Skip to main content

A Robot Vision System for Collision Avoidance Using a Bio-inspired Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Abstract

Locusts have a remarkable ability of visual guidance that includes collision avoidance exploiting the limited nervous networks in their small cephalon. We have designed and tested a real-time intelligent visual system for collision avoidance inspired by the visual nervous system of a locust. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits so as to take advantage of the real-time analog computation and programmable digital processing. The response properties of the system were examined by using simulated movie images, and the system was tested also in real-world situations by loading it on a motorized miniature car. The system was confirmed to respond selectively to colliding objects even in complex real-world situations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly Part I. Q. Rev. Biophys. 9, 311–375 (1976)

    Article  Google Scholar 

  2. Poggio, T., Reichardt, W.: Visual control of orientation behaviour in the fly Part II. Q. Rev. Biophys. 9, 377–438 (1976)

    Article  Google Scholar 

  3. Franceschini, N.: Visual guidance based on optic flow: a biorobotic approach. J. Physiol. Paris 98, 281–292 (2004)

    Article  Google Scholar 

  4. Hatsopoulus, N., Gabbiani, F., Laurent, G.: Elementary computation of object approach by a wide-field visual neuron. Science 270, 1000–1003 (1995)

    Article  Google Scholar 

  5. Rind, F.C.: Intracellular characterization of neurons in the locust brain signalling impending collision. J. Neurophysiol. 75, 986–995 (1996)

    Google Scholar 

  6. Rind, F.C., Bramwell, D.I.: Neural network based on the input organization of an identified neuron signaling impending collision. J. Neurophysiol. 75, 967–984 (1996)

    Google Scholar 

  7. Blanchard, M., Rind, F.C., Verschure, P.F.M.J.: Collision avoidance using a model of the locust LGMD neuron. Robot. Auton. Sys. 30, 17–38 (2000)

    Article  Google Scholar 

  8. Bermudez, S., Verschure, P.: A Collision Avoidance Model Based on the Lobula Giant Movement Detector(LGMD) neuron of the Locust. In: Proceedings of the IJCNN, Budapest (2004)

    Google Scholar 

  9. Yue, S., Rind, F.C., Keil, M.S., Cuadri, J., Stafford, R.: A bio-inspired visual collision detection mechanism for cars: Optimisation of a model of a locust neuron to a novel environment. NeuroComputing 69, 1591–1598 (2006)

    Article  Google Scholar 

  10. Cuadri, J., Linan, G., Stafford, R., Keil, M.S., Roca, E.: A bioinspired collision detection algorithm for VLSI implementation. In: Proceedings of the SPIE conference on Bioengineered and Bioinspired System 2005 (2005)

    Google Scholar 

  11. Laviana, R., Carranza, L., Vargas, S., Liñán, G., Roca, E.: A Bioinspired Vision Chip Architecture for Collision Detection in Automotive Applications. In: Proceedings of the SPIE conference on Bioengineered and Bioinspired System 2005 (2005)

    Google Scholar 

  12. Okuno, H., Yagi, T.: Bio-inspaired real-time robot vision for collision avoidance. Journal of Robotics and Mechatronics (in press)

    Google Scholar 

  13. Kameda, S., Yagi, T.: An analog VLSI chip emulating sustained and transient response channels of the vertebrate retina. IEEE Trans. on Neural Networks 14, 1405–1412 (2003)

    Article  Google Scholar 

  14. Takami, R., Shimonomura, K., Kameda, S., Yagi, T.: A novel pre-processing vision system employing neuromorphic 100x100 pixel silicon retina. In: Proc. 2005 IEEE Intl. Symp. on Circuits and Systems, Kobe, Japan, pp. 2771–2774 (2005)

    Google Scholar 

  15. Indiveri, G., Douglas, R.: Neuromorphic Vision Sensors. Science 288, 1189–1190 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okuno, H., Yagi, T. (2008). A Robot Vision System for Collision Avoidance Using a Bio-inspired Algorithm. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics