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Abstract

In this paper, we propose to analyze the kinematic of human arm to pre-
dict social intention (personal vs. social intention). We propose to use
infrared markers placed on the arms of two human subjects. The trajec-
tories of different markers are defined as shape spaces and subsequently
analyzed as a Riemannian manifold for the purposes of characterizing the
intention (personal vs. social). The first results show that the best results
are obtained with the wrist marker (69.2%).

1 Introduction

In the last decades, understanding social interaction has attracted many
researchers from various fields of research including cognitive psychol-
ogy and neurosciences, medical studies, and computer sciences. In this
respect, computer vision researchers have developed powerful algorithms
to differentiate and recognize human gestures. Such approach proved to
be particularly useful for human-machine interaction systems. Besides,
some cognitive sciences expert focused their studies on the communica-
tive aspects of non-verbal human interactions. In particular, recent studies
have focused on interaction gestures to demonstrate the effect of social
intentions on kinematic variables, and the capacity of observers to use
motor deviants for their own motor production. Based on the possibil-
ity to benefit from both computer vision and cognitive science expertise,
we developed a study with the aim to combine efficient computer vision
technique and kinematic analysis in a motor task implying different social
intention. Our objective is to propose a statistical shape analysis frame-
work of trajectories in R? of human social intention. This framework
should be able to classify human social intention.

2 Social Intention in Motor Actions

Understanding what a conspecific is doing (for instance recognising other’s
action) is crucial for the control of our everyday social interactions. Un-
derstanding the reasons that drive the observed behaviour (for instance
identifying other’s intention) is however much more complicated. Previ-
ous literature has shown than when we observe a confederate grasping a
bottle of water, we can anticipate whether the bottle is grasped to drink
from it or to throw it away, based on variation of arm movement kinemat-
ics (e.g. [5]). But, what happens if the spatial constraints of the task are
similar (same object, same location, same movement), but only the social
intention changes (for example, moving the bottle on a table for a subse-
quent movement performed by either the actor or someone else). Recent
researches in cognitive psychology have suggested that even in that case
movement kinematics is affected. In particular, these studies showed that
when we perform an action with a social instead of a personal intention,
we amplify the spatial and temporal parameters of the motor action [8].
Furthermore, an observer is able to use this kinematic deviants and antic-
ipate social intention in motor actions performed by others, in order to act
in a complementary way ([6]; see [7] for a review). A challenge for the
future is to determine whether these kinematic deviants can be registered
and processed by a classifier in order to allow virtual and artificial sys-
tems (avatars, robots ...) to distinguish between different social goals in
interactive context, including either humans or other artificial systems.

Segment A Segment B

Figure 1: Illustration of the protocol. (Left) A screen-shot of the acquisi-
tion session. (Right) Example of two wrist trajectories. The red trajectory
corresponds to personal intention and the blue trajectory corresponds to
the social intention. Motions can be decomposed in the reaching phase
(Segment A) and the putting phase (Segment B).

3 Data Acquisition

Two participants seated at a table, facing each other, and participating in
a short interactive game which consisted in displacing a small object to
different locations. Their sequential actions were time-locked to a series
of broadcasted sounds. The first move of the game was always performed
by the same member of the dyad (named here, the actor) and consisted in
displacing the object from an initial location to a central location. After
this preparatory action, a subsequent action was performed either by the
actor (personal condition, half of the trials) or by the partner (social con-
dition, half of the trials), depending on the pitch of the sound triggering
the action. 40 trials were performed in a random order. Meanwhile, the
actor’s movements were recorded with 5 Oqus infrared cameras (Qualisys
system). 9 infrared reflective markers were placed on the index (tip), the
thumb (tip), the hand, the wrist (scaphoid and pisiform), the right-elbow,
the shoulders (right and left), and the head of the actor. The calibration
of the cameras provided the means to reach a standard deviation smaller
than 0.2 mm, at a 200 Hz sampling rate.

4 Shape Analysis of Trajectories of Human Social
Intention

Our hypothesis is that we can characterize the social intention using im-
age data by studying the shapes of the trajectories of the markers. This
requires proper mathematical representations of these trajectories and sta-
tistical models for studying their variability. In the last few years, many
approaches have been developed to analyze shapes of 2D curves. We
can cite approaches based on Fourier descriptors, moments or the median
axis. More recent works in this area consider a formal definition of shape
spaces as a Riemannian manifold on which they can use the classic tools
for statistical analysis on tangent spaces. Motivated by the promising
results obtained in 3D facial recognition [2] and human action recogni-
tion [1], we propose to use the shape analysis framework proposed by
[9]. Each motion of markers is represented by a trajectory of markers.
Formally, we start by considering a given trajectory as a continuous pa-
rameterized function B(r) € R3, + € [0,1]. B is first represented by its
Square-Root Velocity Function (SRVF), g, according to :

(1)
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Then, with the L2-norm of the ¢ functions scaled to 1 (||g|| = 1), the
space of such representation: C = {g: [0,1] — R3,||g|| = 1} becomes a
Riemannian manifold and have a spherical structure in the Hilbert space
1L2([0,1],R?). Given two curves B; and B, represented by their SRVFs
q1 and g on the manifold, the geodesic path connecting ¢, ¢, is given
analytically by the minor arc of the great circle connecting them on C
(see [9] for further details). The distance between two elements ¢; and
g is defined as d¢ (g1, ¢2) = cos™'({q1,¢2). Such distance represents the
similarity between the shape of two curves in R2. Basically, it quantifies
the amount of deformation between two shapes. This distance called also
elastic distance, is invariant to rotation, scaling and it takes into account
the stretching and the bending of the curves [10].

5 Statistical Shape Analysis of Trajectories

The main goal of our study is to categorize the user intention among two
classes ¢ denote {personal,social}. For that we propose to learn rep-
resentative distributions of trajectories for each class. An important ad-
vantage of our Riemannian approach is its ability to compute summary
statistics of a set of trajectories. While a mean within a vector space is
easy to compute, performing the task on a non-linear manifold such as C
is not obvious.

For example, one can use the notion of Karcher mean [3] to define
an average trajectories that can serve as a representative trajectories of
a group of trajectories. Given a set of data points g; on a the manifold
C , one way to define their geometric mean is via the minimization of a
certain cost function defined by :
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Since manifolds lack a vector space structure and other Euclidean
structures such as norm and inner product, machine learning algorithms
including principal component analysis (PCA) and Maximum Likelihood
clustering algorithm cannot be applied in their original forms on the man-
ifold C. A common approach used to cope with its non-linearity consists
in approximating the manifold valued data with its projection to a tangent
space at a particular point on the manifold, for example, the mean of the
data p. Then, each sample shape g; is mapped in the tangent space at the
mean shape 7, S using the inverse exponential map [4] defined as:
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where 0 = dc(U,q;). The original shape g; can be retrieved from the
velocity vector v; by using the exponential map operator [4] defined as:
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Shapes are projected in the tangent space of the mean using the in-
verse exponential map (eq. 4).
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Such tangent space is a linear vector space which is more convenient
to compute statistics. Hence, in order to learn the distribution of tangent
vectors on the tangent space, we can first perform PCA to learn a principal
subspace denoted 3. Then, the covariance matrix on this principal basis
is computed as ¥ = Zi-\': 1 vivlr, where v; are the tangent vectors projected
into the principal subspace B.

Finally, the multivariate normal distribution of trajectory c, p(v|ci; X)
is learned using the covariance matrix £ computed from the set of v; where
|Z| is the determinant of the covariance matrix X.
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In addition, the previous learned distributions can be employed so as
to generate random trajectory shapes representing random trajectories.

6 Experimental results

To evaluate the effectiveness of our method we collect data from two dif-
ferent subjects. Each subject performs the two different movements 20
times resulting in 40 samples per subject. We use samples from subject
1 to learn distributions and samples and used them for subject 2 as test.
The process is repeated with subject 2 for training and use for subject 1 as
test. The average accuracy is reported in Tablel. We propose to analyze
each marker trajectory separately to identify which part of the arm is more
important to distinct the two intentions. In addition, the whole movement
can be decomposed in two phases as illustrated in Figure 1. The first phase
(Segment A) corresponds to the reaching movement where the participant
take the object. The second phase (Segment B) corresponds to the putting
movement where the participant put the object on the table. During our
experiments, we propose to analyze these segments separately as well as
the full movement (Segment A+B).

Table 1: Categorization accuracy in % for each of the markers.

Markers Hand | Wrist | Elbow | Shoulder
Seg A 55.3 60.5 60.5 64.1
Seg B 66.7 69.2 61.6 59.0
Seg A+B | 61.6 60.5 64.1 50.0

From the table, we can first observe that we obtain our better result
when analyzing the segment B of the trajectory corresponding to the wrist
marker (69.2%). We can also see that analyzing the segment B is more
discriminant than segment A for most of the markers. However, this ob-
servation is not valid for the shoulder marker. This shows that in order
to guarantee a better categorization to the intentions, a different marker
should be analyzed depending on the motion segments. This encourage
us to consider this aspect as future work. In addition, we also would like to
extend the analysis by analyzing several markers simultaneously instead
of separately. This would allows to combine strength of each marker.
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