and Vestibular Eye Movement in Cats. Jpn. J. Physiol. 50, 357–370 (2000)

    Article  Google Scholar 

  22. Pastor, A., De La Cruz, R.R., Baker, R.: Characterization and Adaptive Modification of the Goldfish Vestibuloocular Reflex by Sinusoidal and Velocity Step Vestibular Stimulation. J. Neurophysiol. 68, 2003–2015 (1992)

    Google Scholar 

  23. Rambold, H., Churchland, A., Selig, Y., Jasmin, L., Lisberger, S.G.: Partial Ablations of the Flocculus and Ventral Paraflocculus in Monkeys Causes Linked Deficits in Smooth Pursuit Eye Movements and Adaptive Modification of the VOR. J. Neurophysiol. 87, 912–924 (2002)

    Google Scholar 

  24. Robinson, D.A.: Adaptive Gain Control of Vestibuloocular Reflex by the Cerebellum. J. Neurophysiol. 39, 954–969 (1978)

    Google Scholar 

  25. Sakurai, M.: Synaptic Modification of Parallel Fibre – Purkinje Cell Transmission in In Virto Guinea-pig Cerebellar Slices. J. Physiol (Lond) 394, 463–480 (1987)

    Google Scholar 

  26. Stone, L.S., Lisberger, S.G.: Visual Responses of Purkinje Cells in the Cerebellar Flocculus During Smooth-pursuit Eye Movements in Monkeys. II. Complex Spikes. J. Neurophysiol. 63, 1962–1975 (1990)

    Google Scholar 

  27. Tabata, H., Yamamoto, K., Kawato, M.: Computational Study on Monkey VOR Adaptation and Smooth Pursuit Based on the Parallel Control-pathway Theory. J. Neurophysiol. 87, 2176–2189 (2002)

    Google Scholar 

  28. Yoshikawa, A., Yoshida, M., Hirata, Y.: Capacity of the Horizontal Vestibuloocular Reflex Motor Learning in Goldfish. In: Proc. of the 26th Ann. Int’l Con. of the IEEE EMBS, pp. 478–481 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inagaki, K., Hirata, Y., Blazquez, P.M., Highstein, S.M. (2008). Computer Simulation of Vestibuloocular Reflex Motor Learning Using a Realistic Cerebellar Cortical Neuronal Network Model. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics