Skip to main content

Blind Image Separation Using Nonnegative Matrix Factorization with Gibbs Smoothing

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

Abstract

Nonnegative Matrix Factorization (NMF) has already found many applications in image processing and data analysis, including classification, clustering, feature extraction, pattern recognition, and blind image separation. In the paper, we extend the selected NMF algorithms by taking into account local smoothness properties of source images. Our modifications are related with incorporation of the Gibbs prior, which is well-known in many tomographic image reconstruction applications, to a underlying blind image separation model. The numerical results demonstrate the improved performance of the proposed methods in comparison to the standard NMF algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  2. Guillamet, D., Vitrià, J., Schiele, B.: Introducing a weighted nonnegative matrix factorization for image classification. Pattern Recognition Letters 24, 2447–2454 (2003)

    Article  MATH  Google Scholar 

  3. Ahn, J.H., Kim, S., Oh, J.H., Choi, S.: Multiple nonnegative-matrix factorization of dynamic PET images. In: ACCV, p. 5 (2004)

    Google Scholar 

  4. Lee, J.S., Lee, D.D., Choi, S., Lee, D.S.: Application of nonnegative matrix factorization to dynamic positron emission tomography. In: 3rd International Conference on Independent Component Analysis and Blind Signal Separation, San Diego, CA, pp. 556–562 (2001)

    Google Scholar 

  5. Li, H., Adali, T., Wang, W., D.E.: Non-negative matrix factorization with orthogonality constraints for chemical agent detection in Raman spectra. In: IEEE Workshop on Machine Learning for Signal Processing, Mystic, USA (2005)

    Google Scholar 

  6. Carmona-Saez, P., Pascual-Marqui, R.D., Tirado, F., Carazo, J.M., Pascual-Montano, A.: Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 7 (2006)

    Google Scholar 

  7. Pascual-Montano, A., Carazo, J.M., Kochi, K., Lehmean, D., Pacual-Marqui, R.: Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Trans. Pattern Analysis and Machine Intelligence 28, 403–415 (2006)

    Article  Google Scholar 

  8. Shahnaz, F., Berry, M., Pauca, P., Plemmons, R.: Document clustering using non-negative matrix factorization. Journal on Information Processing and Management 42, 373–386 (2006)

    Article  MATH  Google Scholar 

  9. Okun, O., Priisalu, H.: Fast nonnegative matrix factorization and its application for protein fold recognition. EURASIP Journal on Applied Signal Processing Article ID 71817, 8 (2006)

    Google Scholar 

  10. Wang, Y., Jia, Y., Hu, C., Turk, M.: Non-negative matrix factorization framework for face recognition. International Journal of Pattern Recognition and Artificial Intelligence 19, 495–511 (2005)

    Article  Google Scholar 

  11. Liu, W., Zheng, N.: Non-negative matrix factorization based methods for object recognition. Pattern Recognition Letters 25, 893–897 (2004)

    Article  Google Scholar 

  12. Spratling, M.W.: Learning image components for object recognition. Journal of Machine Learning Research 7, 793–815 (2006)

    MathSciNet  Google Scholar 

  13. Sajda, P., Du, S., Brown, T.R., Shungu, R.S.D.C., Mao, X., Parra, L.C.: Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Trans. Medical Imaging 23, 1453–1465 (2004)

    Article  Google Scholar 

  14. Cichocki, A., Zdunek, R., Amari, S.: New algorithms for non-negative matrix factorization in applications to blind source separation. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP2006, Toulouse, France, pp. 621–624 (2006)

    Google Scholar 

  15. Dhillon, I.S., Modha, D.M.: Concept decompositions for large sparse text data using clustering. Machine Learning J. 42, 143–175 (2001)

    Article  MATH  Google Scholar 

  16. Berry, M., Browne, M., Langville, A., Pauca, P., Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis 52, 55–173 (2007)

    Article  Google Scholar 

  17. Cho, Y.C., Choi, S.: Nonnegative features of spectro-temporal sounds for classification. Pattern Recognition Letters 26, 1327–1336 (2005)

    Article  Google Scholar 

  18. Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. In: PNAS, vol. 101, pp. 4164–4169 (2000)

    Google Scholar 

  19. Rao, N., Shepherd, S.J., Yao, D.: Extracting characteristic patterns from genome – wide expression data by non-negative matrix factorization. In: Proc. of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004), Stanford, CA (2004)

    Google Scholar 

  20. Rutkowski, T.M., Zdunek, R., Cichocki, A.: Multichannel EEG brain activity pattern analysis in time-frequency domain with nonnegative matrix factorization support. International Congress Series 8611, 266–269 (2007)

    Article  Google Scholar 

  21. Cichocki, A., Zdunek, R., Amari, S.: Csiszar’s divergences for non-negative matrix factorization: Family of new algorithms. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 32–39. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Dhillon, I., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: Neural Information Proc. Systems, Vancouver, Canada, pp. 283–290 (2005)

    Google Scholar 

  23. Kompass, R.: A generalized divergence measure for nonnegative matrix factorization. Neural Computation 19, 780–791 (2006)

    Article  MathSciNet  Google Scholar 

  24. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)

    MathSciNet  Google Scholar 

  25. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Computation 15, 349–396 (2003)

    Article  MATH  Google Scholar 

  26. Zdunek, R., Cichocki, A.: Nonnegative matrix factorization with constrained second-order optimization. Signal Processing 87, 1904–1916 (2007)

    Article  Google Scholar 

  27. Cichocki, A., Zdunek, R.: Regularized alternating least squares algorithms for non-negative matrix/tensor factorizations. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 793–802. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Zdunek, R., Cichocki, A.: Gibbs regularized nonnegative matrix factorization for blind separation of locally smooth signals. In: 15th IEEE International Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2007), Tokushima, Japan, pp. 317–320 (2007)

    Google Scholar 

  29. Besag, J.: Toward Bayesian image analysis. J. Appl. Stat. 16, 395–407 (1989)

    Article  Google Scholar 

  30. Hebert, T., Leahy, R.: A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Transactions on Medical Imaging 8, 194–202 (1989)

    Article  Google Scholar 

  31. Geman, S., McClure, D.: Statistical methods for tomographic image reconstruction. Bull. Int. Stat. Inst. LII-4, 5–21 (1987)

    MathSciNet  Google Scholar 

  32. Geman, S., Reynolds, G.: Constrained parameters and the recovery of discontinuities. IEEE Trans. Pattern Anal. Machine Intell. 14, 367–383 (1992)

    Article  Google Scholar 

  33. Stevenson, R., Delp, E.: Fitting curves with discontinuities. In: Proc. 1-st Int. Workshop on Robust Computer Vision, Seattle, Wash., USA (1990)

    Google Scholar 

  34. Green, P.J.: Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans. Medical Imaging 9, 84–93 (1990)

    Article  Google Scholar 

  35. Lange, K., Carson, R.: EM reconstruction algorithms for emission and transmission tomography. J. Comp. Assisted Tomo. 8, 306–316 (1984)

    Google Scholar 

  36. Cichocki, A., Zdunek, R.: NMFLAB for Signal and Image Processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama, Japan (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zdunek, R., Cichocki, A. (2008). Blind Image Separation Using Nonnegative Matrix Factorization with Gibbs Smoothing. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics